©゙" doubtnut

India's Number 1 Education App

MATHS

BOOKS - NEW JYOTHI MATHS (TAMIL

ENGLISH)

APPLICATION OF INTEGRALS

Examples

1. Find the area of the circle $x^{2}+y^{2}=a^{2}$
using integration.
2. Consider the curve $\frac{x^{2}}{16}+\frac{y^{2}}{9}=1$
(i)Find the points of intersection with x - axis.
(ii) Find the area of the region bounded by the

curve.

D Watch Video Solution

3. (1) Draw the rough sketch of the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$.

Find the area enclosed by the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$.

- Watch Video Solution

4. Find the area of the region bounded by the curve $y=x^{2}$ and the line $\mathrm{y}=4$.

D Watch Video Solution

5. Consider the parabola $y^{2}=4 a x$
(i) Write the equation of the rectum and
obtain the x co-ordinates of the point of intersection of latus rectum and the parabola.
(ii) Find the area of the parabola bounded by the latus rectum.

6. (i)

Area of the shaded portion in the figure is equal to
(a) $\int_{d}^{c} f(x) d x$ (b) $\int_{c}^{d} f(x) d x$
(c) $\int_{d}^{c} f(y) d y$ (d) $\int_{c}^{d} f(y) d y$
(ii)

Consider
the
$y=x^{2}, x=0, y=1, y=4$.Draw a rough
sketch and shade the region bounded by the
these curves. Find the area of the shaded region.

D Watch Video Solution

7. Find the area bounded by the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ and the lines $\mathrm{x}=0$ and $\mathrm{x}=$ ae where $^{2}=a^{2}\left(1-e^{2}\right)$ and $e<1$.

D Watch Video Solution

8. Find the area of the region bounded by the parabola $y=x^{2}+2, x$-axis, $\mathrm{x}=0$ and $\mathrm{x}=3$.

- Watch Video Solution

9. Find the area of the region bounded by the
curve $y=|x|$ and the x - axis between $x=-4$ and $\mathrm{x}-2$.
10. Find the area of the region bounded by x -
axis, the curve $y=|\cos x|$, the lines $\mathrm{x}=0$ and $x=\pi$.

D Watch Video Solution

11. Find the area bounded by the curvey $=\sin x$
between $\mathrm{x}=0$ and $x=2 \pi$.

D Watch Video Solution
12. (i) Find the point at which the circle $x^{2}+y^{2}=32$ intersects the positive x-axis.
(ii) Shade the region in the first quadrant enclosed by the x-axis, the line $y=x$ and the circle $x^{2}+y^{2}=32$.
(iii) Using integration, find the area of the shaded region.

D Watch Video Solution

13. Consider the circle $x^{2}+y^{2}=16$ and the straight line $y=\sqrt{3} x$ as shown in the figure.

(i)Find the points A and B as shown in the figure.
(ii) Find the area of the shaded region in the figure using definite integral.
14. Consider the curve $y=x^{2}$ and the straight
line $y=2 x+3$.
(i) Find the points of intersection of the given
curve and the straight line.
(ii) Find the area of the region bounded by the given curve and the straight line.

D Watch Video Solution

15. Find the area bounded by the curve
$x^{2}=4 y$ and the line $x=4 y-2$.

- Watch Video Solution

16. (i) Find the points of intersection of the parabola $y^{2}=8 x$ and the line $y=2 x$.
(ii) Find, using integration, the area enclosed between the line and the parabola.

- Watch Video Solution

17. Consider the functions, $f(x)=|x|-1$ and
$g(x)=1-|x|$ (a) Sketch their graphs and
shade the closed region between them. (b)

Find the area of their shaded region.

D Watch Video Solution
18. Using integration, find the area of the region bounded by the triangle whose vertices are (0,1), (2,2) and (3, 1).

D Watch Video Solution

19.

Using the above figure
(a).Find the equation of $A B$.
(b) Find the point P.
(c) Find the area of the shaded region by
integration.

D Watch Video Solution
20. Using the method of integration find the area of the region bounded by lines :
$2 x+y=4,3 x-2 y=6$ and $x-3 y+5=0$

- Watch Video Solution

21. In the figure given below, $A O B A$ is the part of the ellipse $9 x^{2}+y^{2}=36$ in the first quadrant such that $\mathrm{OA}=2$ and $\mathrm{OB}=6$. Find the
area between $\operatorname{arc} A B$ and the chord $A B$

- Watch Video Solution

22. Consider the curves $y^{2}=x$ and $x^{2}=y$.
(i) Find the points of intersection of these two

curves.

(ii) Find the area between these two curves.

D Watch Video Solution

23. Consider the curves $y=x^{2}$ and $y^{2}=8 x$.
(i) Find the points of intersection of the given two curves.
(ii) Find the area of the region enclosed by the given two curves

D View Text Solution

24. Find the area of the region bounded by the

 parabola $y=x^{2}$ and $y=|x|$.
- Watch Video Solution

25. Find the area lying above x-axis and included between the circle $x^{2}+y^{2}=8 x$ and inside the parabola $y^{2}=4 x$.
26. Find the area enclosed between the circles
$x^{2}+y^{2}=4$ and $(x-2)^{2}+y^{2}=4$.

D Watch Video Solution

27. Prove that the curves $y^{2}=4 x$ and $x^{2}=4 y$
divide the area of the square bounded by $x=0$,
$x=4$ and $y=0$ into three equal parts.

D Watch Video Solution
28. Let us find the area of the region bounded
by the curve $y^{2}=8 x a t x=1, x=3$ and the x - axis in the first quadrant .

D Watch Video Solution

Ncert Text Book Exercise 81

1. Find the area of the region bounded by the
curve $y^{2}=x$ and the lines $\mathrm{x}=1, \mathrm{x}=4$ and the x
-axis.

Watch Video Solution

2. Find the area of the region bounded by $y^{2}=9 x, x=2, x=4$ and the x-axis in the first quadrant.

- Watch Video Solution

3. Find the area of the region bounded by
$x^{2}=4 y, y=2, y=4$ and the y-axis in the first quadrant.
4. Find the area of the region bounded by the
ellipse $\frac{x^{2}}{16}+\frac{y^{2}}{9}=1$

- Watch Video Solution

5. Find the area of the region bounded by the
ellipse $\frac{x^{2}}{4}+\frac{y^{2}}{9}=1$
(Watch Video Solution
6. Find the area of the region in the first quadrant enclosed by x-axis, line $x=\sqrt{3} y$ and the circle $x^{2}+y^{2}=4$.

D Watch Video Solution

7. Find the area of the smaller part of the circle
$x^{2}+y^{2}=a^{2}$ cut off by the line $x=\frac{a}{\sqrt{2}}$.

D Watch Video Solution
8. The area between $x=y^{2}$ and $\mathrm{x}=4$ is divided into two equal parts by the line $x=a$ find the value of a.

- Watch Video Solution

9. Find the area of the region bounded between the parabola $x^{2}=y$ and the curve $y=|x|$.
10. Find the area bounded by the curve
$x^{2}=4 y$ and the line $x=4 y-2$.

- Watch Video Solution

11. Find the area of the region bounded by the curve $y^{2}=4 x$ and the line $x=3$.

D Watch Video Solution

12. Area lying in the first quadrant and bounded by the circle $x^{2}+y^{2}=4$ and the lines $x=0$ and $x=2$ is
A. π
B. $\frac{\pi}{2}$
C. $\frac{\pi}{3}$
D. $\frac{\pi}{4}$

Answer: A

- Watch Video Solution

13. Area of the region bounded by the curve $y^{2}=4 x, \mathrm{y}$-axis and the line $\mathrm{y}=3$ is
A. 2
B. $\frac{9}{4}$
C. $\frac{9}{3}$
D. $\frac{9}{2}$

Answer: B

D Watch Video Solution

Ncert Text Book Exercise 82

1. Find the area of the circle $4 x^{2}+4 y^{2}=9$ which is interior of the parabola $x^{2}=4 y$.

- Watch Video Solution

2. Find the area bounded by the curves
$(x-1)^{2}+y^{2}=1$ and $x^{2}+y^{2}=1$.

- Watch Video Solution

3. Find the area of the region bounded by the curves $y=x^{2}+2, y=x, x=0$ and $\mathrm{x}=3$.

- Watch Video Solution

4. Using integration find the area of region
bounded by the triangle whose vertices are $(-1,0),(1,3)$ and $(3,2)$.

- Watch Video Solution

5. Using integration, find the area of the triangle with sides $y=2 x+1, y=3 x+1$ and $x=4$

D Watch Video Solution

6. Smaller area enclosed by the circle
$x^{2}+y^{2}=4$ and the line $x+y=2$ is
A. $2(\pi-2)$
B. $\pi-2$
C. $2 \pi-1$
D. $2(\pi+2)$

Answer: B

D Watch Video Solution

7. Area lying between the curves $y^{2}=4 x$ and

$$
y=2 x \text { is }
$$

A. $\frac{2}{3}$
B. $\frac{1}{3}$
C. $\frac{1}{4}$
D. $\frac{3}{4}$

Answer: B

D Watch Video Solution

Additional Questions For Practice 81

1. Find the area of the region bounded by the
curve $y^{2}=4 x$ and the lines $\mathrm{x}=1$ and $\mathrm{x}=4$
lying in the first quadrant.

- Watch Video Solution

2. The area of the ellips $\frac{x^{2}}{9}+\frac{y^{2}}{4}=1$ is

D Watch Video Solution
3. Find the area of the region bounded by
$x^{2}=16 y, y=1, y=4$ and the y-axis lying in
the first quadrant using integration.

D Watch Video Solution
4. Find the are bounded by the curve $x^{2} y=36, \mathrm{x}-$ axis and the line $\mathrm{x}=6$ and $\mathrm{x}=9$.

D Watch Video Solution

5. (i) Draw a rough sketch of the curve $y^{2}=x$ and shade the region bounded by the line $x=1$ and the curve.
(ii) Using integration find the area of the shaded region.
6. (i) Make a rough sketch of the function $y=x^{2}$ and shade the region under the curve, x-axis and the ordinates at $x=1$ and $x=3$.
(ii) Find the area under the curve $y=x^{2}$ above.

- Watch Video Solution

7. Find the area under the curve $y=x^{2}$ above
x-axis between the lines $x=6$ and $x=4$.

- Watch Video Solution

8. Find the area between x-axis and the curve y
$=\cos \mathrm{x}, \frac{\pi}{2} \leq x \leq \frac{3 \pi}{2}$.

D Watch Video Solution

9. Find the area of the circle $x^{2}+y^{2}=4$ using integration.
10. Find the area of the region bounded by the parabolas $x^{2}=16 y$ and $y^{2}=16 x$.

- Watch Video Solution

2. Find the area of the region bounded by the
parabola $y^{2}=4 x$ and the line $y=2 x$.

- Watch Video Solution

The above figure represents the parabola $4 y=3 x^{2}$ and the ine $2 y=3 x+12$
(i) Find the coordinates of A and B.
(ii) Find the area of the shaded region using integration.

D Watch Video Solution
4. The following figure represents the circle $x^{2}+y^{2}=4$ and the curve $y=|x|$

Find the area of the shaded region using integration.

- Watch Video Solution

5. Using integration, find the area of the region bounded by the triangle whose vertices(-1, 1), (0,5) and (3, 2).

(Watch Video Solution

Solutions To Ncert Miscellaneous Exercise

1. Find the area under the given curves and given lines:
(i) $y=x^{2}, x=1, x=2$ and x -axis
(ii) $y=x^{4}, x=1, x=5$ and x -axis.
2. Find the area between the curves $y=x$ and $y=x^{2}$.

- Watch Video Solution

3. Find the area of the region lying in the first quadrant and bounded by $y=4 x^{2}, \mathrm{x}=0, \mathrm{y}=1$ and $\mathrm{y}=4$.
4. Sketch the graph of $y=|x+3|$ and evaluate $\int_{-6}^{0}|x+3| d x$.

- Watch Video Solution

5. Find the area bounded by the curve $y=\sin x$ between $\mathrm{x}=0$ and $\mathrm{x}=2 \pi$.

D Watch Video Solution
6. Find the area enclosed between the parabola $y^{2}=4 a x$ and the line $\mathrm{y}=\mathrm{mx}$.

D Watch Video Solution

7. Find the area enclosed by the parbola $4 y=3 x^{2}$ and the line $2 y=3 x+12$.

- Watch Video Solution

8. Find the area of the smaller region bounded
by the ellipse $\frac{x^{2}}{9}+\frac{y^{2}}{4}=1$ and the line $\frac{x}{3}+\frac{y}{2}=1$

- Watch Video Solution

9. Find the area of the smaller region bounded
by the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ and the line $\frac{x}{a}+\frac{y}{b}=1$.

D Watch Video Solution

10. Find the area of the region enclosed by the parabola $x^{2}=y$ and the line $y=x+2$ and the x-axis.

D Watch Video Solution

11. Using the method of integration find the area bounded by the curve $|x|+|y|=1$.
12. Find the area bounded by curves
$\left\{(x, y): y \geq x^{2}\right.$ and $\left.y=|x|\right\}$

- Watch Video Solution

13. Using the method of integration find the area of the triangle $A B C$, coordinates of whose vertices are $A(2,0), B(4,5)$ and $C(6,3)$.

D Watch Video Solution

14. Using the method of integration find the area of the region bounded by lines :
$2 x+y=4,3 x-2 y=6$ and $x-3 y+5=0$

- Watch Video Solution

15. Find the area of the region
$\left\{(x, y): y^{2} \leq 4 x, 4 x^{2}+4 y^{2} \leq 9\right\}$.

D Watch Video Solution
16. Choose the correct answer in the following

Exercises from 16 to 20
16. Area bounded by the curve $y=x^{3}$, the x axis and the ordinates $x=-2$ and $x=1$ is
A. -9
B. $\frac{-15}{4}$
C. $\frac{15}{4}$
D. $\frac{17}{4}$

Answer: D

17. The area bounded by the curve $y=x|x|$, x axis and the ordinates $x=-1$ and $x=1$ is given by
A. 0
B. $\frac{1}{3}$
C. $\frac{2}{3}$
D. $\frac{4}{3}$

Answer: C
18. The area of the circle $x^{2}+y^{2}=16$ exterior
to the parabola $y^{2}=6 x$ is

$$
\begin{aligned}
& \text { A. } \frac{4}{3}(4 \pi-\sqrt{3}) \\
& \text { B. } \frac{4}{3}(4 \pi+\sqrt{3}) \\
& \text { C. } \frac{4}{3}(8 \pi-\sqrt{3}) \\
& \text { D. } \frac{4}{3}(8 \pi+\sqrt{3})
\end{aligned}
$$

Answer: C

19. The area bounded by the y-axis, $y=\cos x$ and $\mathrm{y}=\sin \mathrm{x}$ when $0 \leq x \leq \frac{\pi}{2}$ is
A. $2(\sqrt{2-1})$
B. $\sqrt{2}-1$
C. $\sqrt{2}+1$
D. $\sqrt{2}$

Answer: B

Unit Test

1. (i) Sketch the graph of $y=|x+3|$
(ii) Evaluate $\int_{-6}^{0}|x+3| d x$
(iii) What does the integral represent?

- Watch Video Solution

2. Consider three points $A(-1,1), B(0,5)$ and $C(3$,
2)

(i) Find the equations of $A B, B C$ and $A C$ (ii)

Using integration, find the area of $\triangle A B C$.
3. Find the area bounded by the curves $y=\sin$
$\mathrm{x}, \mathrm{y}=\cos \mathrm{x}$ between x axis, $\mathrm{x}=0$ and $x=\frac{\pi}{2}$

D Watch Video Solution

4. Find the area bounded by the lines
$y=2 x+1$ and $y=3 x+1, x=4$ using
integration.

- Watch Video Solution

5. Find the area enclosed between the circles
$x^{2}+y^{2}=1$ and $\left(x-\frac{1}{2}\right)^{2}+y^{2}=1$

D View Text Solution

Objective Type Questions And Solutions

1. The point of intersection of the curves
$y^{2}=4 x$ and the line $\mathrm{y}=\mathrm{x}$ is
A. $(0,4)$
B. $(2,2)$
C. $(-4,-4)$
D. $(4,4)$

Answer: D

- Watch Video Solution

2. The points of intersection of the circle $x^{2}+y^{2}=a^{2}$ and the line $\mathrm{x}+\mathrm{y}=\mathrm{a}$ is
A. $(a, 0)$ and ($0, a)$
B. $(-a, 0)$ and $(0, a)$
C. $(a, 0)$ and $(0,-a)$
D. $(-a, 0)$ and $(0,-a)$

Answer: A

D View Text Solution

3. The point of intersection of the circle $x^{2}+y^{2}=8 x$ and the parabola $y^{2}=4 x$ which lies in the first quadrant is
A. $(4,4)$
B. $(-4,4)$
C. $(4,0)$
D. $(-4,-4)$

Answer: A

- Watch Video Solution

4. $\int \sqrt{a^{2}-x^{2}} d x$ is
A. $\frac{x}{2} \sqrt{a^{2}-x^{2}}+\frac{a^{2}}{2} \tan ^{-1}\left(\frac{x}{a}\right)+C$
B. $\frac{x}{2} \sqrt{a^{2}-x^{2}}+\frac{a^{2}}{2} \sin ^{-1}\left(\frac{x}{a}\right)+C$
C. $\frac{x}{2} \sqrt{a^{2}-x^{2}}-\frac{a^{2}}{2} \sin ^{-1}\left(\frac{x}{a}\right)+C$
D. $\frac{x}{2} \sqrt{a^{2}-x^{2}}-\frac{a^{2}}{2} \tan ^{-1}\left(\frac{x}{a}\right)+C$

Answer: B

D Watch Video Solution

5. The area bounded by the curve $y=\sin x$ between the ordinates $\mathrm{x}=0, x=\pi$ and the x axis is
A. 2 sq.units
B. 4 sq.units
C. 3 sq.units
D. 1 sq.units

Answer: A

D Watch Video Solution
6. The area bounded by the curve $y=\sin x$ between $\mathrm{x}=0$ and $x=2 \pi$ is (in square units)
A. 1
B. 2
C. 0
D. 4

Answer: D

D Watch Video Solution

7. The area enclosed by the circle $x^{2}+y^{2}=2$
is equal to
A. 4π sq.units
B. $2 \sqrt{2} \pi$ sq.units
C. $4 \pi^{2}$ sq.units
D. '2pi sq.units

Answer: D

D Watch Video Solution
8. The area enclosed by the ellipse
$\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ is equal to
A. π^{2} ab sq.units
B. $\pi a^{2} b s q$.units
C. $\pi a b$ sq.units
D. $\pi a b^{2}$ sq.units

Answer: C

- Watch Video Solution

Continuous Evaluation Assignment

1. Sketch the curve $y=x^{3}$ find the area bounded by the above curve, the a-axis between the ordinates $x=02$ and $x=1$

- Watch Video Solution

2. Sketch \quad the parabolas
$y^{2}=8 x$ and $x^{2}=8 y$. find the area bounded
between the parabola.

Continuous Evaluation Project

1. Find the Area of the triangle whose vertices
are given
(a). By using integration . (b) by using Heron's
formula (c) by using determinants

The result obtained in (a), (b) and (c) are equal. Why?

D Watch Video Solution

1. On a graph paper, draw the graphs of the curves $y=4 x^{2}$ and $x=4 y^{2}$. Calculate the area between them from the graph by counting squares.
(ii) Using integration, find the area between the above two curves. (Compare (i) \& (ii))

D Watch Video Solution

