びdoubtnut

India's Number 1 Education App

MATHS

BOOKS - MAHAVEER PUBLICATION

VECTOR

Question Bank

1. State which of the following are scalars and which are vectors?

Give reasons.

Mass

- Watch Video Solution

2. State which of the following are scalars and which are vectors?

Give reasons.

Weight

- Watch Video Solution

3. State which of the following are scalars and which are vectors?

Give reasons.

Momentum

- Watch Video Solution

4. State which of the following are scalars and which are vectors?

Give reasons.

Temperature
5. State which of the following are scalars and which are vectors?

Give reasons.

Force

- Watch Video Solution

6. State which of the following are scalars and which are vectors?

Give reasons.

Density

(Watch Video Solution

7. Represent graphically a force 40 N in a direction 60° north of east.
8. Represent graphically a force of 30 N in a direction 49° east of north.

- Watch Video Solution

9. When is the sum of two non zero vectors is zero?

D Watch Video Solution

10. The position vectors of two points A and B are $3 \vec{a}+2 \vec{b}$ and $2 \vec{a}-\vec{b}$ respectively. Find the vector $\overrightarrow{A B}$

(Watch Video Solution

11. Given $\vec{a}=\hat{i}-\hat{j}+\hat{k}$ and $\vec{b}=2 \hat{i}-4 \hat{j}-3 \hat{k}$, find the magnitude of \vec{a}

- Watch Video Solution

12. Given $\vec{a}=\hat{i}-\hat{j}+\hat{k}$ and $\vec{b}=2 \hat{i}-4 \hat{j}-3 \hat{k}$, find the magnitude of \vec{b}

- View Text Solution

13. Given $\vec{a}=\hat{i}-\hat{j}+\hat{k}$ and $\vec{b}=2 \hat{i}-4 \hat{j}-3 \hat{k}$, find the magnitude of $\vec{a}+\vec{b}$

D View Text Solution

14. Given $\vec{a}=\hat{i}-\hat{j}+\hat{k}$ and $\vec{b}=2 \hat{i}-4 \hat{j}-3 \hat{k}$, find the magnitude of $\vec{a}-\vec{b}$

D View Text Solution

15. Find the position vector of a point which divides the join of two points whose position vectors are given by \vec{a} and \vec{b} in the ratio 1:3 internally.

D View Text Solution

16. Find the position vector of mid point of the line segment $A B$, if the position vectors of A and B are respectively, $\vec{x}+3 \vec{y}$ and $3 \vec{x}-\vec{y}$.

- View Text Solution

17. Find the unit vector perpendicular to each of the vectors $\vec{a}=3 \hat{i}+2 \hat{j}-3 \hat{k}$ and $\vec{b}=\hat{i}+\hat{j}-\hat{k}$.

- Watch Video Solution

18. Find the area of the triangle having point $A(1,1,1) B(1,2,3)$ and $C(2,3,1)$ as its vertices.

- Watch Video Solution

19. Find the area of the parallelogram having point $A(5,-1,1)$, $B(-1,-3,4) C(1,-6,10)$ and $D(7,-4,7)$ as its vertices.

- Watch Video Solution

20. Let, P be a point in space such that $|\overrightarrow{O P}|=\sqrt{3}$ and $\overrightarrow{O P}$ makes angles $\frac{\pi}{3}, \frac{\pi}{4}, \frac{\pi}{3}$ with positive direction of x, y and z axes respectively. Find co-ordinates of point. -

- Watch Video Solution

21. If $P(2,-1,4)$ is a point in the space, find the direction cosines of vector $\overrightarrow{O P}$

- Watch Video Solution

22. Can $\left(\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)$ be direction cosines of a vector.
23. If $P(2,3,-6)$ and $Q(3,-4,-6)$ are two points in the space. Find the direction cosines of $\overrightarrow{O P}, \overrightarrow{Q O}$ and $\overrightarrow{P Q}$, where Q is the origin.

- Watch Video Solution

24. Find the direction cosines of a vector which makes equal angles with the axes.

- Watch Video Solution

25. If $P(1,2,-3)$ and $Q(4,3,5)$ are two points in space, find the direction ratio of $\overrightarrow{O P}, \overrightarrow{Q O}$ and $\overrightarrow{P Q}$.

- Watch Video Solution

26. Find the scalar triple product of vectors $\hat{i}+2 \hat{j}+3 \hat{k},-\hat{i}-\hat{j}+\hat{k}$ and $\hat{i}+\hat{j}+\hat{k}$.

- Watch Video Solution

27. Show that the vectors $4 \hat{i}-\hat{j}+\hat{k}, 3 \hat{i}-2 \hat{j}-\hat{k}$ and $\hat{i}+\hat{j}+2 \hat{k}$ are co-planar.

- Watch Video Solution

28. Find lambda if the vectors $\hat{i}+\hat{j}+2 \hat{k}, \lambda \hat{i}-\hat{j}+\hat{k}$ and $3 \hat{i}-2 \hat{j}-\hat{k}$ are co-planar.

- Watch Video Solution

29. Find the unit vector in the direction of $2 \hat{i}+3 \hat{j}+\hat{k} . \mid$

Watch Video Solution

30. Let, veca $=$ hati+2hatj and vecb $=2$ hati+hatj. $I f \mid$ veca $=\mid$ vecb \mid
. Arethe $\longrightarrow r s$ veca\&vecb` equal?

D View Text Solution

31. Find the values of $\mathrm{x} \& \mathrm{y}$ so that vectors $2 \hat{i}+3 \hat{j}$ and $x \hat{i}+Y \hat{j}$ are equal.

- Watch Video Solution

32. Find the scalar and dot product of vectors $\hat{i}+2 \hat{j}-3 \hat{k}$ and $2 \hat{i}-\hat{j}+\hat{k}$.
33. Show that $\frac{\hat{i}-\hat{j}}{\sqrt{2}}$ is a unit vector.

- Watch Video Solution

34. Find the direction ratios and direction cosines of the vector $\vec{a}=\hat{i}+\hat{j}-2 \hat{k}$.

- Watch Video Solution

35. Show that the vectors $2 \hat{i}-\hat{j}+4 \hat{k}$ and $-4 \hat{i}+6 \hat{j}-8 \hat{k}$ are collinear.

- Watch Video Solution

36. Find $|\vec{x}|$, if for a unit vector $\vec{a},(\vec{x}-\vec{a}) \cdot(\vec{x}+\vec{a})=12$.
37. Find $|\vec{a}-\vec{b}|$, if two vectors \vec{a} and \vec{b} are such that $|\vec{a}|=2,|\vec{b}|=3$ and $\vec{a} \cdot \vec{b}=4$.

(Watch Video Solution

38. If $=\vec{a}=\hat{i}-7 \hat{j}+7 \hat{k}$ and $\vec{b}=3 \hat{i}-2 \hat{j}+2 \hat{k}$ find $\vec{a} \times \vec{b}$ and $|\vec{a} \times \vec{b}|$.

- Watch Video Solution

39. Evaluate $(3 \vec{a}-5 \vec{b}) \cdot(2 \vec{a}+7 \vec{b})$

- Watch Video Solution

40. Find λ and μ if $(2 \hat{i}+6 \hat{j}+27 \hat{k}) \times(\hat{i}+\lambda \hat{j}+\mu \hat{k})=\overrightarrow{0}$.

- Watch Video Solution

41. Show that, $(\vec{a}-\vec{b}) \times(\vec{a}+\vec{b})=2(\vec{a} \times \vec{b})$.

- Watch Video Solution

42. Find the scalar triple product vectors $\hat{i}+2 \hat{j}+3 \hat{k}, \hat{i}-\hat{j}+\hat{k}$ and $\hat{i}+\hat{j}+\hat{k}$.

- Watch Video Solution

43. Find λ if the vectors $\hat{i}+\hat{j}+2 \hat{k}, \lambda \hat{i}-\hat{j}+\hat{k}$ and $3 \hat{i}-2 \hat{j}-\hat{k}$ are coplanar.
44. Show that the points $A(-2,3,5), B(1,2,3)$ and $C(7,0,-1)$ are collinear

- Watch Video Solution

45. Show that the points with position vectors $\hat{i}+2 \hat{j}+7 \hat{k}, 2 \hat{i}+6 \hat{j}+3 \hat{k}$ and $3 \hat{i}+10 \hat{j}-\hat{k}$ are collinear

- Watch Video Solution

46. Find the angle between the vectors $\hat{i}-2 \hat{j}+3 \hat{k}$ and $3 \hat{i}-2 \hat{j}+\hat{k}$.
47. Show that the vectors $\frac{1}{7}(2 \hat{i}+3 \hat{j}+6 \hat{k}), \frac{1}{7}(3 \hat{i}-6 \hat{j}+2 \hat{k})$ and $\frac{1}{7}(6 \hat{i}+2 \hat{j}-3 \hat{k})$ are mutually perpendicular.

- Watch Video Solution

48. If $\vec{a}=5 \hat{i}-\hat{j}-3 \hat{k}, \vec{b}=\hat{i}+3 \hat{j}-5 \hat{k}$ then show that the vectors $\vec{a}+\vec{b} \& \vec{a}-\vec{b}$ are perpendicular

D Watch Video Solution

49. If $\vec{a}=2 \hat{i}+2 \hat{j}+3 \hat{k}, \vec{b}=-\hat{i}+2 \hat{j}+\hat{k}$ and $\vec{c}=3 \hat{i}+\hat{j}$ such that $\vec{a}+\lambda \vec{b}$ is perpendicular to \vec{c} then find the value of λ.
50. Find x, y, z if $\hat{i}+\hat{j}+2 \hat{k},-\hat{i}+z \hat{k}$ and $2 \hat{i}+x \hat{j}+y \hat{k}$ are mutually orthogonal.

- Watch Video Solution

51. Find a vector and unit vector perpendicular to each of the vector

$$
\begin{aligned}
& \text { vector } \vec{a}+\vec{b} \quad \text { and } \\
& \vec{a}=3 \hat{i}+2 \hat{j}+2 \hat{k} \& \vec{b}=\hat{i}+2 \hat{j}-2 \hat{k}
\end{aligned}
$$

$\vec{a}-\vec{b}$
Where

D Watch Video Solution

52. Find a vector of magnitude 11 in the direction opposite to that of $\overrightarrow{P Q}$, where P and Q are the points $(1,3,2)$ and $(-1,0,8)$, respectively.

- Watch Video Solution

53. If the points $(-1,-1,2),(2, m, 5)$ and $(3,11,6)$ are co-linear then find the value of m .

- Watch Video Solution

54. Calculate the work done if a sled is pulled forward 50 m along a frictionless surface by a force of 250 N at an angle of 60° to the horizontal.

- Watch Video Solution

55. It takes 12000 J of work to pull a sled 200 m with a 120 N force.

Determine the angle of the rope with the horizontal.

- Watch Video Solution

56. Calculate the work done by a force $\mathrm{F}=-5 \hat{i}+\hat{j}+7 \hat{k} N$ when its point of application moves from point $(-2 \hat{i}-6 \hat{j}+\hat{k}) m$ to the point $(\hat{i}-\hat{j}+10 \hat{k}) m$.

D Watch Video Solution

57. A bolt is tightened using a 20 N force, applied at an angle of 30° to the end of a wrench that is 30 cm long. Calculate the magnitude of the moment or torque about its point of rotation.

D View Text Solution

58. A bicycle pedal, 20 cm in length, has a 50 N force applied to it at an angle of 45°. Determine the magnitude of the moment or torque.
59. Which of the following is a vector quantity ?
A. Mass
B. Force
C. Time
D. Temperature

Answer:

- Watch Video Solution

60. You are given a displacement vector of 5 cm due east. Show by a diagram the corresponding negative vector.
61. Represent graphically a force 60 N is a direction 60° west of north.

- Watch Video Solution

62. Represent graphically a force 100 N is a direction 45° west of north.

- Watch Video Solution

63. The quantity which has only magnitude is called
A. A scalar quantity
B. A vector quantity
C. A chemical quantity
D. A magnitude quantity

Answer:

- Watch Video Solution

64. Force is a vector quantity. True or false?

- Watch Video Solution

65. What is the magnitude of a unit vector?
A. It has no magnitude
B. Zero vector
C. Constant but not zero
D. Unity

Answer:

66. Which have the following has zero magnitude?
A. Fixed vector
B. Zero vector
C. Modulus of a vector
D. Unit vector

Answer:

(Watch Video Solution

67. Adding of two vectors to get a single vector is termed as
A. Final vector
B. Resultant vector
C. Dominant vector
D. Recessive vector

Answer:

- Watch Video Solution

68. A vector which can be displaced parallel to itself and applied at any point, is known as?
A. Free vector
B. Null vector
C. Position vector
D. Unit vector

Answer:

Watch Video Solution

69. Which of the following lists of physical quantities consists only of Vector?
A. Time, temperature, velocity
B. Force, volume, momentum
C. Velocity, acceleration, mass
D. Force, accelration, velocity

Answer:

- Watch Video Solution

70. If two vectors $2 A$ and $3 B$ which are in same direction are added together then their resultant is given by ?
A. $2 A+3 B$
B. $3 A+2 B$
C. 2A-3B
D. None of above

Answer:

- Watch Video Solution

71. If two non-zero vectors are perpendicular to each other then their Scalar product is equal to ?
A. 0
B. 1
C. 2
D. 3

Answer:

- Watch Video Solution

72. Two forces are acting together on an object. The magnitude of their resultant is minimum when the angle between the forces is
A. 0°
B. 60°
C. 120°
D. 180°

Answer:

73. If the resultant of two forces each of magnitude F is $2 F$, then the angle between them will be?
A. 0°
B. 60°
C. 120°
D. 180°

Answer:

- Watch Video Solution

74. The Scalar product of two vectors is $2 \sqrt{3}$ and the magnitude of their vector product is 2 . The angle between them is
A. 30°
B. 60°
C. 45°
D. 0°

Answer:

- Watch Video Solution

75. Which of the following vectors is/are perpendicular to the vector $4 \hat{i}+3 \hat{j}$?
A. $4 \hat{i}+3 \hat{j}$
B. $8 \hat{i}$
C. $7 \hat{j}$
D. $3 \hat{i}-4 \hat{j}$

Answer:

- Watch Video Solution

76. Represent graphically a displacement of $30 \mathrm{~km}, 60^{\circ}$ east of north.

- Watch Video Solution

77. Classify the following measures as scalars and vectors. 20 kg .

(D) Watch Video Solution

78. Classify the following measures as scalars and vectors. 5 meter north-west

- Watch Video Solution

79. Classify the following measures as scalars and vectors. 60°

- Watch Video Solution

80. Classify the following measures as scalars and vectors. 10 watt

- Watch Video Solution

81. Classify the following measures as scalars and vectors. 10^{-5} coluomb

- Watch Video Solution

82. Classify the following measures as scalars and vectors. $30 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}$

- Watch Video Solution

83. Classify the following as scalar and vector quantities. Time period

- Watch Video Solution

84. Classify the following as scalar and vector quantities. Distance

- Watch Video Solution

85. Classify the following as scalar and vector quantities. Force

- Watch Video Solution

86. Classify the following as scalar and vector quantities. Velocity
87. Classify the following as scalar and vector quantities. Work done

- Watch Video Solution

88. Answer the following as true or false.

Two collinear vectors are always equal in magnitude.

- Watch Video Solution

89. Answer the following as true or false.

Two vectors having same magnitude are always collinear.
90. Answer the following as true or false.

Two collinear vectors having the same magnitude are equal.

- Watch Video Solution

91. Compute the magnitude of the following vectors:

$$
\vec{a}=\hat{i}+\hat{j}+\hat{k}, \vec{b}=3 \hat{i}+\hat{j}-4 \hat{k}, \vec{c}=-\frac{1}{\sqrt{3}} \hat{i}-\frac{1}{\sqrt{3}} \hat{j}+\frac{1}{\sqrt{3}} \hat{k}
$$

D Watch Video Solution

92. Write two different vectors having same magnitude.

- Watch Video Solution

93. Write two different vectors having same direction.
94. Find the values of x, y and z so that the vectors $3 \hat{i}+\hat{j}+4 \hat{k}$ and $x \hat{i}+y \hat{j}+z \hat{k}$ are equal,

- Watch Video Solution

95. Find the scalar and vector components of the vector with initial point $(3,5)$ and terminal point $(-2,3)$.

- Watch Video Solution

96. Find the sum of the vectors $\vec{a}=-2 \hat{i}+\hat{j}-4 \hat{k}$ and $\vec{b}=3 \hat{i}-\hat{j}+5 \hat{k}$.
97. Find the unit vector in the direction of the vector $\vec{a}=2 \hat{i}+2 \sqrt{2} \hat{j}-3 \hat{k}$.

- Watch Video Solution

98. Find the unit vector in the direction of vector $P Q$, where P and
Q are the points $(1,2,3)$ and $(4,5,6)$ respectively.

D Watch Video Solution

99. For given vectors, $\vec{a}=\hat{i}+2 \hat{j}+3 \hat{k}$ and $\vec{b}=2 \hat{i}+3 \hat{j}+5 \hat{k}$, find the unit vector in the direction of the vector $\vec{a}+\vec{b}$.

- Watch Video Solution

100. Find a vector in the direction of vector $5 \hat{i}-\hat{j}+2 \hat{k}$ which has magnitude 8 units.

- Watch Video Solution

101. Show that vectors $2 \hat{i}-3 \hat{j}+4 \hat{k}$ and $-4 \hat{i}+6 \hat{j}-8 \hat{k}$ are collinear.

- Watch Video Solution

102. Find the direction cosines of the vector $\hat{i}+2 \hat{j}+3 \hat{k}$.

- Watch Video Solution

103. Find the direction cosines of the vector joining the points
$A(1,2,-3)$ and $B(-1,-2, I)$ directed from A to B.

- Watch Video Solution

104. Find the position vector of a point R which-divides the line joining two points P and Q whose position vectors are $\hat{i}+2 \hat{j}-\hat{k}$ and $-\hat{i}+\hat{j}+\hat{k}$ respectively, in the ratio 2:1 Internally

- Watch Video Solution

105. Find the position vector of a point R which-divides the line joining two points P and Q whose position vectors are $\hat{i}+2 \hat{j}-\hat{k}$ and $-\hat{i}+\hat{j}+\hat{k}$ respectively, in the ratio 2:1 externally

- View Text Solution

106. Find the position vector of the mid point of the vector joining
the points $P(2,4,-1)$ and $Q(4,2,5)$.

- Watch Video Solution

107. Show that the points A, B and C with position vectors $\vec{a}=3 \hat{i}-4 \hat{j}-4 \hat{k}, \vec{b}=2 \hat{i}-\hat{j}+\hat{k} \quad$ and $\quad \vec{c}=\hat{i}-3 \hat{j}-5 \hat{k}$ respectively form the vertices of a right angled triangle.

- Watch Video Solution

108. If $\vec{a} \times \vec{b}=\vec{c} \times \vec{d}$ and $\vec{a} \times \vec{c}=\vec{b} \times \vec{d}$, show that $(\vec{a}-\vec{d})$ is parallel to $(\vec{b}-\vec{c})$.

- Watch Video Solution

109. Find the area of the parallelogram whose adjacent sides are represented by vectors $\hat{i}+2 \hat{j}+3 \hat{k}$ and $3 \hat{i}-2 \hat{j}+\hat{k}$.
110. Find the area of the $\triangle A B C$ where co ordinates of $\mathrm{A}, \mathrm{B}, \mathrm{C}$ are (3, -1, 2),(1, -1, -3) and ($4,-3,1$) respectively.

D View Text Solution

111. If $\vec{A}=\hat{i}+2 \hat{j}+3 \hat{k}$ and $\vec{B}=\hat{i}+4 \hat{j}-2 \hat{k}$ then find $(\vec{A}+\vec{B}) \times(\vec{A}-\vec{B})$.

D View Text Solution

112. Find a unit vector perpendicular to each of the vectors
$2 \hat{i}-3 \hat{j}+\hat{k}$ and $3 \hat{i}-4 \hat{j}-\hat{k}$.
