© 'doubtnut

India's Number 1 Education App

MATHS

BOOKS - MAHAVEER PUBLICATION

SERIES

Question Bank

1. $3,6,9,12, . . .$.

Each term in a sequence can be referred to by its
place in the sequence, i.e. first term, third term, $n^{\text {th }}$ term.

2. 2,8,18,32,.....

Each term in a sequence can be referred to by its place in the sequence, i.e. first term, third term, $n^{\text {th }}$ term.

D Watch Video Solution
3. Find the general $\left(n^{t h}\right)$ term for the arithmetic sequence : 2,6,10, 14, 18,22,.....
4. Find the general $\left(n^{t h}\right)$ term for the arithmetic sequence : $-5,-3,-1,1,3, . . .$.

- Watch Video Solution

5. Find the general $\left(n^{t h}\right)$ term for the arithmetic sequence : 1,4,7,10,13,16,.....

- Watch Video Solution

6. Find the number of term in the series $8,12,16, \ldots . . ., 72$.
7. Find a_{n} if $-1,10,21,32,43,54, \ldots .$.

D Watch Video Solution

8. Find a_{n} if $3,0,-3,-6,-9,-12, \ldots .$.

(D) Watch Video Solution

9. Find the following sums $3+7+11+15+\ldots . . .+35$

- Watch Video Solution

10. Find the following sums $-2+1+4+7+\ldots . . .+25$
11. In an arithmetic sequence $a_{1}+a_{3}=12$ and $a_{4}+a_{6}=24$. Find the values of a and d

D Watch Video Solution

12. In an arithmetic series, the sum of the first $2 n$ terms is half the sum of the first 3 n terms. If $\mathrm{a}=12$ and $d=3$, find the value of n.
13. Suppose that you play black jack Harrah's on June 1 and $\$ 1000$ lose. Tomorrow you bet and lose $\$ 15$ less.

Each day you lose \$ 15 less that your previous loss.
What will your total losses be for the 30 days of June
?

D Watch Video Solution
14. Insert 5 arithmetic mean between 13 and -11.

- Watch Video Solution

15. Find the general $\left(n^{t h}\right)$ term for the following geometric sequences : $2,6,18,54, \ldots .$.

- Watch Video Solution

16. Find the general $\left(n^{t h}\right)$ term for the following geometric sequences : 27,9,3,1,....

- Watch Video Solution

17. Find the general $\left(n^{t h}\right)$ term for the following geometric sequences : 16,-8,4,-2,1,.....
18. Find the 10^{\wedge} (th) term in the series $2,4,8,16, \ldots .$.

- Watch Video Solution

19. Find the following sums

First 5 terms of $-6+18-54+. . .$. .

- Watch Video Solution

20. Find the following sums
$5+10+20+40+\ldots . . .+2560$
21. Find the following sums
$-2+4-8+16-. . .$.

D Watch Video Solution

22. Find the following sums
$24+12+6+3+\frac{3}{2}+\frac{3}{4}+\ldots .$.

Watch Video Solution
23. Find the sum of the first 8 terms of the series 2,6,18,54.

- Watch Video Solution

24. How much is going to taxes? Suppose that we track a tax refund of $\$ 100$. Each time money is spend 8% goes toward taxes and the rest get spend again. How much of the original $\$ 100$ will go back to taxes ?

D View Text Solution

25. Insert two geometric means between 2 and 1024.
26. If A.M. and GM. of two positive numbers a and b are 10 and 8 , respectively find the numbers.

D Watch Video Solution

27. The $12^{\text {th }}$ term and $15^{\text {th }}$ term of an AP are 68 and 86 respectively. Find the AP.

- Watch Video Solution

28. Find the sum: $3+7+11+. . . .+79$.
29. Find k if $2 k+1, k, 3 k+2$ are in GP.

- Watch Video Solution

30. Find $8^{\text {th }}$ term of the GP $1,4,16$,....

D Watch Video Solution
31. If x, y, z are in GP, then prove that $\log x, \log y, \log z$ are in AP.
32. If $3^{\text {rd }}$ term of an arithmetic progression is and term is 18 and $17^{\text {th }}$ term is 30 , find the progression.

(D) Watch Video Solution

33. The sum of the series $3+33+333+\ldots .+n$ terms is
34. Find the three terms in GP whose sum is 21 and product 64.

- Watch Video Solution

35. If a, b, c are in A.P. and x, y, z are in G.P., then prove that :
$x^{b-c} \cdot y^{c-a} \cdot z^{a-b}=1$

D Watch Video Solution
36. If a b c are the $p^{\text {th }}, q^{\text {th }}$ and $r^{\text {th }}$ terms of an AP then prove that $\sum a(q-r)=0$

- Watch Video Solution

37. Show that, $\log _{e} 2=\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+\ldots . \infty$

- Watch Video Solution

38. Show that, $e^{x}+e^{-x}=2\left(1+\frac{x^{2}}{2!}+\frac{x^{4}}{4!}+\ldots.\right)$

D Watch Video Solution

39.

If,
$y=x-\frac{x^{2}}{2}+\frac{x^{3}}{3}-\frac{x^{4}}{4}+\ldots . \infty$ and $(|x|<1)$
then $x=y+\frac{y^{2}}{a!}+\frac{y^{3}}{b!}+\ldots \ldots+\infty$ Find $a^{2}+b$

- Watch Video Solution

40.

Prove
that,
$\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{3.4}-\ldots . .=2 \log _{e} 2-1$

D Watch Video Solution

41. Show tha, $1+\frac{1}{2!}+\frac{1}{4!}+\ldots=\frac{1}{2}\left(e+\frac{1}{e}\right)$

Watch Video Solution
42.

Prove
that,
$\frac{1}{2.3}-\frac{1}{4.5}+\frac{1}{6.7}+\ldots .=1-\log _{e} 2$

- Watch Video Solution

43.

Prove
that,
$1+\frac{1+2}{2!}+\frac{1+2+3}{3!}+\frac{1+2+3+4}{4!}+\ldots=\frac{3 e}{2}$

D Watch Video Solution
44. Find the sum of odd integers from 1 to 2001.
45. Find $11^{\text {th }}$ term in $09,17,25,33$,.....

(D) Watch Video Solution

46. How many terms of the A.P. $-6,-\frac{11}{2},-5 \ldots$ are needed to give the sum -25 ?

D Watch Video Solution

47. How many terms of the series : $93+90+87+84+. . .$.

Will amount to 975 ?
48. Find four arithmetic mean between 3 and 23 ?

D Watch Video Solution
49. Insert two arithmetic mean between 16 and 22.

- Watch Video Solution

50. Insert three arithmetic mean (AM) between 1 and $\frac{1}{16}$.

- Watch Video Solution

51. Insert four arithmetic mean (AM) between 4 and 19.

D Watch Video Solution
52. Insert three arithmetic mean (AM) between 6 and 18.

D Watch Video Solution
53. Is 292 a term of the A.P. series $1,4,7,10$,.....? Explain.
54. In an A.P the $1^{\text {st }}$ term is $2 \sqrt{2}$ and the $13^{\text {th }}$ term is $8 \sqrt{2}$.

Find the common difference.

D Watch Video Solution

55. The $12^{\text {th }}$ term and $15^{\text {th }}$ term of an AP are 68 and 86 respectively. Find its $18^{\text {th }}$ term

D Watch Video Solution

56. If A.M. and GM. of two positive numbers a and b
are 10 and 8 , respectively find the numbers.
57. Find the sum of first n terms and the sum of first 5 terms of the geometric series $1+\frac{2}{3}+\frac{4}{9}+$:

- Watch Video Solution

58. Find the sum of the sequence $7,77,777,7777, \ldots$ to
n terms.

- Watch Video Solution

59. How many numbers divisible by 17 are there in between 25 and 450 ?

- Watch Video Solution

60. For what value of x , the number $-\frac{2}{7}, x,-\frac{2}{7}$ are in G.P.?
(D) Watch Video Solution
61. Insert three geometric mean (GM) between 1 and $\frac{1}{16}$.
62. Find three numbers in G.P. whose sum is 19 and product is 216 .

D Watch Video Solution

63. If a, b, c are respectively the $p^{t h}, q^{t h} a n d r^{t h}$ terms of a G.P.
show that
$(q-r) \log a+(r-p) \log b+(p-q) \log c=0$.

- Watch Video Solution

64. Find the $12^{\text {th }}$ term of the sequences $-6,-18,-54, \ldots .$.
65. Find the sum of $2+4+8+16+. . .$. to 8 terms.

- Watch Video Solution
$66.1 .3+3.5+5.7+\ldots . . n$ terms $=$

D Watch Video Solution
67. Find the value of a^{\prime} if $(2 a+1), a,(3 a+2)$ are in G.P?
68. Statement -1 : The sum of the series
$\frac{1}{1!}+\frac{2}{2!}+\frac{3}{3!}+\frac{4}{4!}+\ldots \rightarrow \infty$ is e
Statement 2: The sum of the seies
$\frac{1}{1!} x+\frac{2}{2!} x^{2}+\frac{3}{3!} x^{3}+\frac{4}{4!} x^{4} \ldots \rightarrow \infty i s x e^{x}$

D Watch Video Solution

69. Prove that
$\frac{x}{1!}+\frac{2 x^{2}}{2!}+\frac{3 x^{3}}{3!}+\frac{4 x^{4}}{4!}+\ldots .=x e^{x}$

D Watch Video Solution
70. Prove that
$\frac{1^{2}}{1!}+\frac{2^{2}}{2!}+\frac{3^{2}}{3!}+\frac{4^{2}}{4!}+\ldots .=2 e$

D Watch Video Solution
71. Prove that
$\frac{1^{3}}{1!}+\frac{2^{3}}{2!}+\frac{3^{3}}{3!}+\frac{4^{3}}{4!}+\ldots .=5 e$

D Watch Video Solution
72. Prove that
$\frac{1}{3}+\frac{1}{3.3^{3}}+\frac{1}{5.3^{5}}+\ldots=\frac{1}{2} \log 2$

0
73. If $1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\ldots=\log _{e} 2$, then sum $\frac{1}{1.3}+\frac{1}{2.5}+\frac{1}{3.7}+\frac{1}{4.9}+\ldots \ldots \ldots$.

D Watch Video Solution
74.

Prove
$\frac{1.3}{1!}+\frac{2.4}{2!}+\frac{3.5}{3!}+\frac{4.6}{4!}+\ldots .=4 e$

D Watch Video Solution
75. Show that, $\frac{1}{1-x}=1+x+x^{2}+x^{3}+\ldots . \infty$ if $|x|<1$

- Watch Video Solution

76. $\frac{\frac{1}{2!}+\frac{1}{4!}+\frac{1}{6!}+\ldots \ldots}{\frac{1}{1!}+\frac{1}{3!}+\frac{1}{5!}+\ldots \ldots}=$

- Watch Video Solution

