©゙" doubtnut

MATHS

BOOKS - NEW JYOTHI MATHS (TAMIL ENGLISH)

STRAIGHT LINES

Examples

1. Find the slope of the straight line through $(-3,2)$ and (3,
$3)$.

D Watch Video Solution
2. Find whether the line through $(-3,2)$ and $(3,3)$ is perpendicular or parallel or neither perpendicular nor parallel to the line through $(-2,-1)$ and $(4,0)$.

- Watch Video Solution

3. i. Find the slope of the line joining $(-2,6)$ and $(4,8)$.
ii. Find the value of x, if the above line is perpendicular to the line joining $(8,12)$ and $(x, 24)$.

D Watch Video Solution

4. The vertices of $\Delta A B C$ are $\mathrm{A}(2,4) \mathrm{B}(-4,2)$ and $\mathrm{C}(0,0)$.

Find the slopes of $A C$ and $A B$.

- Watch Video Solution

5. Find the angle between x-axis and the line joining ($2,-1$) and (4,-3).

- Watch Video Solution

6. The slope of a line is double of the slope of another
line. Iftangent of the angle between them $\frac{1}{3}$, find the slopes of the lines.

- Watch Video Solution

7. If the angle between two lines is $\frac{\pi}{4}$ and slope of one of the lines is $\frac{1}{2}$, find the slope of the other line.

D Watch Video Solution

8. Find the slope of a line, which passes through the origin, and the mid-point of the line segment joining the points $P(0,-4)$ and $B(8,0)$.

(D) Watch Video Solution

9. For what value of x, the points $(x,-1),(2,1)$ and $(4,5)$ are collinear?
10. If three points $A(h, 0), P(a, b)$ and $B(0, k)$ lie on a
line, show that: $\frac{a}{h}+\frac{b}{k}=1$.

- Watch Video Solution

11. Consider the following population and year graph.

Find the slope of the line $A B$ and using it, find what will be the population in the year 2010?

- Watch Video Solution

12. Draw a quadrilateral in the Cartesian plane, whose vertices are $(-4,5),(0,7),(5,-5)$ and ($-4,-2$). Also, find its area.

- Watch Video Solution

13. The base of an equilateral triangle with side 2 a lies along the y-axis such that the mid-point of the base is at the origin. Find vertices of the triangle.

- Watch Video Solution

14. Find the distance between $\mathrm{P}\left(x_{1}, y_{1}\right)$ and $\mathrm{Q}\left(x_{2}, y_{2}\right)$ when :
i. $P Q$ is parallel to the y-axis, ii. $P Q$ is parallel to the x-axis.
15. Find a point on the x-axis, which is equidistant from the points $(7,6)$ and (3,4).

D Watch Video Solution

16. Find the slope of a line, which passes through the origin, and the mid-point of the line segment joining the points $P(0,-4)$ and $B(8,0)$.

- Watch Video Solution

17. Without using the Pythagoras theorem, show that the points $(4,4),(3,5)$ and $(-1,-1)$ are the vertices of a right angled triangle.

- Watch Video Solution

18. Find the slope of the line, which makes an angle of 30° with the positive direction of y-axis measured anticlockwise.

- Watch Video Solution

19. Without using distance formula, show that points $(-2,-1),(4,0),(3,3)$ and $(-3,2)$ are the vertices of a parallelogram.

- Watch Video Solution

20. . Find the angle between the x-axis and the line joining the points $(3,-1)$ and $(4,-2)$.

D Watch Video Solution

21. A line passes through (x_{1}, y_{1}) and (h, k). If slope of the line is m , show that $k-y_{1}=m\left(h-x_{1}\right)$.

- Watch Video Solution

22. Find the equation of a straight line passing through
$(-5,7)$ and parallel to the x-axis.
23. Find the equation of the line which is parallel to y-axis and passing through the point $(3,4)$.

- Watch Video Solution

24. Find the equation of the line passing through the point $(-2,3)$ with slope -4 .

- Watch Video Solution

25. Find the equation of a line through the origin which makes an angle of 45° with the positive direction of x axis.
26. Consider the line joining the points ($2,-1$) and ($6,-3$).
i. Find its slope.
ii. Find the equation of the perpendicular bisector.

- Watch Video Solution

27. The vertices of triangle $A B C$ are $A(-2,3), B(2,-3)$ and C
$(4,5)$
i. Find the slope of $B C$.
ii. Find the equation of the altitude of triangle $A B C$ passing through A .
28. Write the equation of the line through the points $(1,-1)$ and (3,5)

- Watch Video Solution

29. Find the equation of the line intersecting x-axis at a distance of 3 units to the left of the origin with slope -2 .

- Watch Video Solution

30. Find the equation of a line that cuts off equal intercepts on the coordinate axes and passes through the point $(2,3)$.
31. Find the equation of the line which passes through the point $(3,4)$ and whose intercepts on the axes are equal in magnitude but opposite in sign.

- Watch Video Solution

32. Find the equation of the line through the point (3,3) and cutting off intercepts on the axes whose sum is 12 .

- Watch Video Solution

33. Find the equation of the line which has the length of
the perpendicular from origin to the line as 4 units and
the perpendicular segment on the line I makes an angle of 120° with the positive direction of x-axis.

- Watch Video Solution

34. In the figure given below, find the equation of the line

AB.

35. By using the concept of equation of a line, prove that the three points $(3,0),(-2,-2)$ and $(8,2)$ are collinear.

- Watch Video Solution

36. Intersecting the y-axis at a distance of 2 units above the origin and making an angle of 30° with positive direction of the x-axis.

- Watch Video Solution

37. Find the equation of line which is at Perpendicular distance from the origin is 5 units and the angle made by
the perpendicular with the positive x-axis is 30°.

D Watch Video Solution

38. Find the equation of the line passing through $(-3,5)$ and perpendicular to the line through the points $(2,5)$ and $(-3,6)$.

- Watch Video Solution

39. A line perpendicular to the line segment joining the points $(1,0)$ and $(2,3)$ divides it in the ratio $1: n$. Find the equation of the line.
40. Find equation of the line through the point(0,2) making an angle $\frac{2 \pi}{3}$ with the positive x-axis. Also, find the equation of line parallel to it and crossing the y-axis at a distance of 2 units below the origin.

- Watch Video Solution

41. The perpendicular from the origin to a line meets it at the point $(-2,9)$ find the equation of the line.

- Watch Video Solution

42. The length L (in centimetrs) of a copper rod is a linear function of its Celsius temperature C. In an experiment, if
$L=124.942$ when $C=20$ and $L=125.134$ when $C=110$, express L in terms of C.

- Watch Video Solution

43. The owner of a milk store finds that, he can sell 980
litres of milk each week at Rs. 14 /litre and 1220 litres of milk each week at Rs $16 /$ litre. Assuming a linear relationship between selling price and demand, how many litres could he sell weekly at Rs 17 / litre?

D Watch Video Solution

44. $P(a, b)$ is the mid-point of a line segment between
axes. Show that equation of the line is $\frac{x}{a}+\frac{y}{b}=2$

- Watch Video Solution

45. Point $R(h, k)$ divides a line segment between the axes in the ratio 1: 2 . Find equation of the line.

D Watch Video Solution

46. Convert the equation of the line $2 x-3 y+6=0$ into intercept form.

(D) Watch Video Solution

47. The equation of a straight line is $3 x-4 y+10=0$.

Find
i. slope-intercept form
ii. slope
iii. x and y intercepts.

- Watch Video Solution

48. Consider the points $\mathrm{A}(2,3)$ and $\mathrm{B}(4,5)$
i. Find the slope of the line passing through the points A and B.
ii. Find the equation of the line passing through A and B.
iii. Find the x-intercept of the above line.
49. Reduce the equation of the line $\sqrt{3} x+y-8=0$ into normal form. Find the values of p and ω.

- Watch Video Solution

50. i. Find the point of intersection of the lines $2 x+y-3=0$,

$$
3 x-y-2=0
$$

ii. Find the equation of the line passing through the
above point of intersection and parallel to the line $x+y+$ $1=0$.
51. Find equation of the line perpendicular to the line x $7 y+5=0$ and having x-intercept 3.

D Watch Video Solution

52. Consider the straight line $3 x+4 y+8=0$
i. What is the slope of the line which is perpendicular to the given line?
ii. If the perpendicular line passes through (2,3), form its equation,
iii. Find the foot of the perpendicular drawn from $(2,3)$ to the given line.
53. Consider the points $A(-2,-3)$ and $B(1,6)$.
i. Find the equation of the line passing through A and B.
ii. Find the equation of the line passing through $(2,1)$ and perpendicular to $A B$
iii. Find the foot of the above perpendicular to $A B$.

D Watch Video Solution

54. Consider the points $A(2,2)$ and $B(5,3)$.
i. Find the slope of the line through, the points A and B.
ii. Find the equation of the line passing through the points A and B.
iii. Find the image of the point $(1,2)$ in the line through A and B.
55. Find the distance of the point $(3,-3)$ from the line $3 x$ -
$4 y-26=0$

D Watch Video Solution

56. Consider the line $3 x-4 y+2=0$ and the point $(2,-3)$

Find the distance of the point from the line.

D Watch Video Solution

57. Find the distance between the parallel lines $3 x-4 y+5$
$=0$ and $3 x-4 y+7=0$

- Watch Video Solution

58. i Reduce the equation $3 x+4 y-12=0$ into intercept form.
ii. Find the distance of the above line from the origin.
iii. Find the distance of the above line from the line $6 x+$ $8 y-18=0$.

- Watch Video Solution

59. What are the points on the y-axis whose distance from the line $\frac{x}{3}+\frac{y}{4}=1$ is 4 units.
60. Find the distance between parallel lines
i. $15 x+8 y-34=0$ and $15 x+8 y+31=0$
ii. $I(x+y)+p=0$ and $I(x+y)-r=0$.

- Watch Video Solution

> 61. Find angles between the lines
> $\sqrt{3} x+y=1$ and $x+\sqrt{3} y=1$

D Watch Video Solution

62. Two lines passing through the point $(2,3)$ intersects each other at an angle of 60°. If slope of one line is 2 , find equation of the other line.

- Watch Video Solution

63. Find the equation of the right bisector of the line segment joining the points $(3,4)$ and ($-1,2$).

- Watch Video Solution

64. Find the coordinates of the foot of perpendicular from the point $(-1,3)$ to the line $3 x-4 y-16=0$.

- Watch Video Solution

65. The perpendicular from the origin to the line $y=m x+$
c meets it at the point $(-1,2)$. Find the values of m and
C.

- Watch Video Solution

66. If p and q are the lengths of perpendiculars from the origin to the
lines
$x \cos \theta-y \sin \theta=k \cos 2 \theta$ and $x \sec \theta+y \cos e c \theta=k$, respectively, prove that $p^{2}+4 q^{2}=k^{2}$.

(D) Watch Video Solution

67. In the triangle $A B C$ with vertices
$A(2,3), B(4,-1)$ and $C(1,2)$, find the equation and
length of altitude from the vertex A.
68. $A B C$ is a right triangle right angled at C. Let $B C=a, C A$
$=b, A B=c$ and let p be the length of perpendicular from C
on AB . Prove that (i) $\mathrm{pc}=\mathrm{ab}$ (ii) $\frac{1}{p^{2}}=\frac{1}{a^{2}}+\frac{1}{b^{2}}$.

D Watch Video Solution

69. Find the value of α and p if the equation $x \cos \alpha+y \sin \alpha=p$ is the normal form of the line $\sqrt{3 x}+y+2=0$.
70. Find the equations of the lines, which cut-off intercepts on the axes whose sum and product are 1 and -6 , respectively.

D Watch Video Solution

71. What are the points on the y-axis whose distance from the line $\frac{x}{3}+\frac{y}{4}=1$ is 4 units.

- Watch Video Solution

72. Find perpendicular distance from the origin of the line joining the points $(\cos \theta, \sin \theta)$ and $(\cos \phi, \sin \phi)$.
73. Find the equation of the line parallel to y-axis and drawn through the point of intersection of the lines $x-7 y+5=0$ and $3 x+y=0$.

D Watch Video Solution

74. Find the equation of a line drawn perpendicular to the line $\frac{x}{4}+\frac{y}{6}=1$ through the point, where it meets the y-axis.
75. Find the area of the triangle formed by the lines $y-x=0, x+y=0$ and $x-k=0$.

- Watch Video Solution

76. If three lines whose equations are
$y=m_{1} x+c_{1}, y=m_{2} x+c_{2}$ and $m_{3} x+c_{3} \quad$ are concurrent, then show that $m_{1}\left(c_{2}-c_{3}\right)+m_{2}\left(c_{3}-c_{1}\right)+m_{3}\left(c_{1}-c_{2}\right)=0$.

- Watch Video Solution

77. Find the equation of the lines through the point $(3,2)$
which make an angle of 45° with the line $x-2 y=3$.

- Watch Video Solution

78. Find the equation of the line passing through the point of intersection of the lines $4 x+7 y-3=0$ and $2 x-3 y$
$+1=0$ that has equal intercepts on the axes.

- Watch Video Solution

79. Show that the equation of the line passing through
the origin and making an angle
θ with the line $y=m x+c$ is $\frac{y}{x}=\frac{m \pm \tan }{1 \pm m \tan }$.
80. In what ratio, the line joining $(-1,1)$ and $(5,7)$ is divided by the line $x+y=4$?

- Watch Video Solution

81. Find the distance of the line $4 x+7 y+5=0$ from the point $(1,2)$ along the line $2 x-y=0$.

- Watch Video Solution

82. Find the direction in which a straight line must be drawn through the point $(-1,2)$ so that its point of intersection with the line $x+y=4$ may be at a distance of 3 units from this point.

- Watch Video Solution

83. The hypotenuse of a right angled triangle has its ends at the points $(1,3)$ and $(-4,1)$. Find an equation of the legs (perpendicular sides) of the triangle.

- Watch Video Solution

84. Find the image of the point $(3,8)$ with respect to the line $x+3 y=7$ assuming the line to be a plane mirror.
85. If the lines $y=3 x+1$ and $2 y=x+3$ are equally inclined to the line $y=m x+4$,find the value of m.

D Watch Video Solution

86. If sum of the perpendicular distances of a variable point $P(x, y)$ from the lines $x+y-5=0$ and $3 x-2 y+7=0$ is always 10 . Show that P must move on a line.

D Watch Video Solution

87. Find equation of the line which is equidistant from parallel lines $9 x+6 y-7=0$ and $3 x+2 y+6=0$.
88. Aray of light passing through the point(1,2) reflects on the x-axis at point A and the reflected ray passes through the point $(5,3)$. Find the coordinates of A.

D Watch Video Solution

89. Prove that the product of the lengths of the perpendiculars drawn from the points $\left(\sqrt{a^{2}-b^{2}}, 0\right)$ and $\left(-\sqrt{a^{2}-b^{2}}, 0\right)$ to the line $\frac{x}{a} \cos \theta+\frac{y}{b} \sin \theta=1$ is b^{2}
90. A person standing at the junction (crossing) of two
straight paths represented by the equations $2 x-3 y+4=0$
and $3 x+4 y-5=0$ wants to reach the path whose equation is $6 x-7 y+8=0$ in the least time. Find equation of the path that he should follow.

D Watch Video Solution

Exercise

1. Two vertices of an equilateral triangle are $(0,0)$ and (
$3, \sqrt{3}$) then the third vertex can be
A. $(\sqrt{3}, 3)$
B. $(-3, \sqrt{3})$
C. $(3,-\sqrt{3})$
D. $(-\sqrt{3}, 3)$

Answer: C

- Watch Video Solution

2. The points $(-\mathrm{a},-\mathrm{b}),(0,0),(\mathrm{a}, \mathrm{b})$ and $\left(a^{2}, a b\right)$ are
A. Collinear
B. Vertices of a parallelogram
C. Vertices of a rectangle but not a square
D. Vertices of square

Answer: A

- Watch Video Solution

3. Let P and Q be point on the line joining $A(5,6)$ and $B(3$,
$-4)$ such that $A P=P Q=Q B$. Then the midpoint of $P Q$ is
A. $(4,2)$
B. $(4,1)$
C. $(3,1)$
D. $(2,2)$

Answer: B
4. Length of median from A to $B C$ of triangle $A B C$ where A
$(2,5) B(7,-1)$ and $C(3,5)$ is
A. $2 \sqrt{3}$
B. 6
C. $3 \sqrt{2}$
D. $\sqrt{20}$

Answer: D

D Watch Video Solution

5. If $(3,-4)$ and $(-6,5)$ are the extremities of the diagonal of

fourth vertex is

A. ($-1,2$)
B. $(-1,-2)$
C. $(2,1)$
D. $(-1,0)$

Answer: D

- Watch Video Solution

6. The coordinates of the middle points of the sides of a triangle are $(4,2),(3,3)$ and $(2,2)$ then the coordinates of the centroid are
A. $\left(3, \frac{7}{3}\right)$
B. $(3,3)$
C. $\left(2, \frac{8}{3}\right)$
D. $\left(\frac{8}{3}, \frac{7}{3}\right)$

Answer: A

- Watch Video Solution

7. The incentre of the triangle $A B C$ where $A(-36,7) B(20,7)$ and $C(0,-8)$ is
A. $(0,-1)$
B. $(-1,0)$
C. $\left(\frac{1}{2}, 1\right)$
D. $\left(1, \frac{1}{2}\right)$

Answer: B

D Watch Video Solution

8. The triangle with vertices $\mathrm{A}(2,4), \mathrm{B}(2,6)$ and $\mathrm{C}(2+\sqrt{3}$,
5) is
A. right angled
B. right angled isosceles
C. equilateral
D. obtuse angled

Answer: C

- Watch Video Solution

9. The area of the triangle with vertices at the points $(a, b$
$+c),(b, c+a)$ and $(c, a+b)$ is
A. 0
B. $a+b+c$
C. $a b+b c+c a$
D. $a b+b c$

Answer: A
10. The straight lines $x+y=0,3 x+y=4, x+3 y-4=0$ form a triangle which is
A. isosceles
B. equilateral
C. right angled
D. obtuse angled

Answer: A

- Watch Video Solution

11. The image of the point $(-1,3)$ by the line $x-y=0$ is
A. $(3,-1)$
B. $(1,-3)$
C. $(-1,-1)$
D. $(3,3)$

Answer: A

- Watch Video Solution

12. If $(4,0)$ and $(1,-1)$ are two vertices of a triangle of area 4 square units, then its third vertex lies on
A. $x=y$
B. $5 x+4+12=0$
C. $x+5 y=4$
D. $5 x-y+5=0$

Answer: C

D Watch Video Solution

13. Three lines $p x+q y+r=0, q x+r y+p=0$ and $r x+p y+q=$ 0 are concurrent of
A. $p+q+r=0$
B. $p^{2}+q^{2}+r^{2}=p q+q r+r p$
C. $p^{3}+q^{3}+r^{3}=3 p q r$
D. $p+q-r=0$

Answer: C

- Watch Video Solution

14. If each of the points ($x, 4$), $(-2, y$,$) lie on the-line joining$ the points $(2,-1)$ and $(5,-3)$ then the point $\mathrm{P}\left(x_{1}, y_{1}\right)$ lies on the line
A. $6(x+y)-25=0$
B. $2 x+6 y+1=0$
C. $2 x+3 y-6=0$
D. $6(x+y)+25=0$

Answer: B
15. All points lying inside the triangle formed by the points (1, 3), (5,0) and (-1, 2) satisfy
A. $3 x+2 y \geq 0$
B. $2 x+y-13 \geq 0$
C. $2 x-3 y-12 \geq 0$
D. $-2 x+y \geq 0$

Answer: A

- Watch Video Solution

16. The line segment joining the points $(-3,-4)$ and $(1,-2)$ is divided by y axis in the ratio
A. $1: 3$
B. 2 : 3
C. $3: 1$
D. $3: 2$

Answer: C

D Watch Video Solution

17. The line segment joining the points $(1,2)$ and $(2,1)$ is divided by the line $3 x+4 y=7$ in the ratio
A. $3: 4$
B. 4 : 3
C. $9: 4$
D. $4: 9$

Answer: D

- Watch Video Solution

18. If the point $(5,2)$ bisects the intercept of a line between the axes then its equation is
A. $5 x+2 y=20$
B. $2 x+5 y=20$
C. $5 x-2 y=20$
D. $2 x-5 y=20$

Answer: B

- Watch Video Solution

19. The equation of the line passing through origin and perpendicular to the line $7 x-3 y+4=0$
A. $3 x+y=5$
B. $3 x+7 y=0$
C. $7 x+3 y+15=0$
D. $3 x-7 y+23=0$

Answer: A

- Watch Video Solution

20. The image of the point $(3,8)$ with respect to the line x
$+3 y=8$ is
A. $\left(5, \frac{-17}{4}\right)$
B. $\left(\frac{-5}{4},-4\right)$
C. $(0,-1)$
D. None of these

Answer: D
21. Line $x+2 y-8=0$ is the perpendicular bisector of $A B$. If $B=(3,5)$ the A is
A. $(2,1)$
B. $(1,2)$
C. $(2,2)$
D. $(1,1)$

Answer: D

- Watch Video Solution

22. If the algebraic sum of the distances from the points
$(2,0),(0,2)$ and $(1,1)$ to a variable line be zero then the line
passes through the fixed point.
A. $(0,0)$
B. $(1,1)$
C. $(-1,1)$
D. $(2,1)$

Answer: B

- Watch Video Solution

23. If a, b, c are in $A P$ then $a x+b y+c=0$ represents
A. a single line
B. a family of concurrent lines
C. a family of parallel lines
D. Two lines which are not parallel

Answer: B

- Watch Video Solution

24. The set of lines $a x+b y+c=0$ where $3 a+2 b+4 c=0$ intersect at the point
A. $\left(\frac{3}{4}, \frac{1}{2}\right)$
B. $\left(\frac{1}{2}, \frac{3}{4}\right)$
C. $\left(\frac{-3}{4}, \frac{-1}{2}\right)$
D. $\left(\frac{-1}{2}, \frac{-3}{4}\right)$

Answer: A

- Watch Video Solution

25. If a, b, c are in AP then $a x+b y+c=0$ will always pass
through a fixed point whose coordinates are
A. $(1,-2)$
B. $(-1,2)$
C. $(1,2)$
D. $(-1,-2)$

Answer: A
26. The mid points of the sides of a triangle are (5,0), (5 ,
12) and (0,12). The orthocentre of this triangle is
A. $(0,0)$
B. $(10,0)$
C. $(0,24)$
D. $\left(\frac{13}{3}, 18\right)$

Answer: A

- Watch Video Solution

27. One vertex of the equilateral triangle with centroid at the origin and one side as $x+y-2=0$ is
A. $(-1,-1)$
B. $(2,2)$
C. $(-2,-2)$
D. $(4,5)$

Answer: C

- Watch Video Solution

28. $A(-5,0)$ and $B(3,0)$ are two of the verti- ces of a triangle $A B C$. Its area is 20 square units. The vertex Clies on the line $x-y=2$. The coordinates of C are
A. $(-7,-5)$ or $(3,5)$
B. $(-3,-5)$ or $(-5,7)$
C. $(7,5)$ or $(3,5)$
D. $(-3,-5)$ or $(7,5)$

Answer: D

- Watch Video Solution

29. The ratio in which the line $3 x+4 y+2=0$ divides the distance between $3 x+4 y+5=0$ and $3 x+4 y-5=0$
A. $7: 3$
B. $3: 7$
C. $2: 5$
D. $5: 2$

Answer: B

- Watch Video Solution

30. If the foot of perpendicular from the origin to a straight line is at the point ($3,-4$). Then the equation of the line is
A. $3 x-4 y=25$
B. $3 x-4 y+25=0$
C. $4 x+3 y-25=0$
D. $4 x+3 y+25=0$

Answer: A

- Watch Video Solution

31. A rectangle has two opposite vertices at $(1,2)$ and $(5,5)$.

If the other vertices lie on the line $x=3$ then their coordinates are
A. $(3,1),(3,3)$
B. $(3,1),(3,6)$
C. $(3,1),(3,4)$
D. $(3,2),(3,3)$

Answer: B
32. If the lines $a x+2 y+1=0, b x+3 y+1=0, c x+4 y+1=0$ are concurrent, then a, b, c are in
A. AP
B. GP
C. HP
D. AGP

Answer: A

- Watch Video Solution

33. The distance of the point $(3,5)$ from the line $2 x+3 y-$ $14=0$ measured parallel to the line $x-2 y=1$ is
A. $7 \sqrt{5}$
B. $7 \sqrt{13}$
C. $\sqrt{5}$
D. $\sqrt{13}$

Answer: C

(D) Watch Video Solution

34. A straight line through the point $(2,2)$ intersects the
lines $\sqrt{3} x+y=0$ and $\sqrt{3} x-y=0$ at the points A and
B. The equation of $A B$ so that the triangle $O A B$ is equilateral, where O is the origin.
A. $x-2=0$
B. $y-2=0$
C. $x+y-4=0$
D. $x+y+z=0$

Answer: B

- Watch Video Solution

35. If the extremities of the base of an isosce- les triangle are the points ($2 \mathrm{a}, 0$) and ($0, \mathrm{a}$) and the equation of one of the sides is $x=2 a$, then the area of the triangle is
A. $5 a^{2}$ sq. units
B. $\frac{5}{2} a^{2}$ sq. units
C. $\frac{25}{2} a^{2}$ sq. units
D. $10 a^{2}$ sq. units

Answer: B

- Watch Video Solution

36. The equation of the line passing through the intersection of $x-\sqrt{3} y+\sqrt{3}-1=0$ and $\mathrm{x}+\mathrm{y}-2=0$ and making an angle 15° with the first line is
A. $x-y=0$
B. $x-y+1=0$
C. $y=1$
D. $\sqrt{3} x-y+1-\sqrt{3}=0$

Answer: A

- Watch Video Solution

37. The equations of the lines through ($-1,-1$) and making angles 45° with the line $x+y=0$ are given by
A. $x+1=0, x-y=0$
B. $y+1=0,2-y=0$
C. $x+1=0, y+1=0$
D. $x+1=0, y-1=0$

Answer: C

- Watch Video Solution

38. If the vertices of a diagonal of a square $(-2,4)$ and $(-2$,
2) then its other two vertices are
A. ($1,-1$) and (5,1)
B. (1,1) and (5,1)
C. $(1,1)$ and $(-5,1)$
D. None of these
39. The orthocentre of the triangle formed by the lines $x=$
$0, y=0$ and $x+y=1$ is
A. $\left(\frac{1}{2}, \frac{1}{2}\right)$
B. $\left(\frac{1}{3}, \frac{1}{3}\right)$
C. $(0,0)$
D. $\left(\frac{1}{4}, \frac{1}{4}\right)$

Answer: C

40. The foot of the perpendicular from the point $(3,4)$ on the line $3 x-4 y+5=0$ is
A. $(-2,3)$
B. $(2,1)$
C. $(3,2)$
D. $(1,2)$

Answer: B

- Watch Video Solution

41. The coordinates of the image of the origin O w.r.t the
line $x+y+1=0$ are
A. $\left(\frac{-1}{2}, \frac{1}{2}\right)$
B. $(-2,-2)$
C. $(1,1)$
D. $(-1,-1)$

Answer: D

- Watch Video Solution

42. The incentre of the triangle with vertices $(1, \sqrt{3})(0,0)$
$(2,0)$ is
A. $\left(1, \frac{\sqrt{3}}{2}\right)$
B. $\left(\frac{2}{3}, \frac{1}{\sqrt{3}}\right)$
C. $\left(\frac{2}{3}, \frac{\sqrt{3}}{2}\right)$
D. $\left(1, \frac{1}{\sqrt{3}}\right)$

Answer: D

- Watch Video Solution

43. The angle between the lines $2 x-y+3=0$ and $x+2 y+3$
$=0$ is
A. 90°
B. 60°
C. 45°
D. 30°

Answer: A

- Watch Video Solution

44. Distance between the lines $5 x+3 y-7=0$ and $15 x+9 y+$
$14=0$ is
A. $\frac{35}{\sqrt{34}}$
B. $\frac{1}{3 \sqrt{34}}$
C. $\frac{35}{3 \sqrt{34}}$
D. $\frac{35}{2 \sqrt{34}}$

Answer: C

45. The equation of the straight line passing through the point $(4,3)$ and making intercepts on the coordinate axes whose sum is -1 is
A. $3 x+2 y=6$
B. $3 x-2 y=-6$
C. $3 x+2 y+6=0$
D. $3 x-2 y=6$

Answer: D

- Watch Video Solution

46. The third vertex of an equilateral triangle whose vertices are (2, 4), (2, 6)
A. $(2+\sqrt{3}, 5)$
B. $(2 \sqrt{3}, 5)$
C. $(\sqrt{2}, 5)$
D. $(\sqrt{3}, 5)$

Answer: A

- Watch Video Solution

47. The area enclosed by the curve $|x|+|y|=1$ is
A. 2
B. 1.5
C. 3
D. 8

Answer: B

- Watch Video Solution

48. The area enclosed by the curves $a x \pm b y \pm c=0$
where $a, b, c>0$
A. $2 \frac{c^{2}}{a b}$
B. $\frac{c^{2}}{2 a b}$
C. $2 \frac{a b}{c^{2}}$
D. $\frac{c^{2}}{a^{2}}$

Answer: A

D Watch Video Solution

49. The lines $a x+3 y+19=0$ and $9 x+6 y-17=0$ cut the coordinate axes in concyclic points then $\mathrm{a}=$
A. 1
B. 2
C. -1
D. $\frac{-9}{2}$

- Watch Video Solution

50. The point on the line $3 y-4 x+11=0$ equidistant from
$(3,2)$ and $(-2,3)$ is
A. $(3,5)$
B. $(-1,-11)$
C. $(1,3)$
D. None of these

Answer: D
51. The vertices of a triangle have integer co- ordinates then the triangle cannot be
A. equilateral
B. isosceles
C. right angled
D. right angled isosecles

Answer: A

- Watch Video Solution

52. A $(2,5), B(-1,3)$ and $C(5,-1)$ are the vertices of a triangle. The image of the point $(1,2)$ with respect to the

median through A is

A. $(2,1)$
B. $(3,2)$
C. $\left(\frac{3}{2}, \frac{7}{2}\right)$
D. $(-1,-2)$

Answer: B
(D) Watch Video Solution
53. The reflection of the point $(6,8)$ in the line $x-y=0$ is
A. $(6,8)$
B. $(-6,8)$
C. $(-8,-6)$
D. $(8,6)$

Answer: D

- Watch Video Solution

Questions From Competitive Exams

1. The incentre of the triangle $A B C$ where $A(-36,7) B(20,7)$
and $C(0,-8)$ is
A. $\left(\frac{\sqrt{105}}{3}\right)$
B. $\frac{2}{3}$
C. $\left(\frac{\sqrt{211}}{3}\right)$
D. $\left(\frac{\sqrt{205}}{3}\right)$

Answer: D

- Watch Video Solution

2. The foot of the perpendicular from the point $(3,4)$ on the line $3 x-4 y+5=0$ is
A. $\left(\frac{81}{25}, \frac{92}{25}\right)$
B. $\left(\frac{92}{25}, \frac{81}{25}\right)$
C. $\left(\frac{46}{25}, \frac{54}{25}\right)$
D. $\left(\frac{-81}{25}, \frac{-92}{25}\right)$

Answer: A

- Watch Video Solution

3. The equation of the base $B C$ of an equilateral triangle $A B C$ is $x+y=2$ and A is $(2,-1)$. The length of the side of the triangle is
A. $\sqrt{2}$
B. $\left(\frac{3}{2}\right)^{1 / 2}$
C. $\frac{1}{2}$
D. $\left(\frac{2}{3}\right)^{1 / 2}$
4. The product of the perpendiculars from ($-1,2$) to the pair of lines

$$
2 x^{2}-5 x y+2 y^{2}+3 x-3 y+1=0 \text { is }
$$

A. $\frac{5}{12}$
B. $\frac{12}{5}$
C. $\frac{6}{5}$
D. $\frac{5}{6}$

Answer: B

5. The distance between the pair of parallel lines $x^{2}+4 x y+4 y^{2}+3 x+6 y-4=0$ is
A. $\frac{4 \sqrt{3}}{3}$
B. $2 \sqrt{2}$
C. $4 \sqrt{2}$
D. 4

Answer: D

- Watch Video Solution

6. The four lines $6 x^{2}-5 x y-6 y^{2}+x+5 y-1=0$ and $6 x^{2}-5 x y-6 y^{2}=0$, form a
A. parallelogram
B. rhombus
C. rectangle
D. square

Answer: D

- Watch Video Solution

7. The foot of perpendicular from $(-2,3)$ to the line $2 x-y-$
$3=0$ is
A. $(-2,3)$
B. $(2,-1)$
C. $(3,2)$
D. $(1,2)$

Answer: B

- Watch Video Solution

8. If the lines $x-y-1=0,4 x+3 y=k$ and $2 x-3 y+1=0$ are concurrent, then k is
A. 1
B. -1
C. 25
D. 5

Answer: C

- Watch Video Solution

9. The centroid of a triangle formed by the points (0,0), (
$\cos \theta, \sin \theta)$ and $(\sin \theta,-\cos \theta)$ lies on the line $y=2 x$, then is
A. $\tan ^{-1} 2$
B. $\tan ^{-1} 1 / 3$
C. $\tan ^{-1} 1 / 2$
D. $\tan ^{-1}(-3)$

Answer: D
10. The orthocentre of the triangle formed by $(8,0)$ and (4,
6) with the origin is
A. $\left(4, \frac{8}{3}\right)$
B. $(3,-4)$
C. $(4,3)$
D. $(3,4)$

Answer: A

- Watch Video Solution

11. If $x y-4 x+3 y-\lambda=0$ represents the asymptotes of $x y-4 x+3 y=0$, then λ is
A. 3
B. -6
C. 8
D. 12

Answer: D

- Watch Video Solution

12. The inclination of the straight line passing through the point $(-3,6)$ and the midpoint of the line joining the
points $(4,-5)$ and $(-2,9)$ is
A. $\frac{\pi}{4}$
B. $\frac{\pi}{6}$
C. $\frac{\pi}{3}$
D. $\frac{3 \pi}{4}$

Answer: D

D Watch Video Solution

13. A point moves such that the area of the triangle formed by it with the points $(1,5)$ and $(3,-7)$ is 21 sq. units.

Then locus of the point is
A. $6 x+y-32=0$
B. $6 x-y+32=0$
C. $x+6 y-32=0$
D. $6 x-y-32=0$

Answer: A

- Watch Video Solution

14. The line $\frac{x}{a}-\frac{y}{b}=1$ cuts the x-axis at P. The equation of the line through P perpendicular to the given
line is
A. $x+y=a b$
B. $x+y=a+b$
C. $a x+b y=a^{2}$
D. $b x+a y=b^{2}$

Answer: C

- Watch Video Solution

15. The value of λ for which the lines $3 x+4 y=5,2 x+3 y=4$
and $\lambda x+4 y=6$ meet at a point is
A. 2
B. 1
C. 4
D. 3

Answer: A

- Watch Video Solution

16. The orthocentre of the triangle whose vertices are
$(5,-2),(-1,2)$ and $(1,4)$ is
A. $\left(\frac{1}{5}, \frac{14}{5}\right)$
B. $\left(\frac{14}{5}, \frac{1}{5}\right)$
C. $\left(\frac{1}{5}, \frac{1}{5}\right)$
D. $\left(\frac{14}{5}, \frac{14}{5}\right)$
17. Distance between the lines $5 x+3 y-7=0$ and $15 x+9 y+$ $14=0$ is
A. $\frac{35}{\sqrt{34}}$
B. $\frac{1}{\sqrt{34}}$
C. $\frac{35}{3 \sqrt{34}}$
D. $\frac{35}{2 \sqrt{34}}$

Answer: C

18. If the equation $2 x^{2}+7 x y+3 y^{2}-9 x-7 y+k=0$ represents a pair of lines, then kis equal to
A. 4
B. 2
C. 1
D. -4

Answer: A

- Watch Video Solution

19. The angle between the lines $2 x-y+3=0$ and $x+2 y+3$
$=0$ is
A. 90°
B. 60°
C. 45°
D. 30°

Answer: A

- Watch Video Solution

20. Distance between the pair of lines represented by the equation $x^{2}-6 x y+9 y^{2}+3 x-9 y-4=0$ is
A. $\frac{15}{\sqrt{10}}$
B. $\frac{1}{2}$
C. $\sqrt{\frac{5}{2}}$
D. $\frac{1}{\sqrt{10}}$

Answer: C

D Watch Video Solution

21. The centroid of a triangle is $(2,7)$ and two of its vertices are $(4,8)$ and $(-2,6)$. The third vertex is
A. $(0,0)$
B. $(4,7)$
C. $(7,4)$
D. $(7,7)$

Answer: B

- Watch Video Solution

22. The points (1, 1), ($-5,5$) and ($13, \lambda$) lie on the same straight line if $\lambda=$
A. 7
B. -7
C. ± 7
D. 0

Answer: B
23. If the lines $3 x+4 y+1=0,5 x+\lambda y+3=0$ and $2 x+y$ -
$1=0$ are concurrent, then $\lambda=$
A. -8
B. 8
C. 4
D. -4

Answer: B

- Watch Video Solution

24. If the equation $k x^{2}-2 x y-y^{2}-2 x+2 y=0$ represents a pair of lines, then $k=$
A. 2
B. -2
C. -5
D. 3

Answer: D

- Watch Video Solution

25. The x-coordinate of the incentre of the triangle where the midpoints of the sides are $(0,1)(1,1)$ and $(1,0)$ is
A. $2+\sqrt{2}$
B. $1+\sqrt{2}$
C. $2-\sqrt{2}$
D. $1-\sqrt{2}$

Answer: C

- Watch Video Solution

26. Two consecutive sides of a parallelogram are $4 x+5 y=$

0 and $7 x+2 y=0$. One diagonal of the parallelogram is
$11 x+7 y=9$. If the other diagonal is $a x+b y+c=0$, then
A. $a=-1, b=-1, c=2$
B. $a=1, b=-1, c=0$
C. $a=-1, b=-1, c=0$
D. $a=1, b=1, c=0$

Answer: B

- Watch Video Solution

27. $a x+b y-a^{2}=0$, where a , b non-zero, is the equation to the straight line perpendicular to a line I and passing through the point where I crosses the x-axis.

Then equation to the line / is
A. $\frac{x}{b}-\frac{y}{a}=1$
B. $\frac{x}{a}-\frac{y}{b}=1$
C. $\frac{x}{b}+\frac{y}{a}=a b$
D. $\frac{x}{a}-\frac{y}{b}=a b$

- Watch Video Solution

28. A straight line through $P(1,2)$ is such that its intercept between the axes is bisected at P. Its equation is
A. $x+y=-1$
B. $x+y=3$
C. $x+2 y=5$
D. $2 x+y=4$

Answer: D
29. The equation to the sides of a triangle are $x-3 y=0,4 x$
$+3 y=5$ and $3 x+y=0$. The line $3 x-4 y=0$ passes through
A. the incentre
B. the centroid
C. the orthocenter
D. the circumcenter

Answer: C

- Watch Video Solution

30. If $(-4,5)$ is one vertex and $7 x-y+8=0$ is one diagonal of a square, then the equation of the second diagonal is
A. $x+3 y=21$
B. $2 x-3 y=7$
C. $x+7 y=31$
D. $2 x+3 y=21$

Answer: C

- Watch Video Solution

31. If $x_{1}, x_{2}, x(3)$ as well as y_{1}, y_{2}, y_{3} are in geometric progression with the same common ratio,then the points
$\left(x_{-}(1), y_{-}(1)\right),\left(x_{-}(2), y_{-}(2)\right),\left(x_{-}(3), y_{-}(3)\right)^{\prime}$
A. lie on a parabola
B. lie on an ellipse
C. lie on a circle
D. straight line

Answer: D

- Watch Video Solution

32. The distance between the pair of parallel lines $x^{2}+4 x y+4 y^{2}+3 x+6 y-4=0$ is
A. $\sqrt{5}$
B. $\frac{2}{\sqrt{5}}$
C. $\frac{1}{\sqrt{5}}$
D. $\frac{\sqrt{5}}{2}$

Answer: A

- Watch Video Solution

33. The locus of the point (x, y) which is equidistant from
the points $(a+b, b-a)$ and $(a-b, a+b)$ is
A. $a x=b y$
B. $a x+b y=0$
C. $b x+a y=0$
D. $b x-a y=0$

- Watch Video Solution

34. If $A(3,5), B(-5,-4), C(7,10)$ are the vertices of a parallelogram, taken in the order, then the co-ordinates of the fourth vertex are
A. $(10,19)$
B. $(15,10)$
C. $(19,10)$
D. $(15,19)$

Answer: D
35. $A B C$ is a triangle with vertices $A(-1,4), B(6,-2)$, and $C(-2$,
4). D, E and F are the points which divide each $A B, B C$, and

CA respectively in the ratio 3:1 internally. Then the centroid of the triangle DEF is
A. $(3,6)$
B. $(1,2)$
C. $(4,8)$
D. $(-3,6)$

Answer: B
36. If the pairs of lines $x^{2}-2 n x y-y^{2}=0$ and $x^{2}-2 m x y-y^{2}=0$ are such that one of them represents the bisectors of the angles between the other, then

$$
\begin{aligned}
& \text { A. } \frac{1}{n}+\frac{1}{m}=0 \\
& \text { B. } \frac{1}{n}-\frac{1}{m}=0 \\
& \text { C. } n m-1=0 \\
& \text { D. } m n+1=0
\end{aligned}
$$

Answer: D

37. The angle between the pair of straight lines $y^{2} \sin ^{2} \theta-x y \sin ^{2} \theta+x^{2}\left(\cos ^{2} \theta-1\right)=0$ is
A. $\frac{\pi}{3}$
B. $\frac{\pi}{4}$
C. $\frac{\pi}{6}$
D. $\frac{\pi}{2}$

Answer: D

D Watch Video Solution

38. If the equation of base of an equilateral triangle is $2 x-$ $y=1$ and the vertex is $(-1,2)$, then the length of the side of
the triangle is
A. $\sqrt{\frac{20}{3}}$
B. $\frac{2}{\sqrt{15}}$
C. $\sqrt{\frac{8}{15}}$
D. $\sqrt{\frac{15}{2}}$

Answer: A

- Watch Video Solution

39. The image of the origin with reference to the line $4 x+$
$3 y-25=0$ is
A. $(-8,6)$
B. $(8,6)$
C. $(-3,4)$
D. $(8,-6)$

Answer: B

- Watch Video Solution

40. The position of reflection of the point $(4,1)$ about the line $y=x-1$ is
A. $(1,2)$
B. $(3,4)$
C. $(-1,0)$
D. $(2,3)$

Answer: D

D Watch Video Solution

41. The line $2 x-y=1$ bisects angle between two lines. If equation of one line is $y=x$, then the equation of the other line is
A. $7 x-y-6=0$
B. $x-2 y+1=0$
C. $3 x-2 y-1=0$
D. $x-7 y+6=0$

Answer: A

- Watch Video Solution

42. The ratio in which the line $x+y=4$ divides the line joining the points $(-1,1)$ and $(5,7)$ is
A. 1:2
B. 2:1
C. 1:3
D. 3:1

Answer: A
43. The angle between the lines $\sqrt{3} x-y-2=0$ and $x-\sqrt{3} y+1=0$ is
A. 90°
B. 60°
C. 45°
D. 30°

Answer: D

- Watch Video Solution

44. Let $Q(a, b)$ be a point on the line $x+y=1$. Then the equation of a set of points $P(x, y)$ such that its distance
from the line $x+y=1$ is equal to its distance from the point $Q(a, b)$ is
A. $x+y-a-b=0$
B. $x-y+a-b=0$
C. $x-y-a+b=0$
D. $x+y+a+b=0$

Answer: C

- Watch Video Solution

45. The equation of the line passing through the origin and the point of intersection of the lines $\frac{x}{a}+\frac{y}{b}=1$ and $\frac{x}{b}+\frac{y}{a}=1$ is
A. $b x-a y=0$
B. $x+y=0$
C. $a x-b y=0$
D. $x-y=0$

Answer: D

- Watch Video Solution

46. The vertices A, B, C of a triangle are (2, 1), (5, 2) and (3,
4) respectively. Then the circumcentre is
A. $\left(\frac{13}{4}, \frac{-9}{4}\right)$
B. $\left(\frac{-13}{4}, \frac{9}{4}\right)$
C. $\left(\frac{-13}{4}, \frac{-9}{4}\right)$
D. $\left(\frac{13}{4}, \frac{9}{4}\right)$

Answer: D

- Watch Video Solution

47. The x-axis, y-axis and a line passing through the point
$\mathrm{A}(6,0)$ form a triangle ABC . If $\angle A=30^{\circ}$, then the area of the triangle in sq.units, is
A. $6 \sqrt{3}$
B. $12 \sqrt{3}$
C. $4 \sqrt{3}$
D. $8 \sqrt{3}$

Answer: A

- Watch Video Solution

48. The equations of the lines through the point $(3,2)$
which makes an angle of 45° with the line $x-2 y=3$ are
A. $3 x-y=7$ and $x+3 y=9$
B. $x-3 y=7$ and $3 x+y=9$
C. $x-y=3$ and $x+y=2$
D. $2 x+y=7$ and $x-2 y=9$

Watch Video Solution

49. The straight lines $3 x+4 y-5=0$ and $4 x-3 y=15$ intersect at the point P. On these lines the points Q and R are chosen so that $P Q=P R$. The slopes of the lines $Q R$ passing through (1, 2) are
A. $-7, \frac{1}{7}$
B. $7, \frac{1}{7}$
C. $7,-\frac{1}{7}$
D. $3,-\frac{1}{3}$

Answer: A
50. The equation of the line which is such that the portion of line segment intercepted between the coordinate axes is bisected at $(4,-3)$ is
A. $3 x+4 y=24$
B. $3 x-4 y=12$
C. $3 x-4 y=24$
D. $4 x-3 y=24$

Answer: C

51. In $\Delta A B C, \mathrm{a}=13 \mathrm{~cm}, \mathrm{~b}=12 \mathrm{~cm}$ and $\mathrm{c}=5 \mathrm{~cm}$. Then the distance of A from $B C$ is
A. $\frac{25}{13} \mathrm{~cm}$
B. $\frac{60}{13} \mathrm{~cm}$
C. $\frac{65}{12} \mathrm{~cm}$
D. $\frac{144}{13} \mathrm{~cm}$

Answer: B

- Watch Video Solution

52. The equation of a line through the point $(1,2)$ whose distance from the point $(3,1)$ has the greatest value, is
A. $y=2 x$
B. $y=x+1$
C. $x+2 y=5$
D. $y=3 x-1$

Answer: A

- Watch Video Solution

53. If a line with y-intercept 2 is perpendicular to the lines $3 x-2 y=6$, then its x - intercept is
A. 1
B. 2
C. -4
D. 3

Answer: D

- Watch Video Solution

54. If the lines $a x+k y+10=0, b x+(k+1) y+10=0$ and $c x$
$+(k+2) y+10=0$ are concurrent, then
A. a, b, c are in G.P.
B. a, b, c are in H.P
C. a, b, c are in A.P
D. $(a+b)^{2}=c$

Answer: C

- Watch Video Solution

55. The lines $(a+2 b) x+(a-3 b) y=a-b$ for different values of a and b pass through the fixed point whose coordinates are
A. $\left(\frac{2}{5}, \frac{2}{5}\right)$
B. $\left(\frac{3}{5}, \frac{3}{5}\right)$
C. $\left(\frac{1}{5}, \frac{1}{5}\right)$
D. $\left(\frac{2}{5}, \frac{3}{5}\right)$

Answer: D
56. A line passes through the point of intersection of the lines $100 x+50 y-1=0$ and $75 x+25 y+3=0$ and makes equal intercepts on the axes. Its equation is
A. $25 x+25 y-1=0$
B. $5 x-5 y+3=0$
C. $25 x+25 y-4=0$
D. $25 x-25 y+6=0$

Answer: C

57. The circumcentre of the triangle with vertices (0,30),
$(4,0)$ and $(30,0)$ is
A. $(10,10)$
B. $(10,12)$
C. $(12,12)$
D. $(17,17)$

Answer: D

- Watch Video Solution

58. A line has slope m and y-intercept 4 . The distance between the origin and the line is equal to
A. $\frac{4}{\sqrt{1-m^{2}}}$
B. $\frac{4}{\sqrt{m^{2}-1}}$
C. $\frac{4}{\sqrt{m^{2}+1}}$
D. $\frac{4 m}{\sqrt{1+m^{2}}}$

Answer: C

- Watch Video Solution

59. One side of length 3 a of a triangle of area a^{2} square units lies on the line $x=a$. Then one of the lines on which the third vertex lies, is

$$
\text { A. } x=-a^{2}
$$

B. $x=a^{2}$
C. $x=-a$
D. $x=\frac{a}{3}$

Answer: D

- Watch Video Solution

60. The distance of the point $(1,2)$ from the line $x+y+5=$ 0 measured along the line parallel to $3 x-y=7$ is equal to
A. $4 \sqrt{10}$
B. 40
C. $\sqrt{40}$
D. $10 \sqrt{2}$

Answer: C

- Watch Video Solution

61. If the lines $y=3 x+1$ and $2 y=x+3$ are equally inclined to the line $y=m x+4,\left(\frac{1}{2}<m<3\right)$, then the values of m are

$$
\begin{aligned}
& \text { A. } \frac{1}{7}(1 \pm 5 \sqrt{3}) \\
& \text { B. } \frac{1}{7}(1 \pm 5 \sqrt{5}) \\
& \text { C. } \frac{1}{7}(1 \pm 5 \sqrt{2}) \\
& \text { D. } \frac{1}{7}(1 \pm 3 \sqrt{2})
\end{aligned}
$$

- Watch Video Solution

62. The vertices of a triangle are (3,0), (3,3) and (0,3).

Then the coordinates of the circumcentre are
A. $(0,0)$
B. $(1,1)$
C. $\left(\frac{5}{2}, \frac{5}{2}\right)$
D. $\left(\frac{3}{2}, \frac{3}{2}\right)$

Answer: D
63. If the distance between $(2,3)$ and $(-5,2)$ is equal to the distance between ($x, 2$) and (1,3), then the values of x are
A. $-6,8$
B. 6,8
C. $-8,6$
D. $-7,7$

Answer: A

D Watch Video Solution

64. If the three points $(0,1),(0,-1)$ and $(x, 0)$ are vertices of an equilateral triangle, then the values of x are
A. $\sqrt{3}, \sqrt{2}$
B. $\sqrt{3},-\sqrt{3}$
C. $-\sqrt{5}, \sqrt{3}$
D. $\sqrt{2},-\sqrt{2}$

Answer: B

- Watch Video Solution

65. If the line $\mathrm{px}-\mathrm{qy}=\mathrm{r}$ intersects the co-ordinate axes at
$(\mathrm{a}, \mathrm{0})$ and $(0, \mathrm{~b})$, then the value of $\mathrm{a}+\mathrm{b}$ is equal to
A. $r\left(\frac{q+p}{p q}\right)$
B. $r\left(\frac{q-p}{p q}\right)$
C. $r\left(\frac{p-q}{p q}\right)$
D. $r\left(\frac{p+q}{p-q}\right)$

Answer: B

- Watch Video Solution

66. The vertices of a triangle are $A(3,7), B(3,4)$ and $C(5,4)$.

The equation of the bisector of the angle $\angle A B C$ is
A. $y=x+1$
B. $y=x-1$
C. $y=3 x-5$
D. $y=x$

Answer: A

- Watch Video Solution

67. The equation of a straight line which passes through the point ($a \cos ^{3} \theta, a \sin ^{3} \theta$) and perpendicular to $x \sec \theta+y \operatorname{cosec} \theta=a$
A. $\frac{x}{a}+\frac{y}{a}=a \cos \theta$
B. $x \cos \theta-y \sin \theta=a \cos 2 \theta$
C. $x \cos \theta+y \sin \theta=a \cos 2 \theta$
D. $x \cos \theta+y \sin \theta-a \cos 2 \theta=1$

Answer: B
68. The slopes of the lines which make an angle 45° with the line $3 x-y=-5$ are
A. $1,-1$
B. $\frac{1}{2},-1$
C. $1, \frac{1}{2}$
D. $-2, \frac{1}{2}$

Answer: D

- Watch Video Solution

69. The equation of one of the lines parallel to $4 x-3 y=5$ and at a unit distance from the point $(-1,-4)$ is
A. $3 x+4 y-3=0$
B. $3 x+4 y+3=0$
C. $4 x-3 y+3=0$
D. $4 x-3 y-3=0$

Answer: D

D Watch Video Solution

70. The distance between the points $(a \cos \alpha, a \sin \alpha)$ and $(a \cos \beta, a \sin \beta)$ is
A. $2\left|\sin \left(\frac{\alpha-\beta}{2}\right)\right|$
B. $2\left|a \sin \left(\frac{\alpha-\beta}{2}\right)\right|$
C. $2 \left\lvert\, a \cos \left(\frac{\alpha-\beta}{2}\right)\right.$
D. $\left|a \cos \left(\frac{\alpha-\beta}{2}\right)\right|$

Answer: B

- Watch Video Solution

71. The vertices of the rectangle $A B C D$ are $A(-1,0), B(2,0)$,
$C(a, b)$ and $D(-1,4)$. Then the length of the diagonal $A C$ is
A. 2
B. 3
C. 4
D. 5

Answer: D

- Watch Video Solution

72. If a straight line passes through the points $\left(\frac{-1}{2}, 1\right)$ and (1,2), then its x-intercept is
A. -2
B. -1
C. 2
D. 1

Answer: A

- Watch Video Solution

73. The line parallel to the x-axis and passing through the intersection of the lines $a x+2 b y+3 b=0$ and $b x-2 a y-$ $3 \mathrm{a}=0$, where $(a, b) \neq(0,0)$ is
A. above the x-axis at a distance of $\frac{3}{2}$
B. above the x-axis at a distance of $\frac{2}{3}$
C. below the x-axis at a distance of $\frac{2}{3}$
D. below the x-axis at a distance of $\frac{3}{2}$.

Answer: D
74. The line L has intercepts a and b on the coordinate axes. Keeping the origin fixed, the coordinate axes are rotated through a fixed angle. If the line L has intercepts
p and q on the rotated axes, then $\frac{1}{a^{2}}+\frac{1}{b^{2}}$ is equal to
A. $p^{2}+q^{2}$
B. $p^{2}-q^{2}$
C. $\frac{1}{p^{2}}+\frac{1}{q^{2}}$
D. $\frac{1}{p^{2}}-\frac{1}{q^{2}}$

Answer: C
75. The equation of the perpendicular bisector of the line segment joining $A(-2,3)$ and $B(6,-5)$ is
A. $x-y=-1$
B. $x-y=3$
C. $x+y=3$
D. $x+y=1$

Answer: B

- Watch Video Solution

76. The vertices of the triangle $P Q R$ are $P(0, b), Q(0,0)$ and $R(a, 0)$. If the medians $P M$ and $Q N$ of $P Q R$ are
perpendicular, then
A. $b^{2}=2 a^{2}$
B. $b^{2}=a^{2}$
C. $a^{2}=2 b^{2}$
D. $a=b$

Answer: C

- Watch Video Solution

77. The slope of the straight line which does not intersect x-axis is equal to
A. $\frac{1}{2}$
B. $\frac{1}{\sqrt{2}}$
C. $\sqrt{3}$
D. 0

Answer: D

- Watch Video Solution

78. If the distance between the two points $(-1, a)$ and $(-1$,
$-4 a)$ is 10 units, then the values of a are
A. ± 1
B. ± 2
C. ± 3
D. ± 4

Answer: B

- Watch Video Solution

79. If the slope of the line joining the points $(3,4)$ and $(-2$,
a) is equal to $\frac{-2}{5}$ then the value of a is equal to
A. 6
B. 4
C. 3
D. 2
80. The equation of the line perpendicular to the line $2 x-$
$3 y+5=0$ and making an intercept 3 with y-axis is
A. $3 x+2 y-6=0$
B. $3 x+2 y-12=0$
C. $3 x-2 y-6=0$
D. $3 x+2 y+6=0$

Answer: A

- Watch Video Solution

81. The perpendicular distance from the point $(1,-1)$ to the
line $x+5 y-9=0$ is equal to
A. $\sqrt{\frac{2}{13}}$
B. $\sqrt{\frac{13}{2}}$
C. $\frac{13}{2}$
D. $\frac{2}{13}$

Answer: B

- Watch Video Solution

82. The angle between the lines $2 x+11 y-7=0$ and $x+3 y+5$
$=0$) is equal to
A. $\tan ^{-1} \frac{17}{31}$
B. $\tan ^{-1} \frac{11}{35}$
C. $\tan ^{-1} \frac{1}{7}$
D. $\tan ^{-1} \frac{33}{35}$

Answer: C

- Watch Video Solution

83. The distance between the parallel lines $5 x-12 y-14=0$
and $5 x-12 y+12=0$ is equal to
A. $\frac{1}{13}$
B. 2
C. $\frac{2}{13}$
D. 4

Answer: B

- Watch Video Solution

84. The orthocentre of a triangle formed by the lines $x-2 y$
$=1, x=0$ and $2 x+y-2=0$ is
A. $(0,1)$
B. $(1,0)$
C. $(-1,-2)$
D. $(1,2)$

Answer: B

- Watch Video Solution

85. Let O be the origin and A be the point (64,0). If P, Q
divide $O A$ in the ratio $1: 2: 3$, then the point P is
A. $\left(\frac{32}{3}, 0\right)$
B. $(32,0)$
C. $\left(\frac{64}{3}, 0\right)$
D. $(16,0)$

Answer: A
86. The locus of a point which is equidistant from the points $(1,1)$ and $(3,3)$ is
A. $y=x+4$
B. $x+y=4$
C. $x=2$
D. $y=2$

Answer: B

- Watch Video Solution

87. The value of a for which the points $(9,5),(1,2),(a, 8)$ are collinear is equal to
A. 17
B. 8
C. 7
D. 71

Answer: A

- Watch Video Solution

88. A straight line with slope 3 intersects a straight line
with slope 6 at the point $(30,40)$. Then the difference between the y-intercepts of the straight lines is
A. 60
B. 70
C. 80
D. 90

Answer: D

- Watch Video Solution

89. If the equation $3 x+3 y+5=0$ is written in the form
$x \cos \alpha+y \sin \alpha=p$, then the value of $\sin \alpha+\cos \alpha$ is
A. $\sqrt{2}$
B. $\frac{1}{\sqrt{2}}$
C. $-\sqrt{2}$
D. $-\frac{1}{\sqrt{2}}$

Answer: C

- Watch Video Solution

90. The points on the line $x+y=4$ lying at a unit distance from the line $4 x+3 y-10=0$ are
A. $(-7,11),(3,1)$
B. $(7,-11),(3,-1)$
C. $(-7,11),(-3,7)$
D. $(7,-3),(21,-7)$

- Watch Video Solution

91. If the straight lines $y=2 x, y=2 x+1, y=-7 x, y=-7 x+1$
form a parallelogram, then the area of the parallelogram
(in square units) is
A. $\frac{1}{3}$
B. $\frac{2}{9}$
C. $\frac{1}{9}$
D. $\frac{1}{4}$

Answer: C
92. The number of solutions for the system of equations
$2 x+y=4,3 x+2 y=2$, and $x+y=-2$ is
A. 1
B. 2
C. 3
D. infinitely many

Answer: A

- Watch Video Solution

93. The points $(2,5)$ and $(5,1)$ are the two opposite vertices of a rectangle. If the other two vertices are points
on the straight line $y=2 x+k$, then the value of k is
A. 4
B. 3
C. -4
D. -3

Answer: C

- Watch Video Solution

94. The orthocentre of the triangle whose vertices are
$(5,-2),(-1,2)$ and $(1,4)$ is
A. $(2,-1)$
B. $(1,-2)$
C. $(5,2)$
D. $(2,5)$

Answer: C

- Watch Video Solution

95. The ratio by which the line $2 x+5 y-7=0$ divides the straight line joining the points $(-4,7)$ and $(6,-5)$ is
A. 1: 4
B. 1:2
C. 1: 1
D. 2: 03

Answer: C

- Watch Video Solution

96. If p is the length of the perpendicular from the origin
to the line whose intercepts will the coordinate axes are
$\frac{1}{3}$ and $\frac{1}{4}$ then the value of p is
A. $\frac{3}{4}$
B. $\frac{1}{12}$
C. 5
D. $\frac{1}{5}$

- Watch Video Solution

97. A straight line perpendicular to the $2 x+y=3$ is passing through $(1,1)$. Its y-intercept is
A. 1
B. 2
C. 3
D. $\frac{1}{2}$

Answer: D
98.
$x \sin ^{3} \theta+y \cos ^{3} \theta=\sin \theta \cos \theta$ and $x \sin \theta=y \cos \theta$ then $x^{2}+y^{2}$ is
A. $5 a^{2}$
B. $4 a^{2}$
C. $3 a^{2}$
D. a^{2}

Answer: D

- Watch Video Solution

99.

$a x^{2}+2 h x y+b y^{2}+2 g x+2 f y+c=0$
intersect on the y-axis then
A. $2 f g h=b g^{2}+c h^{2}$
B. $b g^{2} \neq c h^{2}$
C. $a b c=2 f g h$
D. None of these

Answer: A

- Watch Video Solution

100. The point of lines represented by
$3 a x^{2}+5 x y+\left(a^{2}-2\right) y^{2}=0$ and perpendicular to each other for
A. two values of a
B. $\forall \mathrm{a}$
C. for one value of a
D. for no values of a

Answer: A

- Watch Video Solution

101. Locus of midpoint of the portion between the axes of
$x \cos \alpha+y \sin \alpha=p$ where pis constant is
A. $x^{2}+y^{2}=\frac{4}{p^{2}}$
B. $x^{2}+y^{2}=4 p^{2}$
C. $\frac{1}{x^{2}}+\frac{1}{y^{2}}=\frac{2}{p^{2}}$
D. $\frac{1}{x^{2}}+\frac{1}{y^{2}}=\frac{4}{p^{2}}$

Answer: D

- Watch Video Solution

102. A triangle with vertices $(4,0),(-1,-1),(3,5)$ is
A. isosceles and right angled
B. isosceles but not right angled
C. right angled but not isosceles
D. neither right angled nor isosceles

Answer: A

- Watch Video Solution

103. A square of side a lies above the x-axis and has one vertex at the origin. The side passing through the origin makes and angle $\alpha\left(0<\alpha<\frac{\pi}{4}\right)$ with the positive direction of x-axis. The equation of its diagonal not passing through the origin is
A. $y(\cos \alpha+\sin \alpha)+x(\sin \alpha-\cos \alpha)=a$
B. $y(\cos \alpha+\sin \alpha)+x(\sin \alpha+\cos \alpha)=a$
C. $y(\cos \alpha+\sin \alpha)+x(\cos \alpha-\sin \alpha)=a$
D. $y(\cos \alpha-\sin \alpha)-x(\sin \alpha-\cos \alpha)=a$

Answer: C

- Watch Video Solution

104. If the pairs of straight lines $x^{2}-2 p x y-y^{2}=0$ and $x^{2}-2 q x y-y^{2}=0$ be such that each pair bisects the angle between the other pair, then
A. $p=-q$
B. $p q=1$
C. $p q=-1$
D. $p=q$

Answer: C

- Watch Video Solution

105. Locus of centroid of the triangle whose vertices are (a cost, a sint), (b sint,b cost) and (1,0), where t is a parameter, is
A. $(3 x-1)^{2}+(3 y)^{2}=a^{2}+b^{2}$
B. $(3 x+1)^{2}+(3 y)^{2}=a^{2}+b^{2}$
C. $(3 x+1)^{2}+(3 y)^{2}=a^{2}+b^{2}$
D. $(3 x-1)^{2}+(3 y)^{2}=a^{2}-b^{2}$

Answer: A

- Watch Video Solution

106. Show that the area of the triangle formed by the
lines
$y=m_{1} x+c_{1}, y=m_{2} x+c_{2}$ and $x=0$ is $\frac{\left(c_{1}-c_{2}\right)^{2}}{2\left|m_{1}-m_{2}\right|}$
A. $a_{1}^{1}+a_{2}^{2}+b_{1}^{2}-b_{2}^{2}$
B. $\frac{1}{2}\left(a_{1}^{2}+a_{2}^{2}+b_{1}^{2}+b_{2}^{2}\right)$
C. $\sqrt{a_{1}^{2}+b_{1}^{2}-a_{2}^{2}-b_{2}^{2}}$
D. $\frac{1}{2}\left(a_{2}^{2}+b_{2}^{2}-a_{1}^{2}-b_{1}^{2}\right)$

Answer: D

- Watch Video Solution

107. Let $A(2,-3)$ and $B(-2,1)$ be vertices of a triangle $A B C$. If the centroid of this triangle moves on the line $2 x+3 y=1$, then the locus of the vertex C is the line
A. $3 x+2 y=5$
B. $2 x-3 y=7$
C. $2 x+3 y=9$
D. $3 x-2 y=3$

Answer: C

- Watch Video Solution

108. The equation of the straight line passing through the point $(4,3)$ and making intercepts on the coordinate axes whose sum is -1 is
A. $\frac{x}{2}+\frac{y}{3}=1$ and $\frac{x}{2}+\frac{y}{1}=1$
B. $\frac{x}{2}-\frac{y}{3}=-1$ and $\frac{x}{-2}+\frac{y}{1}=1$
C. $\frac{x}{2}+\frac{y}{3}=-1$ and $\frac{x}{-2}+\frac{y}{1}=-1$
D. $\frac{x}{2}-\frac{y}{3}=1$ and $\frac{x}{-2}+\frac{y}{1}=1$

Answer: D
109. If the sum of the slopes of the lines given by $x^{2}-2 c x y-7 y^{2}=0$ is four times their product, then c has the value
A. 2
B. -1
C. 1
D. -2

Answer: A
110. If one of the lines given by $6 x^{2}-x y+4 c y^{2}=0$ is 3 x
$+4 y=0$ then c equals
A. 3
B. -1
C. 1
D. -3

Answer: D

D Watch Video Solution

111. The line parallel to the x-axis and passing through the intersection of the lines $a x+2 b y+3 b=0$ and $b x-2 a y-$ $3 \mathrm{a}=0$, where $(a, b) \neq(0,0)$ is
A. below the x-axis at a distance of $\frac{2}{3}$ from it B. below the x-axis at a distance of $\frac{3}{2}$ from it
C. above the x-axis at a distance of $\frac{2}{3}$ from it
D. above the x-axis at a distance of $\frac{3}{2}$ from it

Answer: B

- Watch Video Solution

112. If non-zero numbers a, b, c are in H.P., then the straight line $\frac{x}{a}+\frac{y}{b}+\frac{1}{c}=0$ always passes through a fixed point. That point is
A. $(-1,-2)$
B. $(-1,2)$
C. $\left(1,-\frac{1}{2}\right)$
D. $(1,-2)$

Answer: D

- Watch Video Solution

113. If a vertex of a triangle is $(1,1)$ and the mid points of two sides through this vertex are $(-1,2)$ and $(3,2)$, then the centroid of the triangle is
A. $\left(\frac{-1}{3}, \frac{7}{3}\right)$
B. $\left(-1, \frac{7}{3}\right)$
C. $\left(\frac{1}{3}, \frac{7}{3}\right)$
D. $\left(1, \frac{7}{3}\right)$

Answer: D

D Watch Video Solution

114. If the pair of lines $a x^{2}+2(a+b) x y+b y^{2}=0$ lie along diameters of a circle and divide the circle into four sectors such that the area of one of the sectors is thrice the area of another sector then

$$
\begin{aligned}
& \text { A. } 3 a^{2}-2 a b+3 b^{2}=0 \\
& \text { B. } 3 a^{2}-10 a b+3 b^{2}=0 \\
& \text { C. } 3 a^{2}+2 a b+3 b^{2}=0
\end{aligned}
$$

D. $3 a^{2}+10 a b+3 b^{2}=0$

Answer: C

- Watch Video Solution

115. A straight line through the point $A(3,4)$ is such that its intercept between the axis is bisected at A. its equation is
A. $x+y=7$
B. $3 x-4 y+7=0$
C. $4 x+3 y=24$
D. $3 x+4 y=25$

Answer: C

- Watch Video Solution

116. In are ellispe, the distance between its foci is 6 and its minor axis is 8 , then e is
A. $\frac{3}{5}$
B. $\frac{1}{2}$
C. $\frac{4}{5}$
D. $\frac{1}{\sqrt{5}}$

Answer: A
117. If (a, a^{2}) falls inside the angle made by the lines
$y=\frac{x}{2}, x>0$ and $\mathrm{y}=3 \mathrm{x}, x>0$, then a belongs to
A. $\left(0, \frac{1}{2}\right)$
B. $(3, \infty)$
C. $\left(\frac{1}{2}, 3\right)$
D. $\left(-3,-\frac{1}{2}\right)$

Answer: C

- Watch Video Solution

118. The equation of a tangent to the parabola $y^{2}=8 x$ is
$y=x+2$. The point on this line from which the other
tangent to the parabola is perpendicular to the given tangent is
A. $(2,4)$
B. $(-2,0)$
C. $(-1,1)$
D. $(0,2)$

Answer: B

D Watch Video Solution

119. Let $A(h, k), B(1,1)$ and $C(2,1)$ be the vertices of a right angled triangle with AC as its hypotenuse. If the area of
the triangle is 1 square unit, then the set of values which ' k ' can take is given by
A. $\{-1,3\}$
B. $\{-3,-2\}$
C. $\{1,3\}$
D. $\{0,2\}$

Answer: A

D Watch Video Solution

120. Let $\mathrm{P}=(-1,0), \mathrm{Q}=(0,0)$ and $\mathrm{R}=(3,3 \sqrt{3})$ be three points.

The equation of the bisector of the angle PQR is
A. $\frac{\sqrt{3}}{2} x+y=0$
B. $x+\sqrt{3} y=0$
C. $\sqrt{3} x+y=0$
D. $x \frac{\sqrt{3}}{2} y=0$

Answer: C

- Watch Video Solution

121. If one of the lines of $m y^{2}+\left(1-m^{2}\right) x y-m x^{2}=0$ is a bisector of the angle between the lines $x y=0$, then m is
A. 1
B. 2
C. $\frac{-1}{2}$
D. -2

Answer: A

- Watch Video Solution

122. The perpendicular bisector of the line segment joining $P(1,4)$ and $Q(k, 3)$ has y-intercept-4. Then a possible value of k is
A. -4
B. 2
C. 2
D. -2

Answer: A

- Watch Video Solution

