©゙" doubtnut

India's Number 1 Education App

MATHS

BOOKS - NEW JYOTHI MATHS (TAMIL

ENGLISH)

CONIC SECTIONS

Examples

1. Find the equation of the circle with centre at
($-1,0$) and radius 2.
2. Find the equation of circle central at $(-5,0)$ and passing through the origin.

- Watch Video Solution

3. Find the equation of a circle with centre (2,
$2)$ and passes through the point $(4,5)$.

- Watch Video Solution

4. If $A(-2,3), B(3,-5)$, find the equation

 of the circle with $A B$ as diameter.- Watch Video Solution

5. Find the equation of circle centred at $(3,3)$
and touches the coordinate axes.

- Watch Video Solution

6. Find the equation of the circle passing through the points (1,1), $(2,-1)$, and $(3,2)$.

D Watch Video Solution

7. The circle whose equation is
$x^{2}+(y-1)^{2}=2$ has the centre.

- Watch Video Solution

8. Find the centre and radius of the circle
$3 x^{2}+(a+1) y^{2}+6 x-9 y+a+4=0$.

D Watch Video Solution
9. Find the centre and radius of the circle $2 x^{2}+2 y^{2}-x=0$.

D View Text Solution
10. Find the equation of the circle passing through the point $(4,1)$ and $(6,5)$ and whose centre is on the line $4 x+y=16$.

- Watch Video Solution

11. Does the point $(-2,5,3.5)$ lie inside, outside or on the circle $x^{2}+y^{2}=25 ?$

D Watch Video Solution

12. Consider the circle
 $x^{2}+y^{2}+8 x+10 y-8=0$

(i) Find its radius of the circle
$x^{2}+y^{2}+8 x+10 y-8=0$
(ii) Find the equation of the circle with centre at C and passing through (1,2).

D Watch Video Solution

13. Find the equation of the circle passing through the points $(2,3)$ and $(-1,-1)$ and
whose centre is on the line $x-3 y-11=0$.

D Watch Video Solution

14. Find the equation of a circle of radius 5
whose centre lies on x-axis and which passes
through the point $(2,3)$.

D Watch Video Solution

15. Find equation of the circle passing through
$(0,0)$ and making intercepts a and b on the

coordinate axes.

D Watch Video Solution

16. For the parabola $y^{2}=8 x$, write its focus and the equation of the directrix.

D Watch Video Solution

17. Find the coordinates of the focus, the axis,
the equation of the directrix and the lengths of the latus rectum of the following parabolas
i. $x^{2}=6 y \quad$ ii. $x^{2}+16 y=0$
iii. $y^{2}=10 x \quad$ iv. $y^{2}=-8 x$.

D View Text Solution

18. Find the equation of the parabola with vertex $(0,0)$, focus $(-2,0)$.

D Watch Video Solution

19. Find the equation of the parabola with
vertex $(0,0)$, passing through $(5,2)$ and
symmetric with respect to y-axis.

D Watch Video Solution

20. Find the equation of the parabola with vertex at $(0,0)$ and focus at $(0,3)$.

- Watch Video Solution

21. The focus of a parabolic mirror as shown in
figure is at a distance of 5 cm from its vertex. If
the mirror is 45 cm deep, find the distance of AB.

- Watch Video Solution

22. Consider the equation $\frac{x^{2}}{100}+\frac{y^{2}}{25}=1$. i. The above curve is
ii. Find the eccentricity of the above conic.

D Watch Video Solution
23. Find the coordinates of the foci, the vertices, the length of major axis, the minor axis, the eccentricity and the latus rectum of
the ellipse $\frac{x^{2}}{25}+\frac{y^{2}}{9}=1$

- Watch Video Solution

24. Find the equation of the ellipse whose
i. Vertices $(\pm 5,0)$, foci $(\pm 4,0) \quad$ ii.

Vertices $(0, \pm 13)$, foci $(0, \pm 5)$.
25. Find the equation of the ellipse in the
following case: ends of major axis $(\pm 3,0)$ ends of minor axis $(0, \pm 2)$

D Watch Video Solution

26. Find the equation of the ellipse whose
length of minor axis is 16 and foci are $(0, \pm 6)$
27. In each of the following find the equation
fot the ellipse that satisfies the given conditions:

Centre at $(0,0)$, major axis on the y-axis and passes through the points $(3,2)$ and $(1,6)$.

- Watch Video Solution

28. An ellipse has its centre at origin, whose vertical major axis is 5 and the minor axis is 4 .
i. Write its equation.
ii. What is its eccentricity?

D Watch Video Solution

29. An ellipse whose whose axis as x-axis and
the centre $(0,0)$ passes through $(4,3)$ and $(-1$,
4).
i. Find the equation of the ellipse.
ii. Find its eccentricity.
30. A rod $A B$ of length 15 cm rests in between
two coordinate axes is such a way that the end
point A lies on x-axis and end Point B lies on y axis. A point $P(x, y)$ is taken on the rod in such
a way that $A P=6 \mathrm{~cm}$. Show that the locus of P is an ellipse.

- Watch Video Solution

31. An arch on a road is in the shape of semiellipse. The breadth of the road is 30 feet. A man 6 feet tall just touches the arch when he
stands 2 feet the side .
i. Assuming the road level as x-axis (major axis). Find the point C.
ii. What is the maximum height of arch (minor axis)?

D Watch Video Solution

32. Find the coordinates of the foci, the vertices, the eccentricity and the length of the latus rectum of the hyperbola.

$$
9 x^{2}-16 y^{2}=144
$$

Watch Video Solution

33. Find the equation of the hyperbola whose
i. vertices are $(\pm 5,0)$ and foci $(\pm 8,0)$
ii. Vertices $(0, \pm 5)$ and foci $(0, \pm 8)$.

- Watch Video Solution

34. Find the equation of the hyperbola with
foci on $(\pm 3 \sqrt{5}, 0)$ and the latus rectum is of length 8.
35. Find the equation of the hyperbola whose foci are $(\pm 5,0)$ and the length of the transverse axis is 8.

D View Text Solution

36. A hyperbola whose transverse axis, centre
$(0,0)$ and foci $(\pm \sqrt{10}, 0)$ passes thorugh the point $(3,2)$.
i. Find the equation of the hyperbola.
ii. Find its eccentricity .

D View Text Solution

37. Find the equation of the hyperbola whose
foci are $(0, \pm \sqrt{10})$ and is passing through
the point $(2,3)$.

D View Text Solution
38. If a parabolic reflector is 20 cm in diameter and 5 cm deep, then its focus is

- Watch Video Solution

39. Find the area of the triangle formed by the
lines joining the vertex of the parabola $x^{2}=12 y$ to the ends of its latus rectum.

- Watch Video Solution

40. An equilateral triangle is inscribed in the parabola $y^{2}=4 a x$ whose vertex is at the vertex of the parabola. Find the length of its side.

D Watch Video Solution

Exercise Circle

> 1. The centre of the circle
> $x^{2}+y^{2}+x+y-15=0$ is
A. $(0,0)$
B. $(1,1)$
C. $(-1,-1)$
D. $\left(\frac{-1}{2}, \frac{-1}{2}\right)$

Answer: D

D View Text Solution

2. If one end of a diameter of a circle is $(3,5)$ and the centre is $(2,3)$ then the other end of
the diameter is
A. $(1,1)$
B. $(2,1)$
C. $(3,1)$
D. $(1,2)$

Answer: A

D Watch Video Solution

3. If one end of a diameter of a circle
$2 x^{2}+2 y^{2}-4 x-8 y+2=0$ is $(3,2)$, then
the other end is
A. $(2,3)$
B. $(4,-2)$
C. $(2,-1)$
D. $(-1,2)$

Answer: D

D Watch Video Solution

4. The circle $x^{2}+y^{2}-3 x-4 y+2=0$ cuts
the x axis at the points
A. $(1,0),(2,0)$
B. $(1,0),(-1,0)$
C. $(3,0),(4,0)$
D. $(2,0),(-3,0)$

Answer: A

D Watch Video Solution
5. The ends of diameter of a circle are $(2,3)$ and $(6,5)$. The centre of the circle is
A. $(3,0)$
B. $(8,8)$
C. $(4,4)$
D. $(2,2)$

Answer: C

- Watch Video Solution

6. The circle $x^{2}+y^{2}-4 x+6 y+c=0$
touches x axis if
A. $c=4$
B. $c^{2}=4$
C. $c^{2}=16$
D. $c^{2}=9$

Answer: A

- Watch Video Solution

7. The circle $x^{2}+y^{2}-4 x+6 y+c=0$
touches x axis if
A. $c=3$
B. $c=9$
C. $c^{2}=3$
D. $c=5$

Answer: B

- Watch Video Solution

8. The circle $x^{2}+y^{2}-8 x+4 y+4=0$ toches
A. $c=4$
B. $c^{2}=4$
C. $c=16$
D. $c=5$

Answer: A

D Watch Video Solution

9. The equation of a circle of radius r and touching both the axes is
A. $x^{2}+y^{2}-2 r x=0$
B. $x^{2}+y^{2}-2 r y=0$
C. $x^{2}+y^{2}+2 r x+2 r y+c=0$
D. $x^{2}+y^{2}-2 r x-2 r y+r^{2}=0$

Answer: D

D Watch Video Solution

10. If (α, β) is the centre of a circle passing
through the origin then its equation is
A. $x^{2}+y^{2}-\alpha x+\beta y=0$
B. $x^{2}+y^{2}+2 \alpha x+2 \beta y=0$
C. $x^{2}+y^{2}-2 \alpha x-2 \beta y=0$
D. $x^{2}+y^{2}-2 \alpha x+2 \beta y+\alpha^{2}+\beta^{2}=0$

Answer: C

D Watch Video Solution

11. The circle $x^{2}+y^{2}-8 x+4 y+4=0$ toches
A. x axis
B. y axis
C. Both x and y axis
D. Dose not touches the axes

Answer: B

D Watch Video Solution
12. The intercept on the line $y=x$ by the circel $x^{2}+y^{2}-2 x=0$ is AB . Equation of the circle with $A B$ as a diameter is
A. $x^{2}+y^{2}+x+y=0$
B. $x^{2}+y^{2}+x-y=0$
C. $x^{2}+y^{2}-x+y=0$
D. $x^{2}+y^{2}-x-y=0$

Answer: D

D Watch Video Solution

13. Two vertices of an equilateral triangle are
$(-1,0)$ and $(1,0)$ then its circumcircle is
A. $x^{2}+\left(y-\frac{1}{\sqrt{3}}\right)^{2}=\frac{4}{3}$
B. $x^{2}+\left(y+\frac{1}{\sqrt{3}}\right)^{2}=\frac{1}{3}$
C. $x^{2}+\left(y-\frac{1}{\sqrt{3}}\right)^{2}+\frac{4}{9}=0$
D. $x^{2}+y^{2}=\frac{4}{3}$

Answer: A

D Watch Video Solution

14. A circle touches the y axis at $(0,2)$ and its x intercept equal to 3 units, then the equation
of the circle is

$$
\begin{aligned}
& \text { A. } x^{2}+y^{2} \pm 4 x-5 y+4=0 \\
& \text { B. } x^{2}+y^{2} \pm 5 x-4 y+4=0 \\
& \text { C. } x^{2}+y^{2}+5 x \pm 4 y+4=0 \\
& \text { D. } x^{2}+y^{2} \pm 5 x+4 y+4=0
\end{aligned}
$$

Answer: B

D Watch Video Solution

15.

The
lines
$2 x+3 y+1=0$ and $3 x-y-4=0$
lie
along the diameters of a circle of
circumference 10π unit then the equation of
the circle is
A. $x^{2}+y^{2}+2 x+2 y-23=0$
B. $x^{2}+y^{2}-2 x-2 y-23=0$
C. $x^{2}+y^{2}-2 x+2 y-23=0$
D. $x^{2}+y^{2}+2 x-2 y-23=0$

Answer: C
16. The radius of the circle passing through
the point $(6,2)$ and two of whose diameter are
$x+y=6$ and $x+2 y=4$ is
A. 4
B. 6
C. 20
D. $\sqrt{20}$
17. The radius of the circle having centre at
$(2,1)$ whose one of the chords is diameter of the circle $x^{2}+y^{2}-2 x-6 y+6=0$ is
A. 1
B. 2
C. 3
D. $\sqrt{3}$
18. The circle $x^{2}+y^{2}-8 x+4 y+4=0$ toches
A. $(2,-1)$
B. $(2,1)$
C. none of these
D. $(\sqrt{2}, 1)$

Answer: A

Exercise Parabola

1. The vertex of the parabola $y^{2}+4 x=0$ is
A. $(4,0)$
B. $(-4,0)$
C. $(-1,0)$
D. $(0,0)$
2. The focus of the parabola $y^{2}=20 x$ is
A. $(0,5)$
B. $(0,20)$
C. $(5,0)$
D. $(4,0)$

Answer: C
3. The axis of the parabola $y^{2}=x$ is the line

$$
\begin{aligned}
& \text { A. } x=0 \\
& \text { B. } y=0 \\
& \text { C. } x=1 \\
& \text { D. } y=1
\end{aligned}
$$

Answer: B
4. The latus rectum of the parabola $y^{2}=11 x$ is of length
A. 11
B. $\frac{11}{4}$
C. 22
D. 44

Answer: A

D Watch Video Solution
5. If $(3,0)$ is the focus and y axis is the tangent at vertex. Then the equation of the parabola is

$$
\begin{aligned}
& \text { A. } x^{2}=12 x \\
& \text { B. } y^{2}=12 x \\
& \text { C. } y^{2}=3 x \\
& \text { D. } x^{2}=3 x
\end{aligned}
$$

Answer: B

- Watch Video Solution

6. If the parabola $y^{2}=a x$ passes through
$(3,2)$ then the focus is
A. $\left(\frac{4}{3}, 0\right)$
B. $\left(0, \frac{4}{3}\right)$
C. $\left(\frac{1}{3}, 0\right)$
D. $\left(0, \frac{1}{3}\right)$

Answer: C
7. Equation of the parabola with focus $(-4,0)$ and vertex at the origin is

$$
\begin{aligned}
& \text { A. } y^{2}=16 x \\
& \text { B. } y^{2}=16 x=0 \\
& \text { C. } x^{2}=16 y \\
& \text { D. } x^{2}+16 y=0
\end{aligned}
$$

Answer: B

D Watch Video Solution
8. The equation of the directrix of the parabola

$$
x^{2}=28 y=0 \text { is }
$$

A. $y-7=0$
B. $y+7=0$
C. $x-7=0$
D. $x+7=0$

Answer: A

D Watch Video Solution
9. The vertex of the parabola $y^{2}=4 x+4 y$ is
A. $(1,-2)$
B. $(-1,2)$
C. $(2,1)$
D. $(-2,1)$

Answer: B
(Watch Video Solution
10. The focus of the parabola
$4 y^{2}+12 x-12 y+39=0$ is
A. $\left(\frac{13}{4}, \frac{-3}{2}\right)$
B. $\left(\frac{-13}{4}, \frac{3}{2}\right)$
C. $\left(\frac{3}{2}, \frac{-13}{4}\right)$
D. $\left(\frac{-3}{2}, \frac{13}{4}\right)$

Answer: B

- Watch Video Solution

11. Axis of the parabola $x^{2}-3 y-6 x+6=0$
is

> A. $x=-3$
> В. $y=-1$
> C. $x=3$
> D. $y=1$

Answer: C

- Watch Video Solution

12. The equation of the parabola with vertex at
$(0,0)$, axis along y axis and passing through
the point $(6,-3)$ is

$$
\begin{aligned}
& \text { A. } x^{2}+4 y=0 \\
& \text { B. } x^{2}+8 y=0 \\
& \text { C. } x^{2}+12 y=0 \\
& \text { D. } x^{2}+6 y=0
\end{aligned}
$$

Answer: C

D Watch Video Solution
13. The length of latus rectum of the parabola $4 y^{2}+2 x-20 y+17=0$ is
A. 3
B. 6
C. $\frac{1}{2}$
D. 0

Answer: C

D Watch Video Solution
14. The length of the latus rectum of the parabola $x^{2}-4 x-8 y+12=0$ is
A. 4
B. 6
C. 8
D. 10

Answer: C

D Watch Video Solution
15. The equation of the directrix of the parabola $y^{2}+4 y+4 x+2=0$ is
A. $x=-1$
B. $x=1$
C. $x=\frac{-3}{2}$
D. $x=\frac{3}{2}$

Answer: D

- Watch Video Solution

16. The equation of the parabola with its vertex at $(1,1)$ and focus at $(3,1)$ is

$$
\begin{aligned}
& \text { A. }(x-3)^{2}=8(y-1) \\
& \text { B. }(y-1)^{2}=8(x-1) \\
& \text { C. }(y-1)^{2}=8(x-3) \\
& \text { D. }(x-1)^{2}=8(y-1)
\end{aligned}
$$

Answer: B

D Watch Video Solution
17. Equation of the parabola with focus $(3,0)$ and the directrix $x+3=0$ is

> A. $y^{2}=3 x$
> B. $y^{2}=2 x$
> C. $y^{2}=12 x$
> D. $y^{2}=6 x$

Answer: C

- Watch Video Solution

18. If $(0,6)$ and $(0,3)$ are respectively the vertex and focus of a parabola then its equation is
A. $x^{2}+12 y=72$
B. $x^{2}-12 y=72$
C. $y^{2}-12 x=72$
D. $y^{2}+12 x=72$

Answer: A
19. The line $x-y+2=0$ touches the parabola $y^{2}=8 x$ at the point
A. $(2,-4)$
B. $(1,2 \sqrt{2})$
C. $(4,-4 \sqrt{2})$
D. None of these

Answer: D

- Watch Video Solution

1. The eccentricity of the ellipse
$16 x^{2}+25 y^{2}=400$ is

> A. $\frac{3}{5}$
> B. $\frac{3}{4}$
> C. $\frac{4}{5}$
> D. $\frac{9}{25}$

Answer: A

- Watch Video Solution

2. The equation of the ellipse whose axes are along the coordinate axes, vertices are $(0, \pm 10)$ and eccentricity $e=\frac{4}{5}$

$$
\begin{aligned}
& \text { A. } 25 x^{2}+9 y^{2}=900 \\
& \text { B. } 9 x^{2}+25 y^{2}=900 \\
& \text { C. } 5 x^{2}+3 y^{2}=90 \\
& \text { D. } 3 x^{2}+5 y^{2}=90
\end{aligned}
$$

Answer: A
3. The foci of an ellipse are $(\pm 2,0)$ and its eccentricity is $\frac{1}{2}$ then the equation is
A. $4 x^{2}+3 y^{2}=48$
B. $3 x^{2}+4 y^{2}=48$
C. $4 x^{2}+3 y^{2}=12$
D. $3 x^{2}+4 y^{2}=12$

Answer: D

- Watch Video Solution

4. If the length of latus rectum is $\frac{5}{2}$ and eccentricity is $\frac{1}{2}$, then the equation of the ellipse is
A. $\frac{x^{2}}{9}+\frac{y^{2}}{16}=1$
B. $\frac{9 x^{2}}{25}+\frac{12 y^{2}}{25}=1$
C. $\frac{9 x^{2}}{25}+\frac{4^{2}}{25}=1$
D. $\frac{x^{2}}{16}+\frac{y^{2}}{9}=1$

Answer: B
5. The line $y=2 x+c$ touches the ellipse $\frac{x^{2}}{16}+\frac{y^{2}}{4}=1$ if c is equal to
A. 0
B. $\pm 2 \sqrt{17}$
C. $\pm \sqrt{15}$
D. $\pm \sqrt{17}$

Answer: B
6. The sum of distance of any point on the ellipse $3 x^{2}+4 y^{2}=24$ from its foci is
A. $8 \sqrt{2}$
B. $4 \sqrt{2}$
C. $6 \sqrt{2}$
D. $16 \sqrt{2}$

Answer: B
7. The equation $\frac{x^{2}}{2-r}+\frac{y^{2}}{r-5}+1=0$ represent an ellipse iff
A. $r>2$
B. $r>5$
C. $2>r>5$
D. $r>5$

Answer: C

D Watch Video Solution
8. Sum of the focal distance of the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ is
A. 2 b
B. 2a
C. 2 ab
D. $a+b$

Answer: B

- Watch Video Solution

9. The radius of the circle passing throgh the
foci of the ellipse $\frac{x^{2}}{16}+\frac{y^{2}}{9}=1$ and haivng centre $(0,3)$ is
A. 4
B. 3
C. $\sqrt{12}$
D. $\frac{7}{2}$

Answer: A

D

10. The eccentricity of an ellipse with its centre at the origin is $\frac{1}{2}$. If one of the directices is $x=4$, then the equation of the ellipse is

$$
\text { A. } 4 x^{2}+3 y^{2}=12
$$

B. $3 x^{2}+4 y^{2}=12$
C. $3 x^{2}+4 y^{2}=1$
D. $4 x^{2}+3 y^{2}=1$

Answer: B
11. The maximum area of an isosceles triangle inscribed in the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ with the vertex at one end of the major axis is
A. $\sqrt{3} a b$
B. $\frac{3 \sqrt{3}}{4} a b$
C. $\frac{5 \sqrt{3}}{4} a b$
D. $a b$

Answer: D
12. The ellipse with foci at $(0,1),(0,4)$ and one vertex at the origin is

> A. $25 x^{2}+16 y^{2}=1$
> B. $16 x^{2}+25 y^{2}=1$
> C. $25 x^{2}+16 y^{2}+80 y=0$
> D. $25 x^{2}+16 y^{2}-80 y=0$

Answer: D

- View Text Solution

13. The euqaiton of the conic with focus
(2, - 1) directrix $x-y=0$ and eccentricity $\frac{1}{2}$ is
A.

$$
7\left(x^{2}+y^{2}\right)+2 x y-32 x+16 y+40=0
$$

B.

$$
5\left(x^{2}+y^{2}\right)+2 x y+32 x-16 y+20=0
$$

C.

$$
7\left(x^{2}+y^{2}\right)-4 x y-16 x+32 y+20=0
$$

D.

$$
7\left(x^{2}+y^{2}\right)+2 x y-16 x+8 y+20=0
$$

Answer: A

- Watch Video Solution

14. The foci of the ellipse

$$
25(x+1)^{2}+9(y+2)^{2}=225
$$

A. $(-1,2)$ and $(-1,-6)$
B. $(-2,1)$ and $(-2,-6)$

$$
\text { C. }(-1,-2) \text { and }(-2,-1)
$$

$$
\text { D. }(-1,4) \text { and }(-1,-4)
$$

Answer: A

D Watch Video Solution

15. Find the vertices, foci for the hyperbola

$$
9 x^{2}-16 y^{2}=144
$$

A. $\frac{3}{2}$
B. 3
C. 4
D. 2

Answer: C

D Watch Video Solution

16. S and T are the foci of an ellipse and B is an
end point of the minor axis. IF $\triangle S T B$ is
equilateral then $\mathrm{e}=$
A. $\frac{1}{4}$
B. $\frac{1}{3}$
C. $\frac{1}{2}$
D. $\frac{1}{5}$

Answer: C

D Watch Video Solution

17. The angle between the lines joining the foci of an ellipse to an extremity of its minor axis is 90°. The eccentricity is
A. $\frac{1}{2}$
B. $\frac{1}{4}$
C. $\frac{1}{\sqrt{3}}$
D. $\frac{1}{\sqrt{2}}$

Answer: D

- Watch Video Solution

18. The centre of the ellipse
$8 x^{2}+6 y^{2}-16 x+12 y+13=0$
A. $(1,1)$
B. $(-1,1)$
C. $(1,-1)$
D. $(-1,-1)$

Answer: C

- Watch Video Solution

Exercise Hyperbola

1. The vertices of the hyperbola $9 x^{2}-16 y^{2}=144$
A. $(\pm 5,0)$
B. $(\pm 4,0)$
C. $\left(\pm \frac{5}{4}, 0\right)$
D. $\left(\pm \frac{3}{4}, 0\right)$

Answer: B

- Watch Video Solution

2. The eccentricity of the hyperbola

$$
3 x^{2}-4 y^{2}=-12 \text { is }
$$

A. $\sqrt{\frac{7}{3}}$
B. $\frac{\sqrt{7}}{3}$
C. $\frac{\sqrt{7}}{2}$
D. $\sqrt{\frac{7}{2}}$

Answer: A

- Watch Video Solution

3. Equation of a hyperbola such that the distance between the foci is 16 and eccentricity is $\sqrt{2}$ is

$$
\begin{aligned}
& \text { A. } x^{2}-y^{2}=16 \\
& \text { B. } x^{2}-y^{2}=32 \\
& \text { C. } x^{2}-2 y^{2}=16 \\
& \text { D. } 2 x^{2}-y^{2}=27
\end{aligned}
$$

Answer: B

- Watch Video Solution

4. The eccentricity of the hyperbola whose latus rectum is 8 and conjugate axis is equal to half the distance between the foci is
A. $\frac{4}{3}$
B. $\frac{4}{\sqrt{3}}$
C. $\frac{3}{2}$
D. $\frac{2}{\sqrt{3}}$

Answer: D

D Watch Video Solution
5. The equation $\frac{x^{2}}{12-k}+\frac{y^{2}}{8-k}=1$ represents a hyperbola whose transverse axis
is along the x axis if
A. $k=8$
B. $k<12$
C. $k>8$
D. $8<k<12$

Answer: D

Watch Video Solution

6. The hyperbola with foci are at ($\pm 4,0$), and

vertices at $(\pm 2,0)$ is
A. $\frac{x^{2}}{4}-\frac{y^{2}}{12}=1$
B. $\frac{x^{2}}{12}-\frac{y^{2}}{4}=1$
C. $\frac{x^{2}}{16}-\frac{y^{2}}{4}=1$
D. $\frac{x^{2}}{4}-\frac{y^{2}}{16}=1$

Answer: A

- Watch Video Solution

7. The foci a hyperbola coincides with the foci of the ellispe $\frac{x^{2}}{25}+\frac{y^{2}}{9}=1$. Find the equation of the hyperbola if its eccentricity is
8.

$$
\begin{aligned}
& \text { A. } 3 x^{2}-y^{2}=12 \\
& \text { B. } x^{2}-3 y^{2}=12 \\
& \text { C. } y^{2}-3 x=12 \\
& \text { D. } 3 x^{2}-y^{2}=2
\end{aligned}
$$

Answer: A

8. A hyperbola with foci at ($0,-1$), (0,3) and the vertex at the origin is

$$
\begin{aligned}
& \text { A. } 3 y^{2}-x^{2}-6 y=0 \\
& \text { B. } 3 x^{2}-y^{2}+6=0 \\
& \text { C. } 3 x^{2}-y^{2}+6 y=0 \\
& \text { D. } 3 x^{2}-y^{2}-6 x=0
\end{aligned}
$$

Answer: A

D View Text Solution
9. Find the eccentricity, centre, foci and
vertices
of
the
hyperbola
$9 x^{2}-16 y^{2}-18 x-64 y-199=0$.
A. $(1,2)$
B. $(1,-2)$
C. $(-1,2)$
D. $(-1,-2)$

Answer: B

D Watch Video Solution

