©゙doubtnut

India's Number 1 Education App

MATHS

BOOKS - NEW JYOTHI MATHS (TAMIL ENGLISH)

SEQUENCES AND SERIES

Examples

1. If $a_{n}=\frac{n-3}{4}$, then find a_{11}, a_{15} and hence find $\frac{a_{15}}{a_{11}}$.

- Watch Video Solution

2. The Fibonacci sequence is defined by $1=a_{1}=a_{2}$ and $a_{n}=a_{n-1}+a_{n-2}, n>2$. Find $\frac{a_{n+1}}{a_{n}}$, for $n=1,2,3,4,5$,
3. Consider an A.P whose $n^{\text {th }}$ term is $5 n+1$. Find its first two terms

- Watch Video Solution

4. Find the sum of multiples of 8 between 300 and 500 .

- Watch Video Solution

5. How many terms of the A.P. $-6,-\frac{11}{2},-5, \ldots$ are needed to give the sum -25 ?

- Watch Video Solution

6. In an A.P, the first term is 5 and the sum of the first two terms is $\frac{15}{2}$.
(i) Find the common difference
7. Show that the sum of $(m+n)^{t h}$ and $(m-n)^{t h}$ term of an A.P is equal to twice the $m^{\text {th }}$ term.

- Watch Video Solution

8. The difference between any two consecutive interior angles of a polygon is 5°.If the smallest angle is 120°, find the number of the sides of the polygon.

- Watch Video Solution

9. In an A.P. if the $m^{t h}$ term is n and the $n^{t h}$ term is m, where $m \neq n$, find the $p^{t h}$ term.
10. In an A.P, the first term is 2 and the sum of the first two terms is 5 .
(i) Find the common difference

(D) Watch Video Solution

11. Write the sum of p terms of an A.P, given that the first term is ' a ' and the common difference ' d '.

- Watch Video Solution

12. The ratio of the sum of m and n terms of an A.P. is $m^{2}: n^{2}$. Show that the ratio of $m^{\text {th }}$ and $n^{\text {th }}$ term is $2 m-1: 2 n-1$.

- Watch Video Solution

13. If $a\left(\frac{1}{b}+\frac{1}{c}\right), b\left(\frac{1}{c}+\frac{1}{a}\right), c\left(\frac{1}{a}+\frac{1}{b}\right)$ are in A.P., prove that a, b, c , are in A.P.

- Watch Video Solution

14. The income of a person is Rs. $3,00,000$ in the first year and he receives an increases of Rs. 10,000 to his income per year for the next 19 years. Find the total amount he received in 20 years.

- Watch Video Solution

15. If $\frac{a^{n}+b^{n}}{a^{n-1}+b^{n-1}}$ is the A.M. between a and b , then find the value of n.

- Watch Video Solution

16. Insert 6 Arithmetic Means between 3 and 24.

- Watch Video Solution

17. In an A.P., if $p^{t h}$ term is $\frac{1}{q}$ and $q^{t h}$ term is $\frac{1}{p}$, prove that the sum of first $p q$ terms is $\frac{1}{2}(p q+1)$, where $p \neq q$

- View Text Solution

18. If the sum of n terms of an A.P is $\left(p n+q n^{2}\right)$, where p and q are constants, find the common difference.

- Watch Video Solution

19. The sums of n terms of two arithmetic progressions are in the ratio $5 n+4: 9 n+6$. Find the ratio of their $18^{\text {th }}$ terms.

- Watch Video Solution

20. Sum of the first p, q and r terms of an A.P. are a, b and c, respectively.

Prove that $\frac{a}{p}(q-r)+\frac{b}{q}(r-p)+\frac{c}{r}(p-q)=0$
21. If the sum of n terms of an A.P. is $3 n^{2}+5 n$ and its $m^{\text {th }}$ term is 164 , find the value of m.

- Watch Video Solution

22. Between 1 and 31 , m numbers have been inserted in such a way that the resulting sequence is an A. P. and the ratio of $7^{\text {th }}$ and $(m-1)^{\text {th }}$ numbers is $5: 9$. Find the value of m.

- Watch Video Solution

23. Given the sum of two consecutive terms in an A.P is 21 and their product is 90 .

Find the common difference.
24. In a G.P., the $3^{\text {rd }}$ term is 24 and the $6^{\text {th }}$ term is 192 . Find the $10^{\text {th }}$ term.

- View Text Solution

25. The $n^{\text {th }}$ term of the G.P. $5, \frac{-5}{2}, \frac{5}{4}, \frac{-5}{8}, \ldots$ is $\frac{5}{1024}$. Find the value of n.

- View Text Solution

26. If the $3^{r d}, 8^{\text {th }}$ and $13^{\text {th }}$ terms of a G.P are x, y, z respectively, then prove that x, y, z are in G.p..

(D) Watch Video Solution

- Watch Video Solution

28. Consider the G.P. $3, \frac{3}{2}, \frac{3}{4}, \ldots$
(i) Find the common ratio of the G.P.
(ii) How many terms of the above G.P. are needed to give the sum $\frac{3069}{512}$?.

- View Text Solution

29. Find the sum of first 10 terms of a G.P whose $3^{r d}$ term is 12 and the $8^{\text {th }}$ term is 384.

- Watch Video Solution

30. The sum of first three terms of a G.P. is $\frac{13}{12}$ and their product is -1 .

Find the common ratio and the terms.
31. The sum of the first three terms of a G.P. is 16 and the sum of the next three terms is 128.
(i) Determine the first term and common ratio.
(ii) Find also the sum of n terms of the G.P.

Watch Video Solution
32. Find the sum of the sequence $7,77,777,7777, \ldots$ to n terms.

- Watch Video Solution

33. Find the sum of the following series up to n terms:
(i) $5+55+555+\ldots \ldots$
(ii) $.6+.66 .+.666$
$+$
34. If a, b, c are in G.P and $a^{\frac{1}{x}}=b^{\frac{1}{y}}=c^{\frac{1}{z}}$, prove that x, y, z are in A.P.

Watch Video Solution

35. Insert three Geometric means between 1 and 256.

- Watch Video Solution

36. If A.M and G.M between two positive numbers a and b are 10 and 8 respectively, find the numbers.

- View Text Solution

37. Find the $20^{\text {th }}$ and $n^{\text {th }}$ terms of the G.P. $\frac{5}{2}, \frac{5}{2}, \frac{5}{8}, \ldots$.

- View Text Solution

38. The $5^{\text {th }}, 8^{\text {th }}$ and $11^{\text {th }}$ terms of a G.P. are p, q and s, respectively. Show that $q^{2}=p s$.

- View Text Solution

39. Evaluate $\sum_{k-1}^{11}\left(2+3^{k}\right)$

- Watch Video Solution

40. How many terms of G.P. $3,3^{2}, 3^{3}, \ldots$ are needed to give the sum 120 ?

(D) Watch Video Solution

41. If the 4th, 10th and 16th terms of a G.P. are x, y and z, respectively. Prove that $\mathrm{x}, \mathrm{y}, \mathrm{z}$ are in GP.

- Watch Video Solution

42. Find the sum to n terms of the sequence, $8,88,888,8888 \ldots$...

- Watch Video Solution

43. Find the sum of the products of the corresponding terms of the sequences $2,4,8,16,32$ and $128,32,8,2 \frac{1}{2}$

- Watch Video Solution

44. Show that the products of the corresponding terms of the sequences a, ar, $a r^{2}, \ldots a r^{n-1}$ and $\mathrm{A}, \mathrm{AR}, \mathrm{AR}^{22}, \ldots \mathrm{AR}^{n-1}$ form a G.P, and find the common ratio.

- Watch Video Solution

45. Find four numbers forming a geometric progression in which the third term is greater than the first term by 9 , and the second term is
greater than the $4^{\text {th }}$ by 18.

(D) Watch Video Solution

46. If the $p^{\text {th }}, q^{\text {th }}$ and $r^{\text {th }}$ terms of a G.P. are a, b and c , respectively. Prove that $a^{q-r} b^{r-p} c^{P-q}=1$.

- Watch Video Solution

47. If the first and the $n^{\text {th }}$ term of a G.P. are a and b, respectively, and if P is the product of n terms, prove that $P^{2}=(a b)^{n}$.

- Watch Video Solution

48. Show that the ratio of the sum of first n terms of a G.P. to the sum of terms from $(n+1)^{\text {th }}$ to $(2 n)^{\text {th }}$ term is $\frac{1}{r^{n}}$.
49. If a, b, c and d are in G.P. show that $\left(a^{2}+b^{2}+c^{2}\right)\left(b^{2}+c^{2}+d^{2}\right)=(a b+b c+c d)^{2}$

- Watch Video Solution

50. Find the value of n so that $\frac{a^{n+1}+b^{n+1}}{a^{n}+b^{n}}$ may be the geometric mean between a and b.

- Watch Video Solution

51. If A and G be A.M. and G.M., respectively between two positive numbers, prove that the numbers are $A \pm \sqrt{(A+G)(A-G)}$.

- Watch Video Solution

52. The number of bacteria in a certain culture doubles every hour. If there were 30 bacteria present in the culture originally, how many bacteria will be present at the end of $2^{\text {nd }}$ hour, $4^{\text {th }}$ hour and $n^{\text {th }}$ hour ?

- Watch Video Solution

53. If A.M. and G.M. of roots of a quadratic equation are 8 and 5, respectively, then obtain the quadratic equation.

- Watch Video Solution

54. Find the $20^{\text {th }}$ term of the series $2 \times 4+4 \times 6+6 \times 8+\ldots+n$ terms.

- Watch Video Solution

55. Find the sum to n terms of each of the series in
$3 \times 1^{2}+5 \times 2^{2}+7 \times 3^{2}+\ldots \ldots \ldots$.

(D) Watch Video Solution

56. Find the sum to n terms of the series in whose $n^{\text {th }}$ terms is given by
$n(n+1)(n+4)$

- Watch Video Solution

57. If the sum of three numbers in A.P., is 24 and their product is 440 , find the numbers.

- Watch Video Solution

58. Let sum of $n, 2 n, 3 n$, terms of an A.P are S_{1}, S_{2}, S_{3} respectively. Prove that $S_{3}=3\left(S_{2}-S_{1}\right)$.

- Watch Video Solution

59. Find the sum of integers from 1 to 100 that are divisible by 2 or 5 .

- Watch Video Solution

60. Find the sum of all two digit numbers which when divided by 4 , yields 1 as remainder.

- Watch Video Solution

61. If f is a function satisfying $\mathrm{f}(\mathrm{x}+\mathrm{y})=\mathrm{f}(\mathrm{x}) \mathrm{f}(\mathrm{y})$ for all $x, y \in N$ such that $f(1)=3$ and $\sum_{x=1}^{n} f(x)=120$, find the value of n.

- Watch Video Solution

62. The sum of some terms of G.P. is 315 whose first term and the common ratio are 5 and 2 , respectively. Find the last term and the number of terms.

- Watch Video Solution

63. The sum of three numbers in G.P. is 56 . If we subtract $1,7,21$ from these numbers in that order, we obtain an arithmetic progression. Find the numbers.

- Watch Video Solution

64. The sum of the first four terms of an A.P. is 56 . The sum of the last four terms is 112 . If its first term is 11 , then find the number of terms.

- Watch Video Solution

65. If $\frac{a+b x}{a-b x}=\frac{b-c x}{b-c x}=\frac{c+d x}{c-d x}(x \neq 0)$ then show that $\mathrm{a}, \mathrm{b}, \mathrm{c}$ and d are in G.P.

- Watch Video Solution

66. Let S be the sum, P the product and R the sum of reciprocals of n terms in a G.P. Prove that $P^{2} R^{n}=S^{n}$.

(D) Watch Video Solution

67. The $p^{\text {th }}, q^{\text {th }}$ and $r^{\text {th }}$ terms of an A.P. are a, b, c, respectively. Show that $(q-r) a+(r-p) b+(q-p) c=0$

- Watch Video Solution

68. If $\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}$ are in G.P, prove that $\left(a^{n}+b^{n}\right),\left(b^{n}+c^{n}\right),\left(c^{n}+d^{n}\right)$ are in G.P.

- Watch Video Solution

69. Given $\tan \mathrm{A}$ and $\tan \mathrm{B}$ are the roots of $x^{2}-a x+b=0$. The value of $\sin ^{2}(A+B)$ is

- Watch Video Solution

70. The ratio of the A.M. and G.M. of two positive numbers a and b, is m
$:$ n. Show that $a: b=\left(m+\sqrt{m^{2}-n^{2}}\right):\left(m-\sqrt{m^{2}-n^{2}}\right)$.

- Watch Video Solution

71. If $\mathrm{a}, \mathrm{b}, \mathrm{c}$ are in A.P., $\mathrm{b}, \mathrm{c}, \mathrm{d}$ are in G.P. and $\frac{1}{c}, \frac{1}{d}, \frac{1}{e}$ are in A.P. prove that a,c,e are in GP.

(D) Watch Video Solution

72. Find the sum of the first n terms of the series: $3+7+13+21+31+$ \qquad

- Watch Video Solution

73. If S_{1}, S_{2}, S_{3} are the sum of first n natural numbers, their squares and their cubes, respectively, show that $9 S_{2}^{2}=S_{3}\left(1+8 S_{1}\right)$

- Watch Video Solution

74. Find the sum of the following series up to n terms:
$\frac{1^{3}}{1}+\frac{1^{3}+2^{3}}{1+3}+\frac{1^{3}+2^{3}+3^{3}}{1+3+5}+\ldots \ldots$.

- Watch Video Solution

75. Show that $\frac{1 \times 2^{2}+2 \times 3^{2}+\ldots+n \times(n+1)^{2}}{1^{2} \times 2+2^{2} \times 3+\ldots+n^{2} \times(n+1)}=\frac{3 n+5}{3 n+1}$
76. A farmer buys a used tractor for Rs 12000 . He pays Rs 6000 cash and agrees to pay the balance in annual instalments of Rs 500 plus 12% interest on the unpaid amount. How much will the tractor cost him?

- Watch Video Solution

77. Shamshad Ali buys a scootor for Rs 22000 . He pays Rs 4000 cash and agrees to pay the balance in annual instalment of Rs 1000 plus 10% interest on the unpaid amount. How much will the scootor cost him?

- Watch Video Solution

78. A person writes a letter to four of his friends. He asks each one of them to copy the letter and mail to four different persons with instruction that they move the chain similarly. Assuming that the chain
is not broken and that it costs 50 paise to mail one letter. Find the amount spent on the postage when 8th set of letter is mailed.

- Watch Video Solution

79. A man deposited Rs 10000 in a bank at the rate of 5% simple interest annually. Find the amount in $15^{\text {th }}$ year since he deposited the amount and also calculate the total amount after 20 years.

- Watch Video Solution

80. A manufacturer reckons that the value of a machine, which costs him Rs. 15625 ,will depreciate each year by 20%. Find the estimated value at the end of 5 years.

- Watch Video Solution

81. 150 workers were engaged to finish a piece of work in a certain number of days. Four workers dropped from the work on the second day. Four workers dropped on third day and so on. It took 8 more days to finish the work. Find the number of days in which the work was completed. [Let the no.of days to finish the work is 'r' then $150 x=\frac{x+8}{2}[2 \times 150+(x+8-1)(-4)]$

- Watch Video Solution

82. For an H.P. the $3^{\text {rd }}$ term and $14^{\text {th }}$ terms are respectively $\frac{6}{7}$ and $\frac{1}{3}$.
(i) Find the first term of H.P.
(ii) Hence find the $10^{\text {th }}$ terms of H.P.

- Watch Video Solution

83. The A.M. between two numbers is 27 and H.M. is 12. Find G.M.
84. Two A.M's A_{1} and A_{2}, two G.M's G_{1} and G_{2} and two H.M's H_{1} and H_{2} are inserted between two numbers a and b.
(i) Express $A_{1}+A_{2}$ in terms of a and b.
(ii) Express $G_{1} G_{2}$ in terms of a and b.
(iii) Express $\frac{1}{H_{1}}+\frac{1}{H_{2}} 1$ in terms of a and b.
(iv) Show that $\frac{1}{H_{1}}+\frac{1}{h_{2}}=\frac{A_{1}+A_{2}}{G_{1} G_{2}}$

(D) Watch Video Solution

Exercise

1. $a_{1}, a_{2}, a_{3} \ldots$. Is an A.P. which of the following is true
A. 1. $a_{1}+a_{2}=a_{2}+a_{4}$
B. 2. $a_{2}+a_{8}=a_{4}+a_{6}$
C. $3 . a_{2}=2 a_{4}$
D. 4. $a_{1}<a_{2}<a_{3} \ldots$.

Answer: B

- Watch Video Solution

2. The sum to n terms of the sequence $5,11,17,23, \ldots$. is 320 Then
$n=$.
A. 9
B. 10
C. 11
D. 12

Answer: B

3. The $29^{\text {th }}$ term of an A.P is twice its $19^{\text {th }}$ term. Its $9^{\text {th }}$ term is equal to
A. $5^{\text {th }}$ term
B. $7^{\text {th }}$ term
C. $11^{\text {th }}$ term
D. Zero

Answer: D

- Watch Video Solution

4. The sum to n terms of a series is $\frac{n(n+1)(n+2)}{3}$. The $12^{\text {th }}$ terms is
A. 182
B. 122
C. 156
D. 1092

Answer: D

- Watch Video Solution

5. the sum of the first n terms of a sequence is $a n^{2}+b n$. Then the sum of the next n terms is
A. $3 a n^{2}+2^{b n}$
B. $2 a n^{2}+b n$
C. $3 a n^{2}+b n$
D. $4 a n^{2}+2^{b n}$

Answer: C

Watch Video Solution
6. In a certain AP, 5times the $5^{\text {th }}$ term is equal to 8 times the $8^{\text {th }}$ term. Its $13^{\text {th }}$ term is
A. 0
B. -1
C. -12
D. -13

Answer: A

7. The sum of the 9 AM's between $2 \& 24$ is
A. 99
B. 1289
C. 117
D. 143

Answer: C

- Watch Video Solution

8. The difference between any two consecutive interior angles of a polygon is 5°.If the smallest angle is 120°, find the number of the sides of the polygon.
A. 5
B. 7
C. 9
D. 15

Answer: C

9. The number of terms in the sequence $96,48,24,12 \ldots \ldots \ldots \frac{3}{16}$ is
A. 9
B. 10
C. 16
D. 12

Answer: B

- Watch Video Solution

10. the sum of the first six terms of a GP is 9 times the sum of the first three terms. The common ratio is
A. 3
B. -3
C. 4
D. 2

Answer: D

(D) Watch Video Solution

11. In a GP of positive succeeding terms terms. The common ratio is
A. $\frac{\sqrt{5}+1}{2}$
B. $\frac{\sqrt{5}-1}{2}$
C. $\frac{-\sqrt{5}-1}{2}$
D. $\frac{1-\sqrt{5}}{2}$

Answer: B

12. If $0<x<1$ and $y=x-x^{2}+x^{3}-x^{4}+\ldots \ldots . . \infty$ then $y+y^{2}+y^{3}+\ldots \ldots \ldots \infty$ is equal to
A. x
B. $\frac{1}{x}$
C. $\frac{y}{1-y}$
D. $\frac{x-1}{x}$

Answer: A
13. If the $4^{\text {th }}$ and $7^{\text {th }}$ terms of a GP are 16 and 128 respectively, then the $10^{\text {th }}$ terms is
A. 128
B. 512
C. 1024
D. 256

Answer: C

Watch Video Solution

14. The sum of the first two terms of a GP of positive terms is $\frac{5}{3}$ and the sum to infinity of the series is 3 . the common ratio is
A. $\frac{1}{3}$
B. $\frac{2}{3}$
C. $\frac{1}{4}$
D. $\frac{3}{4}$

Answer: B

15. If A be the $A M$ and G be the $G M$ of two real numbers, the numbers are
A. $A \pm \sqrt{A^{2}-G^{2}}$
B. $\pm \sqrt{A^{2}-G^{2}}$
C. $G \pm \sqrt{A^{2}-G^{2}}$
D. $\pm \sqrt{A^{2}+G^{2}}$

Answer: A

- Watch Video Solution

16. The $A M$ and GM of two positive numbers are 15 and 9 respectively.

The numbers are
A. 12,18
B. 9, 21
C. 1,81
D. 3,27

Answer: D

Watch Video Solution
17. If G is the GM between a and b the $\frac{1}{G+a}+\frac{1}{G+b}=$
A. G
B. $\frac{1}{G}$
C. G^{2}
D. $\frac{1}{G^{2}}$

Answer: B

- Watch Video Solution

18. If

$$
|r|>1, x=a+\frac{a}{r}+\frac{a}{r^{2}}+\ldots \ldots \ldots \infty
$$

$y=b-\frac{b}{r}+\frac{b}{r^{2}}-\ldots \ldots \ldots \infty$ and $z=c+\frac{c}{r^{2}}+\frac{c}{r^{4}}+\ldots \ldots \infty$, then the value of $\frac{x y}{z}=$
A. 1
B. r
C. $\frac{a b}{c}$
D. $\frac{c}{a b}$

Answer: C

(D) Watch Video Solution

19. If the $p^{\text {th }}$ term if an A.P. is q and the $q^{\text {th }}$ term of an A.P is p then the $r^{\text {th }}$ term is

$$
\text { A. } q-p+r
$$

B. $p-q+r$
C. $p+q+r$
D. $p+q-r$

Answer: D
20. The sum of the series ${ }^{\wedge}{ }^{\wedge}(2)+3^{\wedge}(2)+5^{\wedge}(2)+\ldots . . .+n '$
A. $\frac{n(n+1)(2 n+1)}{2}$
B. $\frac{n(2 n-1)(2 n+1)}{3}$
C. $\frac{(n-1)(2 n+1)}{6}$
D. $\frac{(2 n+1)^{3}}{2}$

Answer: B
21. The sum of 10 terms of the series $\sqrt{2}+\sqrt{6}+\sqrt{18}+\ldots$. is
A. $121(\sqrt{6}+\sqrt{2}$
B. $243(\sqrt{3}+\sqrt{1}$
C. $\frac{121}{\sqrt{3}-1}$
D. $243(\sqrt{3}-1)$

Answer: A

(D) Watch Video Solution

22. If three positive real numbers a, b, c are in A.P and $a b c=4$, then the minimum possible value of b is
A. $2^{\frac{3}{2}}$
B. $2^{\frac{2}{3}}$
C. $2^{\frac{1}{3}}$
D. $2^{\frac{5}{2}}$

Answer: B

- Watch Video Solution

23. Sum to infininty of the series $1+\frac{4}{5}+\frac{7}{5^{2}}+\frac{10}{5^{3}}+\ldots \ldots$. is
A. $\frac{16}{35}$
B. $\frac{11}{8}$
C. $\frac{35}{16}$
D. $\frac{8}{11}$

Answer: C

- Watch Video Solution

24. The sum of the series $2,5,8,11, \ldots \ldots$ is 60100 , then n is
A. 100
B. 200
C. 150
D. 250

Answer: B

- Watch Video Solution

25. Let a_{n} be the $n^{\text {th }}$ term of a G.P of positive integers. Let $\sum_{n=1}^{100} a_{2 n}=\alpha$ and $\sum_{n=1}^{100} a_{2 n+1}=\beta$ such that $\alpha \neq \beta$. Then the common ratio is
A. $\frac{\alpha}{\beta}$
B. $\frac{\beta}{\alpha}$
C. $\left(\frac{\alpha}{\beta}\right)^{1 / 2}$
D. $\left(\frac{\beta}{\alpha}\right)^{1 / 2}$

Answer: B

- Watch Video Solution

26. $\cos x=b$ for what b do the roots of the equation form an A.P?
A. -1
B. $\frac{1}{2}$
C. $\frac{\sqrt{3}}{2}$
D. None of these

Answer: A

- Watch Video Solution

27. Sum of all terms in in G.P is 5 times the sum of odd terms. The
A. 2
B. 3
C. 4
D. 5

Answer: C

- Watch Video Solution

28. Sum of n terms of the serise $\sqrt{2}+\sqrt{8}+\sqrt{18}+\sqrt{32}+\ldots$ is
A. $\frac{n(n+1)}{2}$
B. $2 n(n+1)$
C. $\frac{n(n+1)}{\sqrt{2}}$
D. 1

Answer: C

29. The sum of series $1+2 x+3 x^{2}+4 x^{3}+\ldots$. . up to infinity when x lies between 0 and 1 i.e., $0<x<1$ is
A. $\frac{1}{1+x}$
B. $\frac{1}{1-x}$
C. $\frac{1}{1-2 x}$
D. $\frac{1}{(1-x)^{2}}$

Answer: D

- Watch Video Solution

30. If $\log _{3}^{2}, \log _{3}\left(2^{x}-5\right)$ and $\log \left(2^{x}-\frac{7}{2}\right)$ are in A.P then the value is x is
A. 2
B. 3
C. 4
D. 5

Answer: B

- Watch Video Solution

31. If the sum of first n positive integers is $\frac{1}{5}$ times the sum of their square then n equals
A. 5
B. 6
C. 7
D. 8

Answer: C

32. The second term of an A.P is $(x-y)$ and fifth term is $(\mathrm{x}+\mathrm{y})$, then the first term is
A. $x-\frac{1}{3} y$
B. $x-\frac{2}{3} y$
C. $x-\frac{4}{3} y$
D. $x-\frac{5}{3} y$

Answer: D

- Watch Video Solution

33. Three numbers are in G.P. if we double the middle term, we get an
A.P. Then the common ratio of G.P equals
A. $2 \pm \sqrt{3}$
B. $3 \pm \sqrt{2}$
C. $3 \pm \sqrt{5}$
D. $5 \pm \sqrt{3}$

Answer: A

D Watch Video Solution

34. Three non zero numbers a, b, c are in A.P. Increasing a by 1 or increasing c by 2 , the number become in G.P then b equals
A. 10
B. 12
C. 14
D. 16

Answer: B

35. If $x>0$ then the sum of the series $e^{-x}-e^{-2 x}+e^{-3 x} \ldots \ldots . \infty$ is
A. $\frac{1}{1-e^{-x}}$
B. $\frac{1}{e^{x}-1}$
C. $\frac{1}{1+e^{-x}}$
D. $\frac{1}{1+e^{x}}$

Answer: D

- Watch Video Solution

36. The sum of the series $0.4+0.004+0.00004+\infty$ is
A. $\frac{11}{25}$
B. $\frac{41}{100}$
C. $\frac{40}{99}$
D. $\frac{2}{5}$

Answer: C

(D) Watch Video Solution

37. If $(1.05)^{50}=11.658$ then $\sum_{n=1}^{49}(1.05)^{n}$ equals
A. 208.34
B. 212.12
C. 212.16
D. 213.16

Answer: C

Watch Video Solution
38. The product of n positive numbers is 1 , then their sum is a positive integer, that is
A. equal to 1
B. equal to $n+n^{2}$
C. divisible by n
D. never less than n

Answer: D

Watch Video Solution
39. If x, y, z are in A.P then e^{-x}, e^{-y} and e^{-z} are
A. A.P
B. G.P
C. H.P
D. no definite sequence

Answer: B

- Watch Video Solution

40. If the sum of the first n terms of a series be $5 n^{2}+2 n$, then its
second term is
A. 6
B. 7
C. 8
D. 9

Answer: A

41. If the sum of the first n terms of a series be $5 n^{2}+2 n$, then its second term is
A. 16
B. 17
C. $\frac{27}{14}$
D. $\frac{50}{15}$

Answer: B

- Watch Video Solution

42. If A.M and G.M of the roots of a quadratic equation in x are p and q repectively then its equation is
A. $x^{2}-2 p x+q^{2}=0$
B. $x^{2}+2 p x+q^{2}=0$
C. $x^{2}-p x+q=0$
D. $x^{2}-2 p x+q=0$

Answer: A

Watch Video Solution
43. If the $10^{t h}$ term of G.P is 9 and $4^{\text {th }}$ term is 4 then its $7^{\text {th }}$ term is
A. 6
B. 36
C. $\frac{4}{9}$
D. $\frac{9}{4}$

Answer: A

D Watch Video Solution
44. If $x>1, y>1, z>1$ are in G.P then
$\frac{1}{1+\log x}, \frac{1}{1+\log y}, \frac{1}{1+\log z}$ are in
A. A.P
B. H.P
C. G.P
D. None of these

Answer: A

- Watch Video Solution

45. Suppose a, b, c are in a.P and a^{2}, b^{2}, c^{2} are in G.P. If $a<b<c$ and $a+b+c=\frac{3}{2}$ then the value of a Is
A. $\frac{1}{2 \sqrt{2}}$
B. $\frac{1}{2 \sqrt{3}}$
C. $\frac{1}{2}-\frac{1}{\sqrt{2}}$
D. $\frac{1}{2}-\frac{1}{\sqrt{3}}$

Answer: C

Watch Video Solution
46. If the $7^{\text {th }}$ term of n A.P is 40 . Then the sum of its first 13 terms is
A. 520
B. 53
C. 2080
D. 1040

Answer: A

- Watch Video Solution

47. An infinite G.P has first 13 term as a and sum 5 , then
A. $a<-10$
B. $-10<a<0$
C. $0<a<10$
D. $a>10$

Answer: C

- Watch Video Solution

48. If the sum of p terms of an A.P is equal to sum of q terms $(p \neq q)$ then the sum of $(p+q)$ terms is
A. 1
B. 2
C. 0
D. -1

Answer: C

- Watch Video Solution

49. Three numbers from an increasing G.P. If the middle term is doubled the new number are in A.P. The common ratio of G.P will be
A. $2+\sqrt{3}$
B. $2 \pm \sqrt{3}$
C. $3 \sqrt{2}$
D. $3+\sqrt{2}$

Answer: B

Questions From Competitive Exams

1. The sum to n terms of the series $\frac{1}{2}+\frac{3}{4}+\frac{7}{8}+\frac{15}{16}+\ldots \ldots$. is
A. $n-1+2^{-n}$
B. 1
C. $n-1$
D. $1+2^{-n}$

Answer: A

- Watch Video Solution

2. $0.2+0.22+0.222+\ldots . .$. to n terms $=$
А. $\left(\frac{2}{9}\right)-\left(\frac{2}{81}\right)\left(1-10^{-n}\right)$
B. $n-\left(\frac{1}{9}\right)\left(1-10^{-n}\right)$
C. $\left(\frac{2}{9}\right)\left[n-\left(\frac{1}{9}\right)\left(1-10^{-n}\right)\right]$
D. $\frac{2}{9}$

Answer: C

Watch Video Solution
3. If $\frac{a^{n+1}+b^{n+1}}{a^{n}+b^{n}}$ is the arithmetic mean between a and b, then $n=$
A. 2
B. -2
C. 0
D. 2

Answer: C

4. If $(i)^{2}=-1,(i)^{2}+(i)^{4}+(i)^{6}+\ldots .$. to $(2 n+1)$ terms $=$
A. -1
B. 1
C. 0
D. 2

Answer: A
5. If S_{n} denotes the sum of n terms of an A.P.,
$S_{n+3}-3 S_{n+2}+3 S_{n+1}-S_{n}=$
A. 3
B. 1
C. $\frac{1}{2}$
D. 0

Answer:

- Watch Video Solution

6. The HM of 2 numbers is 4 . Their $A M$ is A and $G M$ is G. If G satisfies
$2 A+G^{2}=27$, The numbers are
A. 6, 9
B. 9,12
C. 3,6
D. 4,8

Answer: C

Watch Video Solution

7. The angle of triangle are in 30°. The greatest angle in radians is
A. 1. $\frac{7 \pi}{12}$
B. 2. $\frac{2 \pi}{3}$
C. $3 . \frac{5 \pi}{6}$
D. $4 . \frac{\pi}{2}$

Answer: D

- Watch Video Solution

8. How many terms of the geometric series $1+4+16+64+\ldots \ldots$. will make the sum 5461?
A. 7
B. 8
C. 27
D. 28

Answer: A

- Watch Video Solution

9. Find the value of n so that $\frac{a^{n+1}+b^{n+1}}{a^{n}+b^{n}}$ may be the geometric mean between a and b .
A. 0
B. 1
C. -1
D. 2

Answer: A

- Watch Video Solution

10.

$1+2.2+3.2^{2}+4.2^{3}+5.2^{4}+\ldots \ldots \ldots+100.2^{99}$ is
A. 99.2^{100}
B. 100.2^{100}
C. $99.2^{100}+1$
D. 1000.2^{100}

Answer: C

11. If $\mathrm{A}, \mathrm{G}, \mathrm{H}$ denote respectively the AM, GM and HM between two unequal positive numbers, then
A. $A=G^{2} H$
B. $G^{2}=A H$
C. $A^{2}=G^{2} H$
D. $A=G H$

Answer: B

Watch Video Solution
12. Let a, b, c be district real numbers. If a, b, c are in G.P and $a+b+C=b x$, the $x \in$
A. a. $(0, \infty)$
B. b. $(-\infty, 0)$
C. c. ($-1,3$)
D. d. $R-(-1,3)$

Answer: D
13. The numbers of terms of the A.P $3,7,11,15, \ldots \ldots$ to be taken so that the sum is 406 is
A. 5
B. 10
C. 12
D. 14

Answer: D

Watch Video Solution

14. If the progression $3,10,17, \ldots \ldots$ and $63,65,67, \ldots \ldots$ are such that their $n^{\text {th }}$ terms are equal, that n is equal to
A. 13
B. 15
C. 9
D. 8

Answer: A

Watch Video Solution
15. Which term of the geometric sequence $5,2, \frac{4}{5}, \frac{8}{25} \ldots$ is $\frac{128}{15625}$?
A. 11
B. 10
C. 9
D. 4

Answer: A

16. If a, b and c are respectively the $p^{t h}, q^{t h}$ and $r^{\text {th }}$ terms of an A.P., then
$\left|\begin{array}{lll}a & p & 1 \\ b & q & 1 \\ c & r & 1\end{array}\right|=$
A. 1
B. -1
C. 0
D. $p q r$

Answer: C

- Watch Video Solution

17. The sum of infinite terms of the geometric progression $\frac{\sqrt{2}+1}{\sqrt{2}-1}$, $\frac{1}{2-\sqrt{2}}, \frac{1}{2} \ldots \ldots$. . Is
A. $\sqrt{2}(\sqrt{2}+1)^{2}$
B. $(\sqrt{2}+1)^{2}$
C. $5 \sqrt{2}$
D. $3 \sqrt{2}+\sqrt{5}$

Answer: A

- Watch Video Solution

18. The two geometric means between the numbers 1 and 64 are
A. 1 and 64
B. 4 and 16
C. 2 and 16
D. 8 and 16

Answer: B

19. If $1+\frac{1+2}{2}+\frac{1+2+3}{3}+\ldots \ldots$ to n terms is s, then s is equal to
A. $\frac{n(n+3)}{4}$
B. $\frac{n(n+2)}{4}$
C. $\frac{n(n+1)(n+2)}{6}$
D. n^{2}

Answer: A

- Watch Video Solution

20. If a, b, and c^{\prime} are in A.P., then which one of thew following is not true?
A. $\frac{k}{a}, \frac{k}{b} \operatorname{nad} \frac{k}{c}$ are in H.P.
B. $a+k, b+k$ and $c+k$ are in A.P.
C. $k a, k b$, and $k c$ are in A.P.
D. a^{2}, b^{2} and c^{2} are in A.P.

Answer: D

- Watch Video Solution

21. If are the n Arithmetic means between a and b, then $2 \sum_{I-1}^{n} a_{i}=$
A. $a b$
B. $n(a+b)$
C. $n a b$
D. $\frac{a+b}{n}$

Answer: B

22. If the third term of a G.P is P. Then the Product of the first 5 terms of the G.P is
A. p^{3}
B. p^{2}
C. p^{10}
D. p^{5}

Answer: D

- Watch Video Solution

23. The sum to n terms of the series $\frac{4}{3}+\frac{10}{9}+\frac{28}{27}+\ldots \ldots$. is
A. $\frac{3^{n}(2 n+1)+1}{2\left(3^{n}\right)}$
B. $\frac{3^{n}(2 n+1)-1}{2\left(3^{n}\right)}$
C. $\frac{3^{n}(n-1)}{2\left(3^{n}\right)}$
D. $\frac{3^{n}-1}{2}$

Answer: B

- Watch Video Solution

24. A long a road lie an odd number of stones placed at intervals of 10 meters. These stones have to be assembled around the middle stone. A person can carry only one stone ar a time. A man started the job with one of the end stones by carrying them in succession. In carrying all the stones, the man covered a total distance of 3 kilometers. Then the total number of stones is
A. 20
B. 25
C. 12
D. 24

Answer: B

- Watch Video Solution

25. Suppose you are appointed to a post carrying a scale of pay of Rs.

800-50-1200-75-2100. The total pay that you would draw in a span of 6 years is (assume that there is no allowance).
A. a. 66660
B. b. 66000
C. c. 60000
D. d. 66600

Answer: D

- Watch Video Solution

26. The quardritic equation in x such that the arithmetic mean of its roots is 5 and geometric mean of the roots is 4 , is given by
A. $x^{2}+20 x+16=0$
B. $x^{2}-10 x+16=0$
C. $x^{2}+10 x+16=0$
D. $x^{2}-10 x-16=0$

Answer: B

- Watch Video Solution

27. If the sum of n terms of the series $2^{3}+4^{3}+6^{3}+\ldots \ldots \ldots$ is 3528 then $n=$
A. 10
B. 6
C. 8
D. 9

Answer: B

D Watch Video Solution

28. term of the G.P. $3,3 \sqrt{3}, 9 \ldots \ldots$ is 2187
A. 15
B. 14
C. 13
D. 19

Answer: C

29. A ball is dropped from a height of 48 meters and rebounds $\frac{2}{3}$ of the distance it falls. If it continues to fall and rebound in this way, the distance the ball travels before coming to rest is
A. a. 144 meters
B. b. 240 meters
C. c. 120 meters
D. d. 96 meters

Answer: B

(D) Watch Video Solution

30. The sum of $15^{2}+16^{2}+17^{2}+\ldots \ldots .+30^{2}=$
A. 8840
B. 8440
C. 8540
D. 8450

Answer: B

Watch Video Solution

31. If $a_{1}, a_{2}, a_{3}, a_{4}, a_{5}$ and a_{6} are six arithmetic means between 3 and 31 , then $a_{6}-a_{5}$ and $a_{1}+a_{6}$ are respectively $=$
A. 5 and 34
B. 4 and 35
C. 4 and 34
D. 4 and 36

Answer: C

32. The sum to n terms of the series
$1+(1+3)+(1+3+9)+(1+3+9+27)+\ldots \ldots \ldots$. is
A. $\frac{3\left(3^{n}-1\right)}{4}-1$
B. $\frac{3\left(3^{n}-1\right)-2 n}{4}$
C. $\frac{3\left(3^{n}-1\right)-n}{4}$
D. $\frac{2 n-3\left(3^{n}-n\right)}{4}$

Answer: B

33. If x, y, z are in A.P then $\frac{1}{\sqrt{x}+\sqrt{y}}, \frac{1}{\sqrt{z}+\sqrt{x}}, \frac{1}{\sqrt{y}+\sqrt{z}}$ are in
A. A.P
B. G.P
C. H.P
D. A.P and H.P

Answer: A

- Watch Video Solution

34. The product of $(32)(32)^{1 / 6}(32)^{1 / 36} \ldots \ldots .$. To ∞ is
A. 16
B. 32
C. 64
D. 0

Answer: C

Watch Video Solution
35. If A.M and G.M of x and y are in the ratio $p: q$, then $x: y$ is
A. a. $p-\sqrt{p^{2}+q^{2}}: p+\sqrt{p^{2}+q^{2}}$
B. b. $p+\sqrt{p^{2}-q^{2}}: p-\sqrt{p^{2}-q^{2}}$
C. c. $p: q$
D. d. $p+\sqrt{p^{2}+q^{2}}: p-\sqrt{p^{2}+q^{2}}$

Answer: B

- Watch Video Solution

36. The difference between any two consecutive interior angles of a polygon is 5°.If the smallest angle is 120°, find the number of the sides of the polygon.
A. 9
B. 10
C. 16
D. 5

- Watch Video Solution

37. In an arithmetic progression, the $24^{\text {th }}$ term is 100 . Then the sum of the first 47 terms of the arithmetic progression is
A. 2300
B. 2350
C. 2400
D. 4600

Answer: D

Watch Video Solution
38. If a, b and c are in geometric progression and the roots of the equation $a x^{2}+2 b x+c=0$ are α and β and those of $c x^{2}+2 b x+a=0$ are γ and δ
A. $\alpha \neq \beta \neq \gamma \neq \delta$
B. $\alpha \neq \beta$ and $\gamma \neq \delta$
C. $a \alpha=a \beta$ and $c \gamma=c \delta$
D. $\alpha=\beta$ and $\gamma=\delta$

Answer: C

- Watch Video Solution

39.

If $a_{1}, a_{2}, \ldots \ldots \ldots, a_{50}$
are
in
G.P,
then
$\frac{a_{1}-a_{3}+a_{5}-\ldots \ldots .+a_{49}}{a_{2}-a_{4}+a_{6}-\ldots \ldots .+a_{50}}=$
A. 0
B. 1
C. $\frac{a_{1}}{a_{2}}$
D. $\frac{a_{25}}{a_{24}}$

Answer: C

- Watch Video Solution

40. The first term of an infinite G.P. is 1 and each term is twice the sum of the succeeding terms, then the sum of the series is
A. 2
B. $\frac{5}{2}$
C. $\frac{7}{2}$
D. $\frac{3}{2}$

Answer: D

41. If $\frac{a}{b+c}, \frac{b}{c+a}, \frac{c}{a+b}$ are in A.P., then
A. a, b, c are in A.P.
B. c, a, b are in A.P.
C. a^{2}, b^{2}, c^{2} are in A.P.
D. a, b, c are in G.P.

Answer: C

(D) Watch Video Solution

42. In an infinite geometric series the first term is a and common ratio is r. If the sum of the series is 4 and the seond term is $\frac{3}{4}$, then (a, r) is
A. $\left(\frac{4}{7}, \frac{3}{7}\right)$
B. $\left(2, \frac{3}{8}\right)$
C. $\left(\frac{3}{2}, \frac{1}{2}\right)$
D. $\left(3, \frac{1}{4}\right)$

Answer: D

Watch Video Solution

43. The sets $S_{1}, S_{2}, S_{3}, \ldots \ldots \ldots \ldots$ are given by $S_{1}=\left\{\frac{2}{1}\right\}$,
$S_{2}=\left\{\frac{3}{2}, \frac{5}{2}\right\}, S_{3}=\left\{\frac{4}{3}, \frac{7}{3}, \frac{10}{3}\right\}, S_{4}=\left\{\frac{5}{4}, \frac{9}{4}, \frac{13}{4}, \frac{17}{4}\right\}, \ldots \ldots \ldots$
Then the sum of the set S_{25} is
A. 320
B. 322
C. 324
D. 325

Answer: D
44. If H_{1}, H_{2} are two harmonic means between two positive numbers a and $b,(a \neq b), \mathrm{A}$ and G are the arithmetic and geometric means between a and b, then $\frac{H_{2}+H_{1}}{H_{2} H_{1}}$ is
A. $\frac{A}{G}$
B. $\frac{2 A}{G}$
C. $\frac{A}{2 G^{2}}$
D. $\frac{2 A}{G^{2}}$

Answer: D

(D) Watch Video Solution

45. If the sum of $12^{\text {th }}$ and $22^{\text {nd }}$ terms of an A.P is 100 , then the sum of the first 33 terms of the A.P is
A. 1700
B. 1650
C. 3300
D. 3400

Answer: B

- Watch Video Solution

46. The coefficient of x in the expansion of
$(1+x)(1+2 x)(1+3 x) \ldots(1+100 x)$ is
A. 5050
B. 10100
C. 5151
D. 4950

Answer: A

- Watch Video Solution

47.

$0<\phi<\frac{\pi}{2}, x=\sum_{n=0}^{\infty} \cos ^{2 n} \phi, y \sum_{n=0}^{\infty} \sin ^{2 n} \phi$ and $z=\sum_{n=0}^{\infty} \cos ^{2 n} \phi \sin ^{2 n} \phi$, then
A. $2 y=x+z$
B. $2 x=y+z$
C. $y=\frac{x+z}{x z}$
D. $y=\frac{2 x z}{x+z}$

Answer: D

- Watch Video Solution

48. The sum of the first n terms of the series
$\frac{1}{\sqrt{2}+\sqrt{5}}+\frac{1}{\sqrt{5}+\sqrt{8}}+\frac{1}{\sqrt{8}+\sqrt{11}}+\ldots$ is
A. $\frac{1}{3}(\sqrt{3 n+2}-\sqrt{2})$
B. $\sqrt{3 n+2}-\sqrt{2}$
C. $\sqrt{3 n+2}+\sqrt{2}$
D. $\frac{1}{3}(\sqrt{2}-\sqrt{3 n+2})$

Answer: A

- Watch Video Solution

49. The H.M. of two numbers is 4. their A.M ia A and G.M. is G. If
$2 A+G^{2}=27$, then A is equal to
A. a. 9
B. b. $\frac{9}{2}$
C. с. 18
D. d. 27

Answer: B

Watch Video Solution
50. If a, b, c are in G.P. and x, y are the arithmetic mean of a, b and b, c respectively, then $\frac{1}{x}+\frac{1}{y}$ is equal to
A. $\frac{2}{b}$
B. $\frac{3}{b}$
C. $\frac{b}{3}$
D. $\frac{b}{2}$
51. A student read common difference of are A.P. as -3 instead of 3 and obtained the sum of first 10 terms as -30 . Then the actual sum of first 10 terms is equal to
A. a. 240
B. b. 120
C. c. 300
D. d. 180

Answer: A

- Watch Video Solution

52. If $a_{1}, a_{2} \ldots \ldots a_{n}=n a_{n-1}$, for all positive integer $n \geq 2$, then a_{5} is equal to
A. a. 125
B. b. 120
C. c. 100
D. d. 24

Answer: B
53. If $a_{1}, a_{2}, \ldots \ldots, a_{n}$ are in A.P. with common differece $d \neq 0$, then $(\sin d)\left[\sec a_{1} \sec a_{2}+\sec a_{2} \sec a_{3}+\ldots .+\sec a_{n-1} \sec a_{n}\right]$ is equal to
A. a. $\cot a_{n}-\cot a_{1}$
B. b. $\cot a_{1}-\cot a_{n}$
C. c. $\tan a_{n}-\tan a_{1}$
D. d. $\tan a_{n}-\tan a_{n-1}$

Answer: D

- Watch Video Solution

54. Let a be a positive number such that the arithmetic mean of a and 2 exceeds their geometric mean by 1 . Then the value of a
A. 3
B. 5
C. 9
D. 8

Answer: D

- Watch Video Solution

55. If the sum to first n terms of the A.P. $2,4,6, \ldots$ is 240 , then the value of n is
A. 14
B. 15
C. 16
D. 17

Answer: B

Watch Video Solution

A. a. -10
B. b. 11
C. c. 14
D. d. -8

Answer: D
57. An A.P. consists of 23 terms. If the sum of the three terms is the middle is 141 and the sum of the last three terms is 261 , then the first is
A. 6
B. 5
C. 4
D. 3

Answer: D

- Watch Video Solution

58. If $a_{1}, a_{2}, a_{3}, \ldots \ldots .$. , are in A.P. with common difference 5 and if
$a_{i} a_{j} \neq-1 \quad$ for $\quad i, j=1,2, \ldots, n, \quad$ then
$\tan ^{1}\left(\frac{5}{1+a_{1} a_{2}}\right)+\tan ^{1}\left(\frac{5}{1+a_{2} a_{3}}\right)+\ldots \ldots+\tan ^{-1}\left(\frac{5}{1+a_{n-1} a_{n}}\right)$
is equal to
A. $\tan ^{-1}\left(\frac{5}{1+a_{n} a_{n-1}}\right)$
B. $\tan ^{-1}\left(\frac{5 a_{1}}{1+a_{n} a_{1}}\right)$
C. $\tan ^{-1}\left(\frac{5 n-5}{1+a_{n} a_{1}}\right)$
D. $\tan ^{-1}\left(\frac{5 n-5}{1+a_{1} a_{n+1}}\right)$

Answer: C

- Watch Video Solution

59. The sum of all two digit natural numbers which leave a remainder 5
when they are divided by 7 is equal to
A. 715
B. 702
C. 615
D. 602

Answer: B

- Watch Video Solution

60. If the $9^{\text {th }}$ term of A.P. is zero, then the ratio of $29^{\text {th }}$ term to $19^{\text {th }}$ term is
A. $1: 2$
B. $1: 3$
C. 2:1
D. $3: 1$

Answer: C

Watch Video Solution
61. Let $S_{1}, S_{2}, \ldots \ldots S_{101}$ be consecutive terms of A.P. If $\frac{1}{S_{1} S_{2}}+\frac{1}{S_{2} S_{3}}+\ldots \ldots+\frac{1}{S_{100} S_{101}}=\frac{1}{6}$ and $S_{1}+S_{101}=50$, then $\left|S_{1}-S_{101}\right|$ is equal to
A. 10
B. 20
C. 30
D. 40

Answer: A

D Watch Video Solution

62. If $a_{1}, a_{2}, a_{3}, \ldots \ldots, a_{n}$ are in A.P. and $a_{1}=0$, then the value of

$$
\left(\frac{a_{3}}{a_{2}}+\frac{a_{4}}{a_{3}}+\ldots+\frac{a_{n}}{a_{n-1}}\right)-a_{2}\left(\frac{1}{a_{2}}+\frac{1}{a_{3}}+\ldots .+\frac{1}{a_{n-2}}\right)
$$

equal to

$$
\text { A. }(n-2)+\frac{1}{n-2}
$$

B. $\frac{1}{n-2}$
C. $(n-2)$
D. $n-1$

Answer: A

- Watch Video Solution

63. The value of $1^{2}-2^{2}+3^{2}-4^{2}+\ldots .+11^{2}$ is equal to
A. 55
B. 66
C. 77
D. 88

Answer: B

64. Let s_{n} denote the sum of first n terms of an A.P. and $S_{2 n}=3 S_{n}$. If $S_{3 n}=k S_{n}$ then the value of k is equal to
A. 4
B. 5
C. 6
D. 7

Answer: C

- Watch Video Solution

65. The first four terms of an A.P. are $a, 9,3 a-b, 3 a+b$. The $2011^{\text {th }}$ term of the A.P. is
A. 2015
B. 4025
C. 5030
D. 6035

Answer: D

Watch Video Solution

66. If $\log _{e} 5, \log _{e}\left(5^{x}-1\right)$ and $\log _{e}\left(5^{x}-\frac{11}{5}\right)$ are in A.P., then the values of x are
A. $\log _{5} 4$ and $\log _{5} 3$
B. $\log _{3} 4$ and $\log _{4} 3$
C. $\log _{3} 4$ and $\log _{3} 5$
D. $\log _{5} 6$ and $\log _{5} 7$

Answer: A

67. The sum to n terms of the series $\frac{4}{3}+\frac{10}{9}+\frac{28}{27}+\ldots \ldots$. is
A. $n+\frac{1}{2}\left(1+3^{-n}\right)$
B. $n-\frac{1}{2}\left(1+3^{-n}\right)$
C. $n+\frac{1}{2}\left(2+3^{-n}\right)$
D. $n+\frac{1}{2}\left(2-3^{-n}\right)$

Answer: D

- Watch Video Solution

68. If $\sum_{k=1}^{n} k(k+1)(k-1)=p n^{4}+q n^{3}+t n^{2}+s n$ where p, q, t and s are constants, then the value of s is equal to
A. $-\frac{1}{4}$
B. $-\frac{1}{2}$
C. $\frac{1}{2}$
D. $\frac{1}{4}$

Answer: B

- Watch Video Solution

69. In an A.P., the first term is 2 and the sum of first five terms is 5 . Then
the 31 th term is
A. 13
B. 17
C. -13
D. $\frac{27}{2}$

Answer: C

Watch Video Solution
70. If a, b, c, d are in G.P., then $(a+b+c+d)^{2}$ is equal to
A. $(a+b)^{2}+(c+d)^{2}+2(b+c)^{2}$
B. $(a+b)^{2}+(c+d)^{2}+2(a+c)^{2}$
C. $(a+b)^{2}+(c+d)^{2}+2(b+d)^{2}$
D. $(a+b)^{2}+(c+d)^{2}+(b+c)^{2}$

Answer: A

- Watch Video Solution

71. The sum of first n terms of the series $1+(1+x) y+\left(1+x+x^{2}\right) y^{2}+\left(1+x+x^{2}+x^{3}\right) y^{3}+\ldots \ldots \ldots$. is
A. $\left(\frac{1}{1-x}\right)\left[\frac{1-y^{n}}{1-y}-y\left(\frac{1-x^{n} y^{n}}{1-x y}\right)\right]$
B. $\left(\frac{1}{1-x}\right)\left[\frac{1-y^{n}}{1-y^{2}}-x\left(\frac{1-x^{n} y^{n}}{1-x y}\right)\right]$
C. $\left(\frac{1}{1-x}\right)\left[\frac{1-y^{n}}{1-y}-x^{2}\left(\frac{1-x^{n} y^{n}}{1-x y}\right)\right]$
D. $\left(\frac{1}{1-x}\right)\left[\frac{1-y^{n}}{1-y}-2 x\left(\frac{1-x^{n} y^{n}}{1-x y}\right)\right]$

Answer: D

Watch Video Solution
72. If $3^{\text {rd }}, 7^{\text {th }}$ and $12^{\text {th }}$ terms of A.P. are three consecutive terms of a G.P., then the common ratio of G.P is
A. $\frac{5}{4}$
B. $\frac{9}{4}$
C. $\frac{2}{9}$
D. $\frac{1}{2}$
73. If $a_{1}=4$ and $a_{n+1}=a_{n}+4 n$ for $n \geq 1$, then the value of a_{100} is
A. 19804
B. 18904
C. 18894
D. 19904

Answer: A

- Watch Video Solution

74. If the first term of a G.P. is 729 and its $7^{\text {th }}$ term is 64 , then the sum of first seven terms is
A. 2187
B. 2059
C. 1458
D. 2123

Answer: B

- Watch Video Solution

75. Let $a_{1}, a_{2}, a_{3}, a_{4}$ be in A.P. If $a_{1}+a_{4}=10$ and $a_{2} a_{3}=24$, them the least term of them is
A. 1
B. 2
C. 3
D. 4

Answer: B

76. The $100^{\text {th }}$ term of the sequence $1,2,2,3,3,3,4,4,4,4, \ldots \ldots$ is
A. 12
B. 13
C. 14
D. 15

Answer: C

Watch Video Solution

77. Let S_{n} denote the sum of first n terms of an A.P. If $S_{4}=-34$, $S_{3}=-60$ and $S_{6}=-93$, then the common difference and the first term of the A.P. are respectively.
A. $-7,2$
B. $7,-4$
C. $7,-2$
D. $-7,-2$

Answer: A

D Watch Video Solution

78. An A.P. has the property that the sum of first ten terms is half the sum of next ten terms. If the second term is 13 , then the common difference is
A. 3
B. 2
C. 5
D. 4

Answer: B

79. The sum of the series $\sum_{n=8}^{17} \frac{1}{(n+2)(n+3)}$ is equal to
A. $\frac{1}{17}$
B. $\frac{1}{18}$
C. $\frac{1}{19}$
D. $\frac{1}{20}$

Answer: D

- Watch Video Solution

80. If two positive numbers are in the ratio $3+2 \sqrt{2}: 3-2 \sqrt{2}$, then the ratio between their A.M. and G.M. is
A. 6:1
B. 3:2
C. 2:1
D. 3:1

Answer: D

- Watch Video Solution

$$
\begin{aligned}
& \text { 81. Let } x_{1}, x_{2}, \ldots \ldots, x_{n} \text { be in an A.P. If } \\
& x_{1}+x_{4}+x_{9}+x_{11}+x_{20}+x_{22}+x_{27}+x_{30}=272 \text {, } \\
& x_{1}+x_{2}+x_{3}+\ldots \ldots+x_{30} \text { is equal to }
\end{aligned}
$$

A. 1020
B. 1200
C. 716
D. 2720

Answer: A
82. If the second and fifth terms of a G.P. are 24 and 3 respectively, then the sum of first six terms is
A. 181
B. $\frac{181}{2}$
C. 189
D. $\frac{189}{2}$

Answer: D

- Watch Video Solution

83. If the sum of first 75 terms of an A.P. is 2625 , then the $38^{\text {th }}$ term of the A.P. is
A. 39
B. 37
C. 36
D. 35

Answer: D

- Watch Video Solution

84. If $-5, k,-1$ are in A.P., then the value of k is equal to
A. -5
B. -3
C. -1
D. 3

Answer: B

85. Let T_{n} denote the number of triangles which can be formed by using the vertices of a regular polygon of n sides. If $T_{n+1}-T_{n}=36$, then n is equal to
A. 2
B. 5
C. 9
D. 8

Answer: D

- Watch Video Solution

86. if $1, \log _{9}\left(3^{1-x}+2\right), \log _{3}\left[4.3^{x}-1\right]$ are in A.P. then x equals
A. $\log _{3} 4$
B. $1-\log _{3} 4$
C. $1-\log _{4} 3$
D. $\log _{4} 3$

Answer: C

- Watch Video Solution

87. $1^{3}-2^{3}+3^{3}+4^{3}+\ldots .+9^{3}=$
A. 425
B. -425
C. 475
D. -475

Answer: A

- Watch Video Solution

88. Sum of infinite number of terms in GP is 20 and sum of their square is 100 . The common ratio of GP is
A. 5
B. $\frac{3}{5}$
C. $\frac{8}{5}$
D. $\frac{1}{5}$

Answer: B

Watch Video Solution
89. The value of $2^{\frac{1}{4}}, 4^{\frac{1}{8}}, 8^{\frac{1}{16}} \ldots \ldots \infty$ is
A. 1
B. 2
C. $\frac{3}{2}$
D. 4

Answer: B

- Watch Video Solution

90. Fifth term of a GP is 2 , then the product of 1 ts 9 terms is
A. 256
B. 512
C. 1024
D. None of these

Answer: B

91. If the system of linear equations $x+2 a y+a z=0$, $x+3 b y+b z=0, x+4 c y+c z=0$ has a non-zero solution, then a, b, c
A. are in G.P
B. are in H.P
C. satisfy $a+2 b+3 c=0$
D. are in A.P

Answer: B

- Watch Video Solution

92. Let $f(x)$ be a polynomial function of second degree. If $f(1)=f(-1)$ and $a, b . c$ are in A.P., then $f^{\prime}(a), f^{\prime}(b), f^{\prime}(c)$ are in
A. G.P.
B. H.P.
C. Arithmetic-Geometric Progression
D. A.P.

Answer: D

- Watch Video Solution

93. The sum of the series $\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{3.4} \ldots$ upto ∞ is equal to
A. $\log _{e} 2-1$
B. $\log _{e} 2$
C. $\log _{e}\left(\frac{4}{e}\right)$
D. $2 \log _{e} 2$

Answer: C

94. If $x_{1}, x_{2}, x(3)$ as well as y_{1}, y_{2}, y_{3} are in geometric progression with the same common ratio,then the points $\left(x_{-}(1), y_{-}(1)\right),\left(x_{-}(2), y_{-}(2)\right)$, $\left(x_{-}(3), y_{-}(3)\right)^{\prime}$
A. lie on an ellipse
B. lie on a circle
C. are vertices of a triangle
D. lie on a stright line

Answer: D

- Watch Video Solution

95. Let T, be the $r^{\text {th }}$ term of an A.P. whose first term is a and common difference is d if for some positive integers $m, n, m \neq n, T_{m}=\frac{1}{n}$ and $T_{n}=\frac{1}{m}$, then $a-d$ equals
A. $\frac{1}{m}$
B. 1
C. 0
D. $\frac{1}{m}+\frac{1}{n}$

Answer: C

- Watch Video Solution

96. The sum of first n terms of the series $1_{2}+2.2^{2}+3^{2}+2.4^{2}+5^{2}+2.6^{2}+\ldots \ldots$ is $\frac{n(n+1)^{2}}{4}$ when n is even. When n odd the sum is
A. $\frac{n(n+1)^{2}}{4}$
B. $\frac{n^{2}(n+1)}{2}$
C. $\frac{3 n(n+1)}{2}$
D. $\left[\frac{n(n+1)}{2}\right]^{2}$

Answer: B

- Watch Video Solution

97. The sum of series $\frac{1}{2}!+\frac{1}{4}!+\frac{1}{6}!+\ldots \ldots$. is
A. $\frac{(e-1)^{2}}{2 e}$
B. $\frac{e^{2}-1}{2 e}$
C. $\frac{e^{2}-1}{2}$
D. $\frac{e^{2}-1}{e}$

Answer: A

- Watch Video Solution

98. If the coefficients of $r^{\text {th }},(r+1)^{\text {th }}$ and $(r+2)^{t h}$ terms in the binomial expansion of $(1+y)^{m}$ are in A.P., then m and r satisfy the
equation
A. 1. $m^{2}-m(4 r-1)+4 r^{2}+2=0$
B. 2. $m^{2}-m(4 r+1)+4 r^{2}-2=0$
C. 3. $m^{2}-m(4 r+1)+4 r^{2}+2=0$
D. 4. $m^{2}-m(4 r-1)+4 r^{2}-2=0$

Answer: B

- Watch Video Solution

99.

$0<\phi<\frac{\pi}{2}, x=\sum_{n=0}^{\infty} \cos ^{2 n} \phi, y \sum_{n=0}^{\infty} \sin ^{2 n} \phi$ and $z=\sum_{n=0}^{\infty} \cos ^{2 n} \phi \sin ^{2 n} \phi$, then
A. HP
B. Arithmetric-Geometric progression
C. AP
D. GP

Answer: A

- Watch Video Solution

100. If $a_{1}, a_{2}, a_{3}, \ldots \ldots . ., a_{n} \ldots \ldots$.... are in G.P., then the determinant $\Delta=$ $\log a_{n} \quad \log a_{n+1} \quad \log _{n+2}$
$\log a_{n+3} \quad \log a_{n+4} \quad \log _{n+5} \quad$ is equal to $\log a_{n+6} \quad \log a_{n+7} \quad \log _{n+8}$
A. 0
B. 1
C. 2
D. 4

Answer: A
101. Let $a_{1}, a_{2}, a_{3}, \ldots \ldots$. be terms of an A.P. if $\frac{a_{1}+a_{2}+\ldots \ldots a_{p}}{a_{1}+a_{2}+\ldots \ldots a_{q}}$ $=\frac{p^{2}}{q^{2}}, p \neq q$, then $\frac{a_{6}}{a_{21}}$ equals
A. $\frac{41}{11}$
B. $\frac{7}{2}$
C. $\frac{2}{7}$
D. $\frac{11}{41}$

Answer: D

- Watch Video Solution

102. If $a_{1}, a_{2}, \ldots \ldots A_{n}$ are in H.P., then the expression $a_{1} a_{2}+a_{2} a_{3}+\ldots \ldots+a_{n-1} a_{n}$ is equal to
A. $n\left(a_{1}-a_{n}\right)$
B. $(n-1)\left(a_{1}-a_{n}\right)$
C. $n a_{1}, a_{n}$
D. $(n-1) a_{1} a_{n}$

Answer: D

Watch Video Solution
103. The sum of the series $\frac{1}{2!}-\frac{1}{3!}+\frac{1}{4!}-\ldots \ldots$. . upto infinity is
A. $e^{\frac{-1}{2}}$
B. $e^{\frac{1}{2}}$
C. e^{-2}
D. e^{-1}

Answer: D
(D) Watch Video Solution
104. In a geometric progression consisting of positive terms each term equals the sum of the next two terms. Then the common ratio of this progression equals
A. $\sqrt{5}$
B. $\frac{1}{2}(\sqrt{5}-1)$
C. $\frac{1}{2}(1-\sqrt{5})$
D. $\frac{1}{2} \sqrt{5}$

Answer: B

(D) Watch Video Solution

105. The first two terms of a geometric progression add up to 12 . The sum of the third and the fourth terms is 48 . If the terms of the geometric progression are alternately positive and negative, then the first term is (1) 4 (2) 12 (3) 12 (4) 4
A. 4
B. -4
C. -12
D. 12

Answer: C

D Watch Video Solution

