

MATHS

BOOKS - ARIHANT PUBLICATION JHARKHAND

QUADRATIC EQUATIONS

Solved Examples

1. The roots of the equation

 $3a^2x^2+8abx+4b^2=0$,where a
eq 0 are

$$\frac{b}{c}, \frac{b}{3c}$$

A.
$$\frac{3b}{2a}, \frac{b}{3a}$$

B.
$$\frac{-2b}{3a}$$
, $-\frac{2b}{a}$

C.
$$\frac{b}{3a}$$
, $\frac{2b}{3a}$

D.
$$\frac{2a}{b}$$
, $\frac{4b}{a}$

Answer: B

Watch Video Solution

2. The roots of the equation

 $2x^2 + 14x + 9 = 0$ are

A.
$$\dfrac{6+\sqrt{5}}{3},\dfrac{14}{9}$$
B. $\dfrac{7x\sqrt{13}}{3},\dfrac{\sqrt{7}+31}{4}$

B.
$$\frac{78\sqrt{15}}{3}$$
, $\frac{\sqrt{7+31}}{4}$

C. $\frac{11}{5}$, $\frac{\sqrt{3}+5}{3}$

D. $\frac{-7+\sqrt{31}}{2}$, $\frac{-7-\sqrt{31}}{2}$

Answer: D

Watch Video Solution

$$x^4-26x^2+25=0$$
 are

3. The solutions of the quadratic equation

$$B. -1, 4$$

$$\mathsf{C}.\pm 1,\ \pm 5$$

$$D. -5, 1$$

Answer: C

4. If
$$\sqrt{2x^2-2x+1}-2x+3=0$$
 then solutions are

A.
$$(4, 1)$$

B.
$$(3, 1)$$

Answer: A

5. The solutions of the equation
$$\sqrt{4-x}+\sqrt{x+9}=5$$
 are

A.
$$0, -10$$

B.
$$0, -5$$

$$C. -4, -6$$

Answer: B

Watch Video Solution

6. In the equation $2^{2y+3}=65(2^y-1)+57$ then, solutions are

A. 4, -3

B.-3, -3

C.3, -3

D. 3, 3

Answer: C

Watch Video Solution

Exaam Booster For Cracking Exam

1. The solution set for equation $4x^2 - 6x = 0$,

when $x \in N$ is

- A. $\{0, 1\}$
- B. $\{1, 2\}$
- $C. \{0\}$
- D. $\{\phi\}$

Answer: D

2. The values of x in the equation

$$a^2b^2x^2-ig(a^2+b^2ig)x+1,$$
 $a
eq 1,$ $b
eq 0$ is

A.
$$\frac{1}{a^2}$$

B.
$$\frac{1}{h^2}$$

c.
$$\frac{1}{a^2}$$
, $\frac{1}{b^2}$

D. None of these

Answer: C

3. The value of 'a' for which the equation

$$ax^2-2\sqrt{5}x+4=0$$
 has equal roots ,is

A.
$$\frac{5}{4}$$

B.
$$\frac{4}{5}$$

$$\mathsf{C.}-\frac{5}{4}$$

$$\mathsf{D.}-\frac{5}{3}$$

Answer: A

4.

lf

the

equation

$$ig(1+m^2ig)x^2+2mcx+ig(c^2-a^2ig)=0$$
 has equal roots, prove that $c^2=a^2ig(1+m^2ig)$.

A.
$$a^2 = c^2(1 - m^2)$$

B.
$$c^2 = a^2 (1 - m^2)$$

C.
$$a^2=c^2ig(1+m^2ig)$$

D.
$$c^2=a^2ig(1+m^2ig)$$

Answer: D

5. If one solution of $3x^2=8x+2k+1$ is seven times the other, find the other solution of k

$$\mathsf{A.}\;\frac{5}{3}$$

$$\mathsf{B.}-\frac{5}{3}$$

$$\mathsf{C.}\,\frac{2}{3}$$

$$\mathsf{D.}-\frac{3}{2}$$

Answer: B

6. The quadratic equation ,whose roots are

$$\frac{4+\sqrt{7}}{2}$$
 and $\frac{4-\sqrt{7}}{2}$ is

A.
$$4x^2 + 16x + 9 = 0$$

B.
$$4x^2 - 16x - 9 = 0$$

$$\mathsf{C.}\, 4x^2 - 16x + 9 = 0$$

D.
$$4x^2 + 16x - 9 = 0$$

Answer: C

7. If lpha and eta are roots of the equation $x^2-8x+p=0$ and $lpha^2+eta^2=40$, then p is equal to

- A. 12
- B. 10
- C. 9
- D. 11

Answer: A

8. If α and β are roots of the equation

 $x^2-5x+6=0$, then the value of $lpha^2-eta^2$

A. 5

B.-5

 $\mathsf{C}.\pm 5$

D. ± 4

Answer: C

9. If lpha and eta are the roots of the equation $ax^2+bx+c=0$, then an equation whose roots are $\frac{1}{lpha}$ and $\frac{1}{eta}$ is

$$A. bx^2 + ax + c = 0$$

$$\mathsf{B.}\,ax^2-bx+c=0$$

C.
$$cx^2 + ax + b = 0$$

$$D. cx^2 + bx + a = 0$$

Answer: D

10. If α and β are the roots of a quadratic equation such that lpha + eta = 24 and lpha - eta = 8 , then the equation is

A.
$$x^2 - 24x - 128 = 0$$

$$B. x^2 + 24x + 128 = 0$$

$$\mathsf{C.}\,x^2 + 24x - 128 = 0$$

D. None of these

Answer: D

11. The two consecutive positive odd integers ,the sum of whose squares is 130 are

A. 7,9

B. 9,6

C. 3,-5

D. None of these

Answer: A

12. The side (in cm) of a right triangle are

 $x-1, x \ {
m and} \ x+1$. The area of triangle is

- A. $5cm^2$
- $B.3cm^2$
- $\mathsf{C.}\,6cm^2$
- D. None of these

Answer: C

13. Divide 16 into two parts such that twice the square of the larger part exceeds the square of the smaller part by 164.

- A. 58
- B. 6
- C. 10
- D. None of these

Answer: C

14. An equation equivalent to the quadratic equation $x^2-6x+5=0$ is

- A. Yes
- B. No
- C. Cannot say
- D. None of these

Answer: A

15. The roots of the equation $x^2+px+q=0$ are 1 and 2 .The roots of the equation $qx^2-px+1=0$ will be

A.
$$-\frac{1}{2}$$
, -1

B.
$$\frac{1}{2}$$
, 1

$$C. -\frac{1}{2}, 1$$

D. None of these

Answer: A

16. If the roots of the quadratic equation $px^2+qx+r=0$ are reciprocal to each other ,then the relation between p and r is

A.
$$r
eq p$$

$$B. r = p$$

$$\mathsf{C}.\,r=q$$

D. None of these

Answer: B

17. Sum of roots is -1 and sum of their reciprocals is $\frac{1}{6}$, then the equation is

A.
$$x^2 - x - 6 = 0$$

B.
$$x^2 + x + 6 = 0$$

C.
$$x^2 - x + 6 = 0$$

D.
$$x^2 + x - 6 = 0$$

Answer: D

18. The value of x for which $2^{x+4}-2^{x+2}=3$

is

A.-2

B.-3

C. 0

D. 5

Answer: A

19. For what value of k will the equation

$$rac{x^2-bx}{ax-c}=rac{k-1}{k+1}$$
 have roots reciprocal to each other ?

A.
$$\frac{c-1}{c+1}$$

B.
$$\frac{c+1}{c-1}$$

$$\mathsf{C.}\,\frac{1}{c+1}$$

D.
$$\frac{1}{c-1}$$

Answer: B

20. $If \alpha \ {
m and} \ \beta$ be the zeros of the polynomial

$$ax^2+bx+c$$
 , then the value of $\sqrt{rac{lpha}{eta}}+\sqrt{rac{eta}{lpha}}$

A.
$$\sqrt{a/b}$$

B.
$$\sqrt{b/a}$$

C.
$$\sqrt{ab}$$

D. None of these

Answer: B

21. The condition that one root of $px^2+qx+r=0$ may be double of the other is

A.
$$q^2=9rp$$

$$\mathtt{B.}\,2q^2=9rp$$

$$\mathsf{C}.\,q^2=rp$$

D. None of these

Answer: B

22. If α and β are the roots of

$$2x^2-6x+3=0$$
 , then the value of $\left(rac{lpha}{eta}+rac{eta}{lpha}
ight)+3igg(rac{1}{lpha}+rac{1}{eta}igg)+2lphaeta$ is

A. 13

B. 4

C. 6

D. 3

Answer: A

23. Find the solution of the equation

$$\sqrt{x^2-16}-(x-4)=\sqrt{x^2-5x+4}$$

A. (4, 5)

B. (4, -13/2)

 $\mathsf{C.}\,(5,\ -13/2)$

D. None of these

Answer: A

24. In a group of children ,each child gives a gift to every other child ,If the number of gifts is 132 ,then the number of children are

- A. 11
- B. 12
- C. 14
- D. None of these

Answer: B

25. Out of a certain number of Sarasbird one fourth the number are moving about in lotus plants, $\frac{1}{9}$ th coupled with $\frac{1}{4}$ th as well as 7 times the square root of the number ,move on a hill, 56 birds remain in Vakula tree. Then ,the total number of birds are

A. 756

B. 24

C. 124

D. 576

Answer: D

View Text Solution