

MATHS

BOOKS - NEW JYOTHI MATHS (TAMIL ENGLISH)

INTRODUCTION TO THREE DIMENSIONAL GEOMETRY

1. Name the octants in which the following points lie:

 $(1,\,2,\,3),\,(4,\,-2,\,3),\,(4,\,-2,\,-5),\,(4,\,2,\,-5),\,(-4,\,2,\,-5),\,(-4,\,2,\,5),$

Watch Video Solution

2. Find the distance between the points (-1, 1, 1) and (1, 2, 3).

3. Determine the point on x-axis which is equidistant from the points

Watch Video Solution

4. i. Show that the points A(-2,3,5), B(1,2,3), C(7,0,-1) are

collinear.

ii. Find the ratio in which B divides line segment AC.

Watch Video Solution

5. Show that (0, 7, 10)(-1, 6, 6) and (-4, 9, 6) are the vertices of a

right triangle.

6. Find the equation of the set of points which are equidistant from the points (1, 2, 3) and (3, 2, -1).

7. The equation of the set of points P, the sum of whose distances from

A(4,0,0) and $B(\,-\,4,0,0)$ is equal to 10

Watch Video Solution

8. Show that the points A(1, 2, 3), B(-1, -2, -1), C(2, 3, 2) and D(4, 7, 6) are the vertices of a parallelogram ABCD, but it is not a rectangle.

9. Find the coordinates of the point which divides the line segment joining the points (4, -3) and (8, 5) in the ratio 3 : 1 internally

Watch Video Solution

10. i. Find the coordinates of the point which trisect the line segment joining the points P(4, 0, 1) and Q(2, 4, 0).

(ii) Find the locus of the set of points P such that the distance from A(2, 3, 4) is equal to twice the distance from B(-2, 1, 2).

Watch Video Solution

11. Consider the points A(3, 2, -4), B(5, 4, -6) and C(9, 8, -10).

i. Find AB, BC and AC and show that A, B, C are collinear.

ii. Find the ratio in which B divides AC using distance formula.

iii. Verify the result using section formula.

12. Consider the points A(5,1,6) and B(3,4,1)

i.Find the cartesian equation of the line through A and B.

ii. Find the point where the line crosses the yz plane.

Watch Video Solution	

13. Consider the points A(-2, 4, 7) and B(3, -5, 8).

i. If P divides AB in the ratio k : 1, then find the coordinates of P.

ii. Find the coordinates of the point where the line segment AB crosses the YZ-plane.

15. Let $A(x_1, y_1, z_1), B(x_2, y_2, z_2)$ and $C(x_3, y_3, z_3)$ be the vertices of ΔABC .

i. Find the midpoint D of BC.

ii. Find the coordinates of the centroid of ΔABC .

Watch Video Solution

16. The centroid of a triangle ABC is at the point (1, 1, 1). If the coordinates of A and B are (3, -5, 7) and (-1, 7, -6), respectively, find the coordinates of the point C.

17.ConsiderthetrianglewithverticesA(0, 7, -10), B(1, 6, -6), C(4, 9, -6).i. Find the sides AB, BC and AC.ii. Prove that the triangle is right angles.iii. Find the centroid of the triangle.

18. i. If $\left(\frac{5}{3}, \frac{22}{3}, \frac{-22}{3}\right)$ is the centroid of ΔPQR with vertices P(a, 7, -10), Q(1, 2b, -6), R(4, 9, 3c), find the values of a, b and c. ii. Prove ΔPQR is isosceles.

Watch Video Solution

19. Find the ratio in which the YZ-plane divides the line segment formed by joining the points (-2, 4, 7) and (3, -5, 8).

Watch Video Solution

20. The coordinates of a point which trisect the line segment joining the

points P(4, 2, -6) and Q(10, -16, 6)

21. If the origin is the centroid of the triangle PQR with vertices P(2a, 2, 6), Q(-4, 3b, -10) and R(8, 14, 2c), then find the values of a, b and c.

22. A point R with x-coordinate 4 lies on the line segment joining the points P(2, -3, 4) and Q(8, 0, 10). Find the coordinates of the point R.

> Watch Video Solution

23. If A and B be the points (3, 4, 5) and (-1, 3, -7), respectively, find the equation of the set of points P such that $PA^2 + PB^2 = k^2$, where k is a constant.

1. The distance between $P(1,\ -3,4)$ and $Q(\ -4,1,2)$ is

A. $3\sqrt{5}$

 $\mathrm{B.}\,2\sqrt{5}$

C. $5\sqrt{5}$

D. $5\sqrt{3}$

Answer: A

Watch Video Solution

2. The points A(3, 6, 9), B(10, 20, 30) and C(25, -41, 5)

A. A. are collinear

B. B. form the vertices of a isosceles triangle

C. C. equilateral triangle

D. D. None of these

Answer:

3. Show that the points (1, 2, -1), (2, 5, 1) and (0, -1, -3) are collinear.

A. are collinear

B. are vertices of a parallelogram

C. vertices of a rhombus

D. vertices of a rectangle

Answer: B

Watch Video Solution

4. Find the equation of the set of points which are equidistant from the points (1, 2, 3) and (3, 2, -1).

A.
$$x + 2y + z = 0$$

B. $x - 2y + z = 0$
C. $2x - y = 0$
D. $x - 2z = 0$

Answer:

5. The equation of the set of points P, the sum of whose distances from A(4,0,0) and $B(\,-4,0,0)$ is equal to 10

A. A.
$$\frac{x^2}{25} + \frac{y^2}{9} + \frac{z^2}{9} = 1$$

B. B. $25x^2 + 9y^2 + 9z^2 = 1$
C. C. $100x^2 + 364^2 + 36z^2 = 900$
D. D. $36x^2 - 100y^2 - 100z^2 = 1$

Answer: A

6. The points (-4, 6, 10), (2, 4, 6) and (14, k, -2) are collinear then k

is

A. A.0

B. B. 1

C. C. −1

D. D. 2

Answer: A

Watch Video Solution

7. The ratio in which the point Q(5, 4, -6) divides the line joining the points P(3, 2, -4) and R(9, 8, -10) is

B.1:3

C.2:3

D. 1:2

Answer: D

Watch Video Solution

8. Find the ratio in which the YZ-plane divides the line segment formed by

joining the points (-2, 4, 7) and (3, -5, 8).

A. 3:2

B. 2:3

C. 1: 2

 $\mathsf{D}.\,2\!:\!1$

Answer: B

9. The coordinates of a point which trisect the line segment joining the points P(4,2,-6) and Q(10,-16,6)

A. (6, -4, 2)B. (6, 4, -2)C. (8, -10, 2)D. (8, 10, -2)

Watch Video Solution

Answer: C

10. Three vertices of a parallelogram ABCD are A(3, -1, 2), B(1, 2, -4) and C(-1, 1, 2). The corrdinates of the fourth vertex is

A. (1, -2, 4)

B. (1, -2, 8)C. (2, -2, 8)D. (1, 0, 8)

Answer: B

Watch Video Solution

11. Three vertices of a rectangle are (3,2),(-4,2) and (-4,5). Plot the points

and find the coordinates of the fourth vertex.

A.
$$(\,-1,13,13)$$

- B. (3, -3, -1)
- $\mathsf{C.}\,(7,\,1,\,-5)$
- D. (3, -3, -5)

Answer: D

12. If the origin is the centroid of the triangle PQR with vertices P(2a, 2, 6), Q(-4, 3b, -10) and R(8, 14, 2c), then find the values of a, b and c.

A.
$$(-2, 12, 2)$$

B. $\left(2, \frac{-16}{3}, 2\right)$
C. $\left(2, \frac{-16}{3}, -2\right)$
D. $\left(-2, \frac{-16}{3}, 2\right)$

Answer: D

Watch Video Solution

13. Find the distance of the following pair of point: find the voor dinates of the points on y-axis which are at a distance of $5\sqrt{2}$ form the point P(3, -2, 5).

A. (0, 4, 0)

B. (0, -2, 0)

C.(0, -6, 0)

D.(0, 3, 0)

Answer: C

Watch Video Solution

14. A point R with x-coordinate 4 lies on the line segment joining the points P(2, -3, 4) and Q(8, 0, 10). Find the coordinates of the point R.

A. (2, 6)

- B. (2, -6)
- C.(-2,6)
- D. (-2, -6)

Answer: C

15. The vertices of a triangle have integer co- ordinates then the triangle

cannot be

A. isosceles or equilateral

B. right angles

C. equilateral

D. right angled isosceles

Answer: C

Watch Video Solution

16. The vertices of a triangle are (3, 2, 5), (3, 2, -1) and (7, 2, 5). The

circumcentre is

A. a. (4, 3, 1)

B. b. (5, -2, 1)C. c. (5, 2, 2)D. d. (5, -2, 2)

Answer: C

Watch Video Solution

17. The locus of a point P(x,y,z) which moves in such a way that z=c

(constant), is a

A. line parallel to z axis

B. plane parallel to XY plane

C. line parallel to y axis

D. line parallel to x axis

Answer: B

18. The distance of the point P(a, b, c) from the z axis is

A.
$$\sqrt{a^2+b^2}$$

B. $\sqrt{a^2+c^2}$
C. $\sqrt{b^2+c^2}$
D. $\sqrt{a^2+b^2-c^2}$

Answer: A

Watch Video Solution

19. A(3, 2, 0), B(5, 3, 2) and C(-9, 6, -3) are the vertices of triangle ABC. If the bisec-tor of $\angle BAC$ meets BC at D then D is

A.
$$\left(\frac{19}{8}, \frac{57}{16}, \frac{17}{16}\right)$$

B. $\left(\frac{-19}{8}, \frac{57}{16}, \frac{17}{16}\right)$
C. $\left(\frac{19}{8}, \frac{-57}{16}, \frac{17}{16}\right)$

$$\mathsf{D}.\left(\frac{19}{8},\frac{57}{16},\frac{-17}{16}\right)$$

Answer: A

Watch Video Solution

Questions From Competitive Exams

1. The distance of the point A(2,3,4) from X-axis is

A. 5

B. $\sqrt{13}$

 $\mathsf{C.}\,2\sqrt{5}$

D. $5\sqrt{2}$

Answer: A

2. The point in the xy-plane which is equidistant from the points (2, 0, 3), (0, 3, 2) and (0, 0, 1) is

A. (1, 2, 3)

B. (-3, 2, 0)

 $\mathsf{C}.(3, -2, 0)$

D.(3, 2, 0)

Answer: D

Watch Video Solution

3. The projection of a line segment on the axes are 9, 12 and 8. Then the length of the line segment is

A. 15

B. 16

C. 17

Answer: C

4. The point which divides the line joining the points (1, 3, 4) and (4, 3, 1) internally in the ratio 2: 1, is

A. (2, -3, 3)B. (2, 3, 3)C. $\left(\frac{5}{2}, 3, \frac{5}{2}\right)$ D. (3, 3, 2)

Answer:

5. The distance between x axis and the point (3,12,5) is

A. 3 B. 13 C. 14

D. 12

Answer: B

Watch Video Solution

6. A line makes the same angle θ , with each of the x and axis. If the angle β , which it makes with y-axis, is such that $\sin^2 \beta = 3 \sin^2 \theta$, then $\cos^2 \theta$ equals:

A.
$$\frac{3}{5}$$

B. $\frac{1}{5}$
C. $\frac{2}{3}$

D.
$$\frac{2}{5}$$

Answer: A

Watch Video Solution

7. If a line makes an angle of $\frac{\pi}{4}$ with the positive directions of each of xaxis and y-axis, then the angle that the line makes with the positive direction of the z-axis is (1) $\frac{\pi}{6}$ (2) $\frac{\pi}{3}$ (3) $\frac{\pi}{4}$ (4) $\frac{\pi}{2}$

A.
$$\frac{\pi}{4}$$

B. $\frac{\pi}{2}$
C. $\frac{\pi}{6}$
D. $\frac{\pi}{3}$

Answer: B

8. Let $\overrightarrow{a} = \hat{i} + \hat{j} + \hat{k}$, $\overrightarrow{b} = \hat{i} - \hat{j} + \hat{2}k$ and $\overrightarrow{c} = x\hat{i} + (x-2)\hat{j} - \hat{k}$. If the vector \overrightarrow{c} lies in the plane of \overrightarrow{a} and \overrightarrow{b} then x equals

A. -4

 $\mathsf{B.}-2$

C. 0

D. 1

Answer: B

Watch Video Solution

9. The line passing through the points (5, 1, a) and (3, b, 1) crosses the

yz-plane at the point $\left(0, \frac{17}{2}, \frac{-13}{2}\right)$.Then

A. a = 8, b = 2

B. a = 2, b = 8

C. a = 4, b = 6

D. a = 6, b = 4

Answer: D

