© ${ }^{\text {T doubtnut }}$

India's Number 1 Education App

MATHS

BOOKS - NEW JYOTHI MATHS (TAMIL ENGLISH)

INTRODUCTION TO THREE DIMENSIONAL GEOMETRY

Examples

1. Name the octants in which the following points lie:
$(1,2,3),(4,-2,3),(4,-2,-5),(4,2,-5),(-4,2,-5),(-4,2,5)$:

- Watch Video Solution

2. Find the distance between the points ($-1,1,1$) and ($1,2,3$).
3. Determine the point on x-axis which is equidistant from the points $(-2,3,5)$ and $(1,2,3)$.

- Watch Video Solution

4. i. Show that the points $A(-2,3,5), B(1,2,3), C(7,0,-1)$ are collinear.
ii. Find the ratio in which B divides line segment $A C$.

- Watch Video Solution

5. Show that $(0,7,10)(-1,6,6)$ and $(-4,9,6)$ are the vertices of a right triangle.
6. Find the equation of the set of points which are equidistant from the points $(1,2,3)$ and $(3,2,-1)$.

- Watch Video Solution

7. The equation of the set of points P, the sum of whose distances from $A(4,0,0)$ and $B(-4,0,0)$ is equal to 10

- Watch Video Solution

8. Show that the points $A(1,2,3), B(-1,-2,-1), C(2,3,2)$ and $D(4,7,6)$ are the vertices of a parallelogram ABCD, but it is not a rectangle.

- Watch Video Solution

9. Find the coordinates of the point which divides the line segment joining the points $(4,-3)$ and $(8,5)$ in the ratio $3: 1$ internally

Watch Video Solution

10. i. Find the coordinates of the point which trisect the line segment joining the points $P(4,0,1)$ and $Q(2,4,0)$.
(ii) Find the locus of the set of points P such that the distance from $A(2,3,4)$ is equal to twice the distance from $B(-2,1,2)$.

(Watch Video Solution

11. Consider the points $A(3,2,-4), B(5,4,-6)$ and $C(9,8,-10)$.
i. Find $A B, B C$ and $A C$ and show that A, B, C are collinear.
ii. Find the ratio in which B divides AC using distance formula.
iii. Verify the result using section formula.
12. Consider the points $A(5,1,6)$ and $B(3,4,1)$
i.Find the cartesian equation of the line through A and B.
ii. Find the point where the line crosses the yz plane.

- Watch Video Solution

13. Consider the points $A(-2,4,7)$ and $B(3,-5,8)$.
i. If P divides AB in the ratio $\mathrm{k}: 1$, then find the coordinates of P .
ii. Find the coordinates of the point where the line segment $A B$ crosses the YZ-plane.

- Watch Video Solution

14. Three vertices of a parallelogram ABCD are $A(3,-1,2), B(1,2,-4)$ and $C(-1,1,2)$. The corrdinates of the fourth vertex is
15. Let $A\left(x_{1}, y_{1}, z_{1}\right), B\left(x_{2}, y_{2}, z_{2}\right)$ and $C\left(x_{3}, y_{3}, z_{3}\right)$ be the vertices of

$\triangle A B C$.

i. Find the midpoint D of BC.
ii. Find the coordinates of the centroid of $\triangle A B C$.

- Watch Video Solution

16. The centroid of a triangle $A B C$ is at the point $(1,1,1)$. If the coordinates of A and B are $(3,-5,7)$ and $(-1,7,-6)$, respectively, find the coordinates of the point C .

- Watch Video Solution

17. Consider the triangle with vertices
$A(0,7,-10), B(1,6,-6), C(4,9,-6)$.
i. Find the sides $A B, B C$ and $A C$.
ii. Prove that the triangle is right angles.
iii. Find the centroid of the triangle.

- Watch Video Solution

18. i. If $\left(\frac{5}{3}, \frac{22}{3}, \frac{-22}{3}\right)$ is the centroid of $\triangle P Q R$ with vertices $P(a, 7,-10), Q(1,2 b,-6), R(4,9,3 c)$, find the values of a, b and c .
ii. Prove $\triangle P Q R$ is isosceles.

- Watch Video Solution

19. Find the ratio in which the YZ-plane divides the line segment formed by joining the points $(-2,4,7)$ and $(3,-5,8)$.

- Watch Video Solution

20. The coordinates of a point which trisect the line segment joining the points $P(4,2,-6)$ and $Q(10,-16,6)$

- Watch Video Solution

21. If the origin is the centroid of the triangle PQR with vertices $P(2 a, 2,6), Q(-4,3 b,-10)$ and $R(8,14,2 c)$, then find the values of a, b and c .

- Watch Video Solution

22. A point R with x-coordinate 4 lies on the line segment joining the points $P(2,-3,4)$ and $Q(8,0,10)$. Find the coordinates of the point R .

- Watch Video Solution

23. If A and B be the points $(3,4,5)$ and $(-1,3,-7)$, respectively, find the equation of the set of points P such that $P A^{2}+P B^{2}=k^{2}$, where k is a constant.

- Watch Video Solution

1. The distance between $P(1,-3,4)$ and $Q(-4,1,2)$ is
A. $3 \sqrt{5}$
B. $2 \sqrt{5}$
C. $5 \sqrt{5}$
D. $5 \sqrt{3}$

Answer: A

- Watch Video Solution

2. The points $A(3,6,9), B(10,20,30)$ and $C(25,-41,5)$
A. A. are collinear
B. B. form the vertices of a isosceles triangle
C. C. equilateral triangle
D. D. None of these

Answer:

D Watch Video Solution

3. Show that the points $(1,2,-1),(2,5,1)$ and $(0,-1,-3)$ are collinear.
A. are collinear
B. are vertices of a parallelogram
C. vertices of a rhombus
D. vertices of a rectangle

Answer: B

- Watch Video Solution

4. Find the equation of the set of points which are equidistant from the points $(1,2,3)$ and $(3,2,-1)$.
A. $x+2 y+z=0$
B. $x-2 y+z=0$
C. $2 x-y=0$
D. $x-2 z=0$

Answer:

- Watch Video Solution

5. The equation of the set of points P, the sum of whose distances from $A(4,0,0)$ and $B(-4,0,0)$ is equal to 10
A. A. $\frac{x^{2}}{25}+\frac{y^{2}}{9}+\frac{z^{2}}{9}=1$
B. B. $25 x^{2}+9 y^{2}+9 z^{2}=1$
C. C. $100 x^{2}+364^{2}+36 z^{2}=900$
D. D. $36 x^{2}-100 y^{2}-100 z^{2}=1$
6. The points $(-4,6,10),(2,4,6)$ and $(14, k,-2)$ are collinear then k is
A. A. 0
B. B. 1
C. C. -1
D. D. 2

Answer: A

- Watch Video Solution

7. The ratio in which the point $Q(5,4,-6)$ divides the line joining the points $P(3,2,-4)$ and $R(9,8,-10)$ is

$$
\text { A. } 2: 1
$$

B. 1:3
C. 2:3
D. 1:2

Answer: D

- Watch Video Solution

8. Find the ratio in which the YZ-plane divides the line segment formed by joining the points $(-2,4,7)$ and $(3,-5,8)$.
A. 3: 2
B. 2: 3
C. 1:2
D. 2:1

Answer: B

9. The coordinates of a point which trisect the line segment joining the points $P(4,2,-6)$ and $Q(10,-16,6)$
A. $(6,-4,2)$
B. $(6,4,-2)$
C. $(8,-10,2)$
D. $(8,10,-2)$

Answer: C

- Watch Video Solution

10. Three vertices of a parallelogram $A B C D$ are $A(3,-1,2), B(1,2,-4)$ and $C(-1,1,2)$. The corrdinates of the fourth vertex is
A. $(1,-2,4)$
B. $(1,-2,8)$
C. $(2,-2,8)$
D. $(1,0,8)$

Answer: B

- Watch Video Solution

11. Three vertices of a rectangle are (3,2),(-4,2) and (-4,5). Plot the points and find the coordinates of the fourth vertex.
A. $(-1,13,13)$
B. $(3,-3,-1)$
C. $(7,1,-5)$
D. $(3,-3,-5)$

Answer: D

12. If the origin is the centroid of the triangle $P Q R$ with vertices $P(2 a, 2,6), Q(-4,3 b,-10)$ and $R(8,14,2 c)$, then find the values of a, b and c .
A. $(-2,12,2)$
B. $\left(2, \frac{-16}{3}, 2\right)$
c. $\left(2, \frac{-16}{3},-2\right)$
D. $\left(-2, \frac{-16}{3}, 2\right)$

Answer: D

- Watch Video Solution

13. Find the distance of the following pair of point: findthe voordinates of the points on y-axis which are at a distance of $5 \sqrt{2}$ form the point $P(3,-2,5)$.
A. $(0,4,0)$
B. $(0,-2,0)$
C. $(0,-6,0)$
D. $(0,3,0)$

Answer: C

- Watch Video Solution

14. A point R with x-coordinate 4 lies on the line segment joining the points $P(2,-3,4)$ and $Q(8,0,10)$. Find the coordinates of the point R .
A. $(2,6)$
B. $(2,-6)$
C. $(-2,6)$
D. $(-2,-6)$

Answer: C

15. The vertices of a triangle have integer co- ordinates then the triangle cannot be
A. isosceles or equilateral
B. right angles
C. equilateral
D. right angled isosceles

Answer: C

- Watch Video Solution

16. The vertices of a triangle are $(3,2,5),(3,2,-1)$ and $(7,2,5)$. The circumcentre is
A. a. $(4,3,1)$
B. b. $(5,-2,1)$
C. c. $(5,2,2)$
D. d. $(5,-2,2)$

Answer: C

- Watch Video Solution

17. The locus of a point $P(x, y, z)$ which moves in such a way that $z=c$ (constant), is a
A. line parallel to z axis
B. plane parallel to XY plane
C. line parallel to y axis
D. line parallel to x axis

Answer: B

18. The distance of the point $P(a, b, c)$ from the z axis is
A. $\sqrt{a^{2}+b^{2}}$
B. $\sqrt{a^{2}+c^{2}}$
C. $\sqrt{b^{2}+c^{2}}$
D. $\sqrt{a^{2}+b^{2}-c^{2}}$

Answer: A

- Watch Video Solution

19. $A(3,2,0), B(5,3,2)$ and $C(-9,6,-3)$ are the vertices of triangle ABC . If the bisec-tor of $\angle B A C$ meets BC at D then D is
A. $\left(\frac{19}{8}, \frac{57}{16}, \frac{17}{16}\right)$
B. $\left(\frac{-19}{8}, \frac{57}{16}, \frac{17}{16}\right)$
C. $\left(\frac{19}{8}, \frac{-57}{16}, \frac{17}{16}\right)$
D. $\left(\frac{19}{8}, \frac{57}{16}, \frac{-17}{16}\right)$

Answer: A

- Watch Video Solution

Questions From Competitive Exams

1. The distance of the point $A(2,3,4)$ from X -axis is
A. 5
B. $\sqrt{13}$
C. $2 \sqrt{5}$
D. $5 \sqrt{2}$

Answer: A
2. The point in the xy-plane which is equidistant from the points $(2,0,3),(0,3,2)$ and $(0,0,1)$ is
A. $(1,2,3)$
B. $(-3,2,0)$
C. $(3,-2,0)$
D. $(3,2,0)$

Answer: D

Watch Video Solution

3. The projection of a line segment on the axes are 9,12 and 8 . Then the length of the line segment is
A. 15
B. 16
C. 17
D. 18

Answer: C

- Watch Video Solution

4. The point which divides the line joining the points $(1,3,4)$ and $(4,3,1)$ internally in the ratio $2: 1$, is
A. $(2,-3,3)$
B. $(2,3,3)$
C. $\left(\frac{5}{2}, 3, \frac{5}{2}\right)$
D. $(3,3,2)$

Answer:

5. The distance between x axis and the point $(3,12,5)$ is
A. 3
B. 13
C. 14
D. 12

Answer: B

- Watch Video Solution

6. A line makes the same angle θ, with each of the x and axis. If the angle β, which it makes with y-axis, is such that $\sin ^{2} \beta=3 \sin ^{2} \theta$, then $\cos ^{2} \theta$ equals:
A. $\frac{3}{5}$
B. $\frac{1}{5}$
C. $\frac{2}{3}$
D. $\frac{2}{5}$

Answer: A

- Watch Video Solution

7. If a line makes an angle of $\frac{\pi}{4}$ with the positive directions of each of x axis and y-axis, then the angle that the line makes with the positive direction of the z-axis is (1) $\frac{\pi}{6}$ (2) $\frac{\pi}{3}$ (3) $\frac{\pi}{4}$ (4) $\frac{\pi}{2}$
A. $\frac{\pi}{4}$
B. $\frac{\pi}{2}$
C. $\frac{\pi}{6}$
D. $\frac{\pi}{3}$

Answer: B

- Watch Video Solution

8. Let $\vec{a}=\hat{i}+\hat{j}+\hat{k}, \vec{b}=\hat{i}-\hat{j}+\hat{2} k$ and $\vec{c}=x \hat{i}+(x-2) \hat{j}-\hat{k}$. If the vector \vec{c} lies in the plane of \vec{a} and \vec{b} then x equals
A. -4
B. -2
C. 0
D. 1

Answer: B

- Watch Video Solution

9. The line passing through the points $(5,1, a)$ and $(3, b, 1)$ crosses the yz-plane at the point $\left(0, \frac{17}{2}, \frac{-13}{2}\right)$.Then
A. $a=8, b=2$
B. $a=2, b=8$
C. $a=4, b=6$

$$
\text { D. } a=6, b=4
$$

Answer: D

Watch Video Solution

