

India's Number 1 Education App

MATHS

BOOKS - NEW JYOTHI MATHS (TAMIL ENGLISH)

RELATIONS AND FUNCTIONS

Examples

1. If $P=\{4,3,2\}$ and $q=\{5\}$, form the sets $P\times Q$ and $Q\times P$ are these two products equal ?

- **2.** if $A \times B = \{(1,3)(1,5)(2,3)(2,5)(3,3)(3,5)\}$
- $I. \,$ find A and B
- ii. Find A imes A

3. Let A and B are two sets such that n(A) = 3 and n(B) = 2. If (x,1), (y,2) and

(z,1) are in $A \times B$, find A and B where x,y, z are distinct elements.

4. Let $A = \{1, 2\}, B = \{1, 2, 3, 4\}, c = \{5, 6\} \text{ and } d = \{5, 6, 7, 8\}$ verify that

 $A \times (B \cap C) = (A \times B) \cap (A \times C)$

5. Let $A = \{1, 2\}, B = \{1, 2, 3\}, c = \{5, 6\} \text{ and } d = \{5, 6, 7\}$ verify that

A imes C is a subset of B imes D

6. If $\left(\frac{x}{3}+1,y-\frac{5}{3}\right)=\left(\frac{7}{3},\frac{1}{3}\right)$, find the values of x and y.

8. If $A \times B = \{(a, x), (a, y), (b, x), (b, y)\}$. Find A and B.

9. The cartesian product $A \times A$ has 9 elements among which are found

(-1,0) and (0,1) . Find the set A and the remaining elements of A imes A

Watch Video Solution

10. Let $A = \{1, 2, 3\}$ and $B = \{a, b\}$

write the universal relation from A to B.

Watch Video Solution

11. Let $A = \{1, 2, 3\}$ and $B = \{a, b\}$

what is the number of non empty relations from A to B

Watch Video Solution

12. Let $A = \{2, 3\}, B = \{4, 6\}$. let R be relation on A defined by

 $R = \{(A, b), a \in A, b \in B, a \text{ divides b}\}\$

find $A \times B$ and the number of relations from A to B .

13. Let $A = \{2, 3\}, B = \{4, 6\}$. let R be relation on A defined by

$$R = \{(a, b), a \in A, b \in B, a \text{ divides b}\}$$

find the domain and range of R.

Watch Video Solution

14. Let $A=\{1,2,3,4\}$ and R be relation on A defined by

 $R = \{(a,b) : a,b, \in A,B \text{ is exactly divisible by a } \}$

write R in the roster form.

Watch Video Solution

15. Let $A=\{1,2,3,4,6\}$ and R be relation on A defined by

 $R = \{(a,b) : a,b, \in A,b \text{ is exactly divisible by a } \}$

write the domain and range of R

16. Let $A=\{1,2,3,4\}, B=\{1,4,5\}$ be two sets . If R is the relation

 $^{\prime\,\prime}<^{\,\prime\,\prime}$ from A to B , then

Write R in roster form

17. Let $A=\{1,2,3,4\}, B=\{1,4,5\}$ be two sets . If R is the relation

 $^{\prime\,\prime}<\,^{\prime\,\prime}$ from A to B , then

Write the domain and range of R.

18. Let $A=\{1,2,3,4\}, B=\{1,4,5\}$ be two sets . If R is the relation

 $^{\prime\prime}<^{\prime\prime}$ find cartestian equation and r inverse.

19. The figure shows a relation between the sets P and Q

write this relative (I) in set - builder form

(ii) in roster form

20. The figure shows a relation between the sets P and Q

write its domain and range

Watch Video Solution

21. The set A contains 3 elements and the number of relation from A to another set B is 64.

find the number of elements in B.

22. Let $A=\{1,2,3,\ldots...14\}$ R is a relation on A defined by

$$R = \{(x, y), 3x - y = 0, x, y \in A\}$$

write R in tabular form

23. Let $A=\{1,2,3,\ldots...14\}$ R is a relation on A defined by

$$R = \{(x,y), 3x - y = 0, x, y \in A\}$$

find the domain, and range or R.

24. consider the relation $R=\{(x,2x-1)\mid x\in A\},$ where

$$A = \{1, -1, 3\}$$

write R in roster form

25. consider the relation $R=\{(x,2x-1)\mid x\in A\},$ where

$$A = \{1, -1, 3\}$$

write the range of R .

26. Determine the domain and range of the relation R where $R=\{(x,x^3):x ext{ is a prime number less than 15}\}.$

27. Let A ={1,2,3,4,5,6} . Define a relation R from A to A by

$$R = \{(x, y) : y = x + 1\}$$

Depict this relation using an arrow diagram .

28. Let A ={1,2,3,4,5,6} . Define a relation R from A to A by

$$R = \{(x, y) : y = x + 1\}$$

write down the domain, and range of R.

29. Let A ={ 1,2,3,4,5} and R be the relation on A defined by

$$R=\left\{ (a,b\}\!:\!b=a^{2}
ight\}$$

write R in roster form

30. Let A ={ 1,2,3,4,5} and R be the relation on A defined by

$$R = \{(a, b\}: b = a^2\}$$

find the range of R.

31. The cartesian product $P \times P$ has 9 elements among which are found

$$(-a, 0)$$
 and $(0, a)$

A relation from P to P is defined as R $= \{(xy): x + y = 0\}$

How many relations are possible from P to P?

Watch Video Solution

32. The cartesian product P imes P has 9 elements among which are found

$$(-a, 0)$$
 and $(0, a)$

A relation from P to P is defined as $R = \{(xy) : x + y = 0\}$

How many relations are possible from P to P?

Watch Video Solution

33. The cartesian product $P \times P$ has 9 elements among which are found

(-a, 0) and (0, a)

A relation from P to P is defined as $R = \{(xy) : x + y = 0\}$

How many relations are possible from P to P?

34. A ={ 1,2,3,5} and B={ 4,6,9 } . Define a relation R from A to B by R

 $=\{(x,y)\}$: the difference between x and y is odd $,x\in A,y\in B\}$ write

R in roster form

relation roster form

35. The figure shows a relationship between the sets P and Q. Write the

36. The figure shows a relationship between the sets P and Q . Write the relation

in set-builder form

37. The figure shows a relationship between the sets P and Q . Write the relation

what is its domain and range?

38. Write the relation $R = \left\{ \left(x, x^3 \right) \! x \text{ is a prime number less than 10} \right\}$ in roster form

39. Examine each of the following relations given below and state in each case giving reasons whether it is a function ir not ?

$$R = \{(2, 1,), (3, 1), (4, 2)\}$$

40. Examine each of the following relations given below and state in each case giving reasons whether it is a function ir not ?

$$R = \{(2,2), (2,4), (3,3), (4,4)\}$$

41. Examine each of the following relations given below and state in each case giving reasons whether it is a function ir not ?

$$R = \{(1, 2, (2, 3), (3, 4), (4, 5), (5, 6), (6, 7)\}$$

42. Given $A = \{3, 4, 5\}b = \{2\}$

the number of relation from A to B is ____

 $A = \{3, 4, 5\}. \det er \min ethedoma \in \text{ and } ran \geq ofrelationRiadef \in e$

 $R = \{(x,y)| y=x-2\}$

Watch Video Solution

44. Given $A = \{3, 4, 5\}b = \{2\}$

Represent the above relation R using an arrow diagam

Watch Video Solution

the number of relation from A to B is ____

Watch Video Solution

45. Given $A = \{3, 4, 5\}b = \{2\}$

46. Let N be the set of natural numbers and the relation R be defined on

N such that $R = \{(x, y) : y = 2x, x, y \in N\}.$

what is the domain codomain and range of R? Is this relation a functions

Watch Video Solution

47. Consider the real function f(x) = 1 - 2x

find f(-1) and f(2)

Watch Video Solution

48. Consider the real function f(x) = 1 - 2x

find x if f(x) = -1

49. consider the real function of $f(x)=rac{x^2+2x+3}{x^2-8x+12}$ find the value of x if f (x) =1

50. consider the real function of $f(x)=rac{x^2+2x+3}{x^2-8x+12}$ find the domain of f .

51. Find the domain of the function $f(x)=rac{x^2+3x+5}{x^2-5x+4}$

52. Let $f = \{(1,1), (2,3), (0,-1), (-1,-3)\}$ be a function from Z to

Z defined by f(x) = ax + b for some integers a, b, determine a,b.

53. Consider the real function $f(x) = \frac{x+2}{x-2}$

find the domain and range of the function

Watch Video Solution

54. Consider the real function $f(x) = \frac{x+2}{x-2}$ prove that f(x) f(-x) +f(0) =0

55. find the domain and range of the real function $f(x) = \sqrt{9-x^2}$

Watch Video Solution

56. R is the set of real number . Define the function $f\!:\!R o R$ by

 $f(x) = x^2 + 3$

find f(-1) and f(2)

Watch Video Solution

57. R is the set of real number . Define the function $f\!:\!R o R$ by $f(x) = x^2 + 3$

Draw the graph of f(x)

Watch Video Solution

58. Draw the graph of the function $f:R \rightarrow R$ defined by

 $f(x)=x^3, x\in R$

find its domain and range

59. The function f is defined by

$$f(x) = \left\{ egin{array}{ll} 1-x & x < 0 \ 1 & x = 0 \ x+1 & x > 0 \end{array}
ight.$$

draw the graph of f(x).

Watch Video Solution

- **60.** Draw the graph of the function $f(x) = \left\{ egin{array}{ccc} 1+x & -1 \leq x \leq 0 \\ 1-x & 0 < x \leq 1 \end{array}
 ight.$
 - Watch Video Solution

61. Find the range of the function

$$f(x)=[2x],\frac{1}{3}\leq x\leq \frac{8}{3}$$

62. $f(x) = x^2 + 1, 0 \le x \le 2$

find the range of the function f.

find the range of the function f.

64.
$$f(x) = x^2 + 1, 0 \le x \le 2$$

find the range of the function f.

65. Write the equations for the x-and y-axes.

66. consider the functions

$$f(x) = \sqrt{x-2}, g(x) = \frac{x+1}{x^2-2x+1}$$

domain of f

Watch Video Solution

67. consider the functions

$$f(x)=\sqrt{x-2},$$
 $g(x)=rac{x+1}{x^2-2x+1}$ domain of g

Watch Video Solution

68. consider the functions

$$f(x) = \sqrt{x-2}, g(x) = rac{x+1}{x^2-2x+1}$$
 $(fg)(x)$

69, consider the functions

$$f(x) = \sqrt{x-2}, g(x) = rac{x+1}{x^2-2x+1}$$
 $(fg)(x)$

Watch Video Solution

70. Let R be the set of reals . Define a function $F\!:\!R o R$ by f (x)

$$=2x^{2}-1$$

$$\mathsf{find}\ \frac{f(\,-1)+f(1)}{2}$$

Watch Video Solution

71. Let R be the set of reals . Define a function $F\!:\!R o R$ by f (x)

$$=2x^{2}-1$$

find f(f(x))

72. Let R be the set of reals . Define a function $F\!:\!R o R$ by f (x)

$$=2x^{2}-1$$

draw the graph of f (x).

73. find the domain and range of the following real functions

$$f(x) = -|X|$$

74. The function 't' which maps temperature in degree Celsius into temperature in degree Fahrenheit is defined by $t(C)=rac{9C}{5}+32$

Find (i) t(0) (ii) t(28) (iii) t(-10) (iv) The value of C, when t(C)=212.

75. The function 't' which maps temperature in degree Celsius into temperature in degree Fahrenheit is defined by $t(C)=rac{9C}{\kappa}+32$

Find (i) t(0) (ii) t(28) (iii) t(-10) (iv) The value of C, when t(C)=212.

76. The function 't' which maps temperature in degree Celsius into temperature in degree Fahrenheit is defined by $t(C)=rac{9C}{5}+32$

Find (i) t(0) (ii) t(28) (iii) t(-10) (iv) The value of C, when t(C)=212.

77. Find the range of each of the following functions

_

f(x) =2-3x , $x\in R, x>0$

78. Find the range of each of the following functions $f(x) = x^2 + 2$, x is real number

f (x) = x,x is real number

80. The relation f is defined by
$$f(x)=\left\{egin{array}{cc} x^2 & 0\leq x\leq 3 \\ 3x & 3\leq x\leq 10 \end{array}
ight.$$
 The relation g is defined by $g(x)=\left\{egin{array}{cc} x^2 & 0\leq x\leq 2 \\ 3x & 2\leq x\leq 10 \end{array}
ight.$

79. Find the range of each of the following functions

Show that f is a function and g is not a function.

82. find the domain of the function
$$f(x) = rac{x^2 + 2x + 1}{x^2 - 8x + 12}$$

- **83.** find the domain and the range of the real functions f defined by f(x) = |x-1|
 - Watch Video Solution

- **84.** Let $\left\{\left(x,\frac{x^2}{1+x^2}\right)\colon x\in R\right\}$ be a function from R into R Determine the range of f .
 - **Natch Video Solution**

85. Let f,g :R o R defined , respectively by f(x) = x+1, g(x) = 2x-3, find f+ g,f-g and $\frac{f}{g}$

86. Let f be a subset of $Z \times Z$ defined by f ={ (ab ,a+b) : a,b in Z }` is f a function from z to Z ? Jusity your answer

87. Let R be relation from N into N defined by R $=\left\{(a,b)\colon a,b\in N,\,a=b^2\right\} \ \text{are the following true ? Justify your}$ answer in each case .

$$(a,a)\in R$$
 for all $a\in N$

88. Let R be relation from N into N defined by F $=\{(a,b):a,b\in N,a=b^2\}$ are the following true ? Justify you

 $=ig\{(a,b)\!:\!a,b\in N, a=b^2ig\}$ are the following true ? Justify your answer in each case for all a,b. (a,b) $\in R$ implies (b,a) $\in R$

89. Let R be relation from N into N defined by R $= \left\{(a,b)\colon a,b\in N, a=b^2\right\} \text{ are the following true ? Justify your}$ answer in each case .

 $A = \{1, 2, 3, 4\}, B = \{1, 5, 9, 11, 15, 16\} \text{ and } f = \{(1, 5), (2, 9), (3, 1), (4, 9), (4$

Let

$$(a,b) \, ext{ and } \, (b,c) \in R ext{ for all } a,b,c, \, \in N ext{ implies (a,c) } \in \, \mathsf{R}$$

are the following true

f is a relation from A to B

90.

91. Let $A = \{1, 2, 3, 4\}, B = \{1, 5, 9, 11, 15, 16\} \text{ and } f = \{(1, 5), (2, 9), (3, 1), (4, 9), (4$

f is a function from A to B

are the following true

Exercise

1.
$$A = \{1, 2, 3, 4\}, B = \{3, 4, 5\}$$
 then $(A \times B) \cap (B \times A) =$

B. $\{(2,3), (2,4), (3,3), (3,4), (4,3), (4,4)\}$

D. {(3,3),(4,4)}

 $C. \{(2,3),(3,3),(4,3)\}$

A. $\{(3,3),(3,4),(4,3),(4,4)\}$

Answer: A

Watch Video Solution

2. A = { set of all multiples of 3 less than 20 }

B = { set of the multiples of 2 less than 18 }

 $n((A imes B) \cap (B imes A))$ is

- A. 9
- B. 2
- C. 16
- D. 25

Answer: B

3. A is the set of all prime number less than 10. then number of relations in A is

A. 14464

B. 28928

C. 65536

D. 115712

Answer: C

Watch Video Solution

4. Let X ={ 1,2,3,4,5} and Y= {1,3,5,7,9} which of the following is not a relation from X to Y?

A. R_1 ={(1,3),(4,5),(5,7)}

B. $R_2 = \{(1,1),(2,1),(3,3),(4,3),(5,5)\}$

C. $R_3 = \{(1,1),(1,3),(3,5),(3,7),(5,7)\}$

Answer: D

Watch Video Solution

- **5.** R is a relation on the set $A=\{1,2,3,4,6,7,8,9\}$ given by xRy and y=3x $\dot{}$, then R=
 - A. $\{(3,1), (6,2), (8,2), (9,3)\}$
 - B. $\{(13, 1), (6, 2), (9, 3)\}$
 - C. $\{(3, 1), (2, 6)(3, 9)\}$
 - D. none of these

Answer: D

6. Let A and B be two sets having m and n elements respectively . Then
total number of functions from A to B is
A. mn
$B.2^{mn}$
$C.m^n$
D. n^m
Answer: D
Watch Video Solution
Watch Video Solution
Watch Video Solution
7. Number of mappings from an empty set to a non empty set with n
7. Number of mappings from an empty set to a non empty set with n
7. Number of mappings from an empty set to a non empty set with n
7. Number of mappings from an empty set to a non empty set with n elements

Answer: C

Watch Video Solution

8. If N is the set of all natural numbers then which of the following is true

A.
$$f(x)=3x-2$$
 does not map N to N

B.
$$f(x) = x^2 + 1$$
 does not map N to N

$$\mathsf{C.}\,x o x^2 - 3x + 1$$
 does not map N to N

D.
$$x o rac{x(x+1)}{2}$$
 does not map N to N

Answer: C

9.
$$g=\{(1,1),(2,3),(3,5),(4,7)\}$$
 is a function such that $g(x)=ax+b$ then a+ b

B. 1

C. 1

D.-2

Answer: B

Watch Video Solution

10. Let
$$f = \{(1,1), (2,3), (0,-1), (-1,-3)\}$$
 be a relation from Z to

Z defined by f(x) = ax-b then (a,b) =

A.
$$(1, -2)$$

B. (2, -1)

C. (2,1)

Watch Video Solution

- **11.** The domain of the function $f(x) = \sqrt{x^2 + 1}$ is
 - A. R
 - B. $[0, \infty]$
 - $C.(0,\infty)$
 - D. Z

Answer: A

Watch Video Solution

12. The domain of $f(x) = \sqrt{16 - x^2}$ is

A.
$$(0,\infty)$$
B. $(1,\infty)$
C. $[1,\infty)$
D. $[2,\infty]$

Answer: C

Watch Video Solution

Watch Video Solution

A. (-4, 4)

B. [-4, 4]

 $\mathsf{C.}\,x \leq 4$

D. $x \geq 4$

Answer: B

13. The range of $f(x)=x^2+1$ is

14. The domain of
$$f(x)=rac{1}{x^2+1}$$
 is

A.
$$R-\{0\}$$

B.
$$R - \{1, -1\}$$

$$\mathsf{D}.\,N$$

Watch Video Solution

15. The domain of $\sqrt{\frac{1}{1-x^2}}$ is

A.
$$(-1, 1)$$

$$\mathsf{B.}\,[\,-1,1]$$

$$\mathsf{C}.\left(1,\infty
ight)$$

D.
$$(-\infty, -1)$$

Answer: A

Watch Video Solution

- **16.** The range of $f(x)=rac{x-3}{3-x}, x
 eq 3$ is
 - A. {1}
 - B. {-1}
 - C. {1,2}
 - D. {1,-1}

Answer: B

Watch Video Solution

17. F :R o R defined by $f(x) = rac{1}{2x^2 + 5}$ the range of F is

A. A.
$$(5, \infty)$$

$$B. B. \left[0, \frac{1}{5}\right]$$

$$\text{C. C.}\left[\frac{1}{5}, 5\right]$$

D. D. none of these

Answer: D

Watch Video Solution

18. The domain of f(x)
$$= \frac{1}{\sqrt{|X|-x}}$$
 is

A. The set of all non zero integers

B. The set of all negative real numbers

C. The set of all positive real number

D. the set of all rational numbers

Answer: B

19. The domain of
$$f(x)=rac{\sqrt{17-15x-2x^2}}{x+3}$$

is

A.
$$\left[\frac{-17}{2}, 1\right]$$

$$\mathsf{B.}\left[\frac{-17}{2},1\right]-\{\,-3\}$$

C.
$$(-3, 1]$$

D.
$$(-\infty,0)$$

Answer: C

Watch Video Solution

20. If for a function $\mathsf{f}:R o Rf(x+y)=F(x)+f(y)$ for all x and y

then f(0) is

A.t

B. 0

C. any real number

D. - 1

Answer: B

Watch Video Solution

21. if
$$f(x)=rac{x-1}{x+1}$$
 the f(2x) is

A.
$$rac{f(x)+1}{f(x)+3}$$

$$\mathsf{B.} \ \frac{3f(x)+1}{f(x)+3}$$

C.
$$rac{f(x)+3}{f(x)+1}$$

D.
$$\frac{f(x)+3}{3f(x)+1}$$

Answer: B

22. Let f(x) = |x-1|, then which of the following is true

A.
$$fig(x^2ig) = \left[f(x)
ight]^2$$

$$\mathsf{B.}\, f(|x|) = |f(x)|$$

$$\mathsf{C.}\, f(x+y) = f(x) + f(y)$$

D. none of these

Answer: D

Watch Video Solution

23. The domain of the function

$$f(x)=rac{1}{\sqrt{(a-x)(x-b)},\,b>a}$$
 is

A.
$$a \leq x < b$$

$$\operatorname{B.} a \leq x \leq b$$

$$\mathsf{C.}\, a < x \leq b$$

D.
$$a < x < b$$

Answer: D

Watch Video Solution

- **24.** the domain of $y=\dfrac{1}{\sqrt{|x|-x}}$ is
 - A. $[0, \infty)$
 - B. $(-\infty,0)$
 - C. $(-\infty, 0]$
 - $D. [1, \infty)$

Answer: B

25. IF the domain of the function $f(x) = x^2 - 6x + 7$ is $(-\infty, \infty)$ then range of the function is

A.
$$(-\infty,\infty)$$

B.
$$[\,-2,\infty)$$

C.
$$(-2, 3)$$

D.
$$(-\infty, -2)$$

Answer: B

Watch Video Solution

Questions From Competitive Exams

1. If
$$x
eq 1$$
 and $f(x) = rac{x+1}{x-1}$ is a real function then fff (2) is

- A. 1
- B. 2

C. 3

D. 4

Answer: C

Watch Video Solution

- **2.** If A = $\left\{x\colon x^2-5x+6=0
 ight\}$, $B=\{2,4\}$, C={4,5}, then $A imes(B\cap C)$ is
 - A. $\{(2,4),(3,4)\}$
 - B. $\{(4, 2), (4, 3)\}$
 - C. $\{(2,4), (3,4), (4,4)\}$
 - D. `{(2,2),(3,3),(4,4),(5,5)}

Answer: A

3. Let
$$f\!\left(x+rac{1}{x}
ight)=x^2+rac{1}{x^2}, x
eq 0, ext{ then } f(x)$$
=?

A.
$$x^2$$

B.
$$x^2-1$$

C.
$$x^2-2$$

D.
$$x^2 + 1$$

sets A imes B and B imes A are

4. If two sets A and B are having 99 elements in common to each of the

- A. 2^{99}
- B. 99^2
- **C**. 18

Answer: B

Watch Video Solution

5. The function f Satisfies the functional equation

$$3f(x)+2figg(rac{x+59}{x-1}igg)=10x+30$$
 for all real $x
eq 1$. The value of f (7) is

A. 8

B. 4

C. - 8

D. 11

Answer: B

6. If
$$n(A)=4,$$
 $n(B)=3,$ $n(A imes B imes C)=24$ then , n(C) =

A. 288

B. 1

C. 12

D. 2

Answer: D

Watch Video Solution

7. IF [x] denotes the greatest integer $\leq x$ then

$$\left\lceil \frac{2}{3} \right\rceil + \left\lceil \frac{2}{3} + \frac{1}{99} \right\rceil + \left\lceil \frac{2}{3} + \frac{2}{99} \right\rceil + \dots \left\lceil \frac{2}{3} + \frac{98}{99} \right\rceil =$$

A. 99

B. 98

C. 66

Watch Video Solution

- **8.** suppose the number of elements in set A is P , the number of elements in set B is q and the number of elements in A $\, imes\,$ B is 7 . Then p^2+q^2 =
 - A. 42
 - B. 49
 - C. 50
 - D. 51

Answer: C

Let Z denote the set of all integers and $A = \left\{ (a,b)\!:\! a^2 + 3b^2 = 28, a,b \in Z
ight\}$ and $B = \left\{ (a,b)\!:\! a > b, \ \in Z
ight\}$.

Then the number of elements in $A \cap B$ is

A. 2

9.

C. 4

B. 3

D. 6

Answer: D

Watch Video Solution

10. IF f(x) $=2x^2+bx+c$ and f(0) =3 and f (2) =1, then f(1) is equal to

A. 1

B. 2

C. 0

Watch Video Solution

- 11. if f(x) =ax +b and g(x) = cx +d ,thenf[g(x)]-g[f(x)] is equivalent to
 - A. f(a) g(c)
 - $\mathsf{B.}\, f(c) + g(a)$
 - $\mathsf{C.}\, f(d) + g(b)$
 - D. f(d) g(b)

Answer: D

12. If f (x) satisfies the relation $2f(x)+f(1-x)=x^2$ for all real x, then

$$f(x)$$
 is

A.
$$rac{x^2+2x-1}{6}$$

$$\mathsf{B.}\,\frac{x^2+2x-1}{3}$$

c.
$$\frac{x^2 + 4x - 1}{3}$$

D. $\frac{x^2 - 3x + 1}{6}$

Answer: B

Watch Video Solution

13. The range of the function

$$f(x)=rac{x^2-x+1}{x^2+x+1}$$
 where $x\in R$, is

A.
$$(-\infty,3]$$

$$B.\,(\,-\infty,\infty)$$

$$\mathsf{C}.\left[3,\infty
ight)$$

D.
$$\left[\frac{1}{3}, 3\right]$$

Answer: D

Watch Video Solution

14. If a function f satisfies f(f(x)) = x + 1 for all real values of x and if $f(0) = \frac{1}{2}$ then f(1) is equal to

A.
$$\frac{1}{2}$$

$$\mathsf{C.}\,\frac{3}{2}$$

D. 2

Answer: C

15. If f is a real valued function such
$$f(x+y)=f(x)+f(y) ext{ and } f(1)=5, ext{ then the value of f(100) is}$$

16. Let $f(x)=rac{lpha x^2}{x+1}, x
eq -1$ the value of lpha for which

that

15.

D.500

Watch Video Solution

 $f(a) = a, (a \neq 0)$ is

A.
$$1 - \frac{1}{a}$$

B.
$$\frac{1}{a}$$

$$\mathsf{C.}\,1+\frac{1}{a}$$

D.
$$\frac{1}{a} - 1$$

Watch Video Solution

- **17.** Let $A=\{x,y,z\}$ and $b=\{a,b,c,d\}$. which one of the following is not relation from A to B ?
 - A. $\{(x,a),(x,c)\}$
 - B. $\{(y,c),(y,d)\}$
 - $\mathsf{C}.\left\{(z,a),(z,d)\right\}$
 - D. $\{(z,b), (y,b), (a,d)\}$

Answer: D

18. The domain of the function f (x) $=\frac{1}{\sqrt{9-x^2}}$ is

A.
$$-3 \leq x \leq 3$$

$$\mathrm{B.}-3 < x < 3$$

$$\mathsf{C.} - 9 \leq x \leq 9$$

D.
$$-9 < x < 9$$

Answer: B

19. If n (A) =5 and n(B) =7 , then the number of relations on A imes B is

A.
$$2^{35}$$

$$\mathsf{B.}\ 2^{49}$$

$$\mathsf{C.}\ 2^{25}$$

D.
$$2^{35 \times 35}$$

Answer: A

Watch Video Solution

20. Let $\phi(x)=rac{b(x-a)}{b-a}+rac{a(x-b)}{a-b}$, where $x\in R$ and a and b are fixed real numbers with a
eq b then $\phi(a+b)$ is equal to

A. $\phi(ab)$

B. $\phi(-ab)$

 $\mathsf{C}.\,\phi(a)+\phi(b)$

D. $\phi(a-b)$

Answer: C

Watch Video Solution

21. The range of the functions $f(x)=rac{x^2+8}{x^2+4}x\in R$ is

C. [1, 2]D. $\left\lceil \frac{3}{2}, 2 \right\rceil$

A. $\left\lceil -1, \frac{3}{2} \right\rceil$

B.(1,2]

Answer: B

Watch Video Solution

22. Let f(x) = [x], where [x] denotes the greater integer less than or equal

to x. if $a=\sqrt{2011^2+2012}$ then the value of f (a) is equal to

A. 2010

C. 2012

D. 2013

Answer: B

23. In the given figure the angle at A is $\frac{\pi}{2}$ then the graph represents the function

A.
$$y = |2x - 4| + 4$$

B.
$$y = -|X| + 6$$

C.
$$y = |4x - 6| + 2$$

D.
$$y=|x-2|+4$$

24. The image of the interval $[\,-1,3]$ under the mapping $f\!:\!R o R$ given by $f(x) = 4x^3 - 12x$ is

A.
$$[8, 72]$$

B. [0, 72]

C.[-8,72]

D. [0, 8]

Answer: A

Watch Video Solution

25. the domain of the function

$$f(x) = \frac{\log(x+3)}{x^2+3x+2}$$
 is

A.
$$R - \{-1, -2\}$$

D. $(-3, \infty) - \{-1, -2\}$

B. $R - \{-1, -2.0\}$

C. $(-3, -1) \cup (-1, \infty)$

Answer: D

26. The number of function that can be defined from the set

 $A=\{a,b,c,d\}$ into the set $B=\{1,2,3\}$ is equal to

A. 12

B. 24

C. 64

D. 81

Answer: D

27. The range of the function
$$f(x) = x^2 + 2x + 2$$
 is

A.
$$(1,\infty)$$

B.
$$(2,\infty)$$

$$\mathsf{C}.\left[1,\infty
ight)$$

D.
$$(-\infty, \infty)$$

28. IF
$$f(x)=rac{x+2}{3x-1}$$
 , then $f(f(x))$ is

$$\mathsf{B.}-x$$

$$\operatorname{C.}\frac{1}{x}$$

$$D.-\frac{1}{x}$$

Answer: A

Watch Video Solution

- **29.** The function f (x) $= \log \left(x + \sqrt{x^2 + 1} \right)$ is
 - A. an odd function
 - B. a periodic function
 - C. neither an even nor an odd function
 - D. an even function

Answer: A

Watch Video Solution

30. Domain of definitation of the function

$$f(X)=rac{3}{4-x^2}+\log_{10}ig(x^3-xig)$$
 is

B.
$$(1,2)\cup(2,\infty)$$

A. $(-1,0) \cup (1,2)$

C.
$$(-1,0)\cup(1,2)\cup(2,\infty)$$

D.(1,2)

Answer: C

Watch Video Solution

31. If F :R ightarrow R satisfies f(x+y)=f(x)+f(y) for all $x,y\in R$ and f (1) =7, then $\sum_{r=1}^{n} f(R)$ is

A.
$$\frac{7(n+1)}{2}$$

B. (7n(n + 1)

$$\mathsf{C.}\,\frac{7n(n+1)}{2}$$

D. $\frac{7n}{2}$

Answer: C

32. The graph of the function y=f(x) is symmetrical about the line x=2 then

$$A. f(x) = f(-x)$$

B.
$$f(2+x)=f(2-x)$$

$$\mathsf{C.}\, f(x+2) = f(x-2)$$

$$D. f(x) = -f(-x)$$

Answer: C

Watch Video Solution

33. A real valued function f (x) satisfies the functional equation f (x-y)= f(x)f(y)-f(a-x)f(a+y) where a is a given constant and f (0) =1, f(2a -x) is equal to

A.
$$f(x)$$

$$\mathsf{B.}-f(x)$$

$$\mathsf{C}.\,f(\,-x)$$

D.
$$f(a) + f(a-x)$$

Answer: B

