

MATHS

BOOKS - MAHAVEER PUBLICATION

SERIES

Question Bank

1. 3,6,9,12,....

Each term in a sequence can be referred to by its place in the sequence, i.e. first term, third term, n^{th}

term.

2. 2,8,18,32,....

Each term in a sequence can be referred to by its place in the sequence, i.e. first term, third term, n^{th} term.

Watch Video Solution

3. Find the general (n^{th}) term for the arithmetic sequence : 2,6,10, 14, 18,22,....

6. Find the number of term in the series 8,12,16,....,72.

7. Find a_n if -1,10,21,32,43,54,....

10. Find the following sums -2+1+4+7+.....+25

12. In an arithmetic series, the sum of the first 2n terms is half the sum of the first 3n terms. If a = 12 and d = 3, find the value of n.

13. Suppose that you play black jack Harrah's on June 1 and \$1000 lose. Tomorrow you bet and lose \$ 15 less. Each day you lose \$ 15 less that your previous loss. What will your total losses be for the 30 days of June

?

Watch Video Solution

14. Insert 5 arithmetic mean between 13 and -11.

15. Find the general (n^{th}) term for the following geometric sequences : 2,6,18,54,....

16. Find the general (n^{th}) term for the following

geometric sequences : 27,9,3,1,....

Watch Video Solution

17. Find the general (n^{th}) term for the following geometric sequences : 16,-8,4,-2,1,....

18. Find the 10^(th) term in the series 2,4,8,16,.....

Watch Video Solution

19. Find the following sums

First 5 terms of -6+18-54+.....

Watch Video Solution

20. Find the following sums

AAVELEN MELLE MELLER.

5+10+20+40+.....+2560

21. Find the following sums

-2+4-8+16-.....

Watch Video Solution

22. Find the following sums
$$24+12+6+3+\frac{3}{2}+\frac{3}{4}+...$$

23. Find the sum of the first 8 terms of the series 2,6,18,54.

24. How much is going to taxes? Suppose that we track a tax refund of \$ 100. Each time money is spend8% goes toward taxes and the rest get spend again.How much of the original \$100 will go back to taxes ?

25. Insert two geometric means between 2 and 1024.

are 10 and 8, respectively find the numbers.

27. The 12^{th} term and 15^{th} term of an AP are 68 and 86

respectively. Find the AP.

28. Find the sum: 3+7+11+.....+79.

32. If 3^{rd} term of an arithmetic progression is and term is 18 and 17^{th} term is 30, find the progression.

Watch Video Solution

33. The sum of the series $3+33+333+\ldots+n$

terms is

34. Find the three terms in GP whose sum is 21 and product 64.

35. If a, b, c are in A.P. and x, y, z are in G.P., then prove

that :

$$x^{b-c}$$
. y^{c-a} . $z^{a-b} = 1$

Watch Video Solution

Watch Video Solution

36. If a b c are the p^{th} , q^{th} and r^{th} terms of an AP then prove that $\sum a(q-r)=0$

37. Show that,
$$\log_e 2 = rac{1}{1.2} + rac{1}{3.4} + rac{1}{5.6} + \infty$$

Watch Video Solution

38. Show that,
$$e^x+e^{-x}=2igg(1+rac{x^2}{2!}+rac{x^4}{4!}+...igg)$$

39. If,
$$y = x - rac{x^2}{2} + rac{x^3}{3} - rac{x^4}{4} + \infty \, \, ext{and} \, \, (|x| < 1)$$

then
$$x = y + \frac{y^2}{a!} + \frac{y^3}{b!} + \dots + \infty$$
 Find $a^2 + b$
Watch Video Solution
40. Prove that,
 $\frac{1}{1.2} - \frac{1}{2.3} + \frac{1}{3.4} - \dots = 2\log_e 2 - 1$
Watch Video Solution
41. Show tha, $1 + \frac{1}{2!} + \frac{1}{4!} + \dots = \frac{1}{2}\left(e + \frac{1}{e}\right)$
Watch Video Solution

44. Find the sum of odd integers from 1 to 2001.

45. Find 11th term in 09,17,25,33,....

Will amount to 975?

48. Find four arithmetic mean between 3 and 23 ?

Watch Video Solution
49. Insert two arithmetic mean between 16 and 22.
Watch Video Solution
50. Insert three arithmetic mean (AM) between 1 and $\frac{1}{16}$.
Watch Video Solution

51. Insert four arithmetic mean (AM) between 4 and

19.

53. Is 292 a term of the A.P. series 1,4,7,10,....? Explain.

54. In an A.P the 1^{st} term is $2\sqrt{2}$ and the 13^{th} term is

 $8\sqrt{2}$.

Find the common difference.

Watch Video Solution

55. The 12^{th} term and 15^{th} term of an AP are 68 and 86

respectively. Find its 18^{th} term

Watch Video Solution

56. If A.M. and GM. of two positive numbers a and b

are 10 and 8, respectively find the numbers.

58. Find the sum of the sequence 7, 77, 777, 7777, ... to

n terms.

59. How many numbers divisible by 17 are there in between 25 and 450? Watch Video Solution **60.** For what value of x, the number $-\frac{2}{7}$, x, $-\frac{2}{7}$ are in GP?

61. Insert three geometric mean (GM) between 1 and $\frac{1}{16}$.

Watch Video Solution

62. Find three numbers in G.P. whose sum is 19 and product is 216.

Watch Video Solution

63. If a, b, c are respectively the $p^{th}, q^{th} and r^{th}$ terms of a G.P. show that $(q-r)\log a + (r-p)\log b + (p-q)\log c = 0.$ **Vatch Video Solution**

64. Find the 12^{th} term of the sequences -6,-18,-54,....

68. Statement -1: The sum of the series

$$rac{1}{1!} + rac{2}{2!} + rac{3}{3!} + rac{4}{4!} + \ldots o \infty$$
 is e

Statement 2: The sum of the seies

$$rac{1}{1!}x+rac{2}{2!}x^2+rac{3}{3!}x^3+rac{4}{4!}x^4.\ .\ o\infty is xe^x$$

70. Prove that

$$rac{1^2}{1!} + rac{2^2}{2!} + rac{3^2}{3!} + rac{4^2}{4!} + \dots = 2e$$

Watch Video Solution

72. Prove that
$$\frac{1}{3} + \frac{1}{3 \cdot 3^3} + \frac{1}{5 \cdot 3^5} + \dots = \frac{1}{2} \log 2$$

Match Mideo Colution

73. If
$$1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \ldots = \log_e 2$$
, then sum $\frac{1}{1.3} + \frac{1}{2.5} + \frac{1}{3.7} + \frac{1}{4.9} + \ldots$

75. Show that, $\displaystyle rac{1}{1-x} = 1+x+x^2+x^3+....\infty$ if |x| < 1

Watch Video Solution

76.
$$\frac{\frac{1}{2!} + \frac{1}{4!} + \frac{1}{6!} + \dots}{\frac{1}{1!} + \frac{1}{3!} + \frac{1}{5!} + \dots} =$$