© 'doubtnut

MATHS

BOOKS - NEW JYOTHI MATHS (TAMIL ENGLISH)

THREE DIMENSIONAL GEOMETRY

Example

1. If a line makes angles $90^{\circ}, 60^{\circ}$ and 30° with the
positive direction of x, y and z axis respectively. Find its directions cosines .

- Watch Video Solution

2. Show that $\frac{\pi}{4}, \frac{\pi}{6}$ and $\frac{2 \pi}{3}$ cannot be the direction angles of any vector.

(-) Watch Video Solution

3. If α, β, γ are the direction angles of a line
(i)Show that $\sin ^{2} \alpha+\sin ^{2} \beta+\sin ^{2} \gamma=2$.
(ii)Find the value of $\cos 2 \alpha+\cos 2 \beta+\cos 2 \gamma$.

- Watch Video Solution

4. If a line has direction ratios $2,-1,-2$ determines its direction cosines .

D Watch Video Solution

5. The direction ratios of a line are $1,-2,5$, find the direction cosines of the line.

- Watch Video Solution

6. Find the direction cosines of the line passing
through the two points ($-2,4,-5$) and (1,2,3).
7. Find the direction cosines of x, y and z axis.

D Watch Video Solution

8. Show that the points $A(2,3,-4), B(1,-2,3)$ and $C(3,8,-11)$ are collinear .

- Watch Video Solution

9. Find the vector and cartesian equations of the
line through the point $(5,2,-4)$ and which is parallel
to the vector $3 \hat{i}+2 \hat{j}-8 \hat{k}$.

- Watch Video Solution

10. The cartesian equation of a line is $\frac{x+3}{2}=\frac{y-5}{4}=\frac{z+6}{2}$. Find its vector equation.

D Watch Video Solution

11. Find the equation of a line parallel to x-axis and passing through the origin.
12. A line passes through the point $(3,-2,5)$ and parallel to the vector $2 \hat{i}+\hat{j}-2 \hat{k}$
i.What is the vector equation of the line?
ii. What is the cartesian equation of the line ?

- Watch Video Solution

13. Find the cartesian equation of the line which passes through the point ($-2,4,-5$) and parallel to the line given by

$$
\frac{x+3}{3}=\frac{y-4}{5}=\frac{z+8}{6}
$$

14. Find the vector equation for the line passing through the points ($-1,0,2$) and ($3,4,6$).

D Watch Video Solution

15. Consider the points $A(3,-4,-5)$ and $B(2,-3,1)$.
i.Find the vector and cartesian equations of the line passing through the points A and B.
ii. Find the point where the line crosses the $X Y$ plane.
16. Find the angle between the lines having direction ratios $1,1,2$ and $\sqrt{3}-1,-\sqrt{3}-1,4$

D Watch Video Solution

17. Find the angle between the pair of lines
$\frac{x+3}{3}=\frac{y-1}{5}=\frac{z+3}{4}$
$\frac{x+1}{1}=\frac{y-4}{1}=\frac{z-5}{2}$

- Watch Video Solution

18. Find the angle between the pair of lines given
by $\vec{r}=3 \hat{i}+2 \hat{j}-4 \hat{k}+\lambda(\hat{i}+2 \hat{j}+2 \hat{k}) \quad$ and
$\vec{r}=5 \hat{i}-2 \hat{j}+\mu(3 \hat{i}+2 \hat{j}+6 \hat{k})$

D Watch Video Solution

19. Find the value of ' p ' if the lines
$\frac{x-5}{7}=\frac{y+2}{-5}=\frac{z}{1} \quad$ and $\quad \frac{x}{1}=\frac{y}{p}=\frac{z}{3} \quad$ are perpendicular.
20. Given the straight lines

$$
\begin{aligned}
& \vec{r}=(3 \hat{i}+2 \hat{j}-4 \hat{k})+\lambda(\hat{i}+2 \hat{j}+2 \hat{k}) \quad \text { and } \\
& \vec{r}=(5 \hat{j}-2 \hat{k})+\mu(3 \hat{i}+2 \hat{j}+6 \hat{k})
\end{aligned}
$$

i.Find the angle between the lines.
ii. Obtain a unit vector perpendicular to both the lines.
iii. Form the equation of the line perpendicular to the given lines and passing through the point (1,1,1).
21. Consider the lines $\frac{x-3}{2}=\frac{y-1}{5}=\frac{z+3}{4}$
and $\frac{x+5}{1}=\frac{y+2}{1}=\frac{z-3}{2}$.
i.Find the angle between them.
ii. Find the shortest distance between them.

- Watch Video Solution

22. Find the shortest distance between the lines l_{1}
and l_{2} whose vector equations are

$$
\begin{aligned}
& \vec{\gamma}=\hat{i}+\hat{j}+\lambda(2 \hat{i}-\hat{j}+\hat{k}) \\
& \vec{\gamma}=2 \hat{i}+\hat{j}-\hat{k}+\mu(3 \hat{i}-5 \hat{j}+2 \hat{k})
\end{aligned}
$$

and
23. Consider the lines $\frac{x-3}{3}=\frac{y-8}{-1}=\frac{z-3}{1}$
and $\frac{x+3}{-3}=\frac{y+7}{2}=\frac{z-6}{4}$
i.Express the equations in the vector form.
ii. Find the shortest distance between these lines.

- Watch Video Solution

24.

Consider
the
lines
$\vec{r}=\hat{i}+2 \hat{j}+3 \hat{k}+\lambda(2 \hat{i}+3 \hat{j}+4 \hat{k})$
and
$\vec{r}=2 \hat{i}+3 \hat{j}+4 \hat{k}+\mu(3 \hat{i}+4 \hat{j}+5 \hat{k})$.
i.Convert the equations to cartesian form
ii. Show that the lines are not skew lines.

- Watch Video Solution

25. Find the distance between the lines l_{1} and l_{2} given by $\vec{r}=\hat{i}+2 \hat{j}-4 \hat{k}+\lambda(2 \hat{i}+3 \hat{j}+6 \hat{k})$ and $\vec{r}=3 \hat{i}+3 \hat{j}-5 \hat{k}+\mu(2 \hat{i}+3 \hat{j}+6 \hat{k})$

- Watch Video Solution

26. i.Find the cartesian equation of the plane passing through the point $(1,2,-3)$ and perpendicular to the vector $2 \hat{i}-\hat{j}+2 \hat{k}$.
ii. Find the angle between the above plane and the line $\frac{x-1}{2}=\frac{y-3}{3}=\frac{z}{6}$.

- Watch Video Solution

27. Find the vector equation of the plane which is at a distance of $\frac{6}{\sqrt{29}}$ from the origin and its normal vector from the origin is $2 \hat{i}-3 \hat{j}+4 \hat{k}$. Also find its cartesian form.
28. The foot of the perpendicular drawn from origin to a plane is $(4,-2,5)$.
i.How far is the plane from the origin ?
ii.Find a unit vector perpendicular to that plane.
iii. Obtain the equation of the plane is general form.

- Watch Video Solution

29. Find the direction cosines of the unit vector perpendicular to the plane.
$\vec{r}(6 \hat{i}-3 \hat{j}-2 \hat{k})+1=0$
30. Consider the Cartesian equation of a line

$$
\frac{x-3}{2}=\frac{y+1}{3}=\frac{z-5}{-2}
$$

i.Find its vector equation.
ii. Find its intersecting point with the plane $5 x+2 y-$ $6 z-7=0$

- Watch Video Solution

31. Find the equation of the line which passes through the point $(1,2,3)$ and is parallel to the vector $3 \hat{i}+2 \hat{j}-2 \hat{k}$.

D Watch Video Solution

32. Find the coordinates of the foot of the perpendicular P from the origin to the plane $2 x$ $3 y+4 z-6=0$

- Watch Video Solution

33. Given the plane $5 x-2 y+4 z-9=0$
i.Find the coordinates of foot of the perpendicular
from the origin to the plane.
ii. Find the vector equation and the cartesian equation of this perpendicular.

- Watch Video Solution

34. Find the vector and cartesian equations of the plane that passes through the point (1,0,-2) and normal to $\hat{i}+\hat{j}-\hat{k}$.

- Watch Video Solution

35. Find the vector equation of the plane passing
through the points $R(2,5,-3), S(-2,-3,5)$ and $T(5,3,-3)$
36. Consider the points $A(2,2,-1), B(3,4,2)$ and
$C(7,0,6)$
i.Find AB.
ii. Find the vector and cartesian equation of the plane passing through these points .

- Watch Video Solution

37. Find the equation of the plane that passes through three points : (1,1,-1),(6,4,-5),(-4,-2,3) .
38. Find the intercepts cut off by the plane $2 x+y-$ $\mathrm{z}=5$.

- Watch Video Solution

39. Consider the vector equation of two planes
$\vec{r}(2 \hat{i}+\hat{j}+\hat{k})=3$ and $\vec{r}(\hat{i}-\hat{j}-\hat{k})=4$
i.Find the vector equation of any plane through the intersection of the above two planes.
ii. Find the vector equation of the plane through the intersection of the above two planes and the point (1,2,-1).
40. Find the vector equation of the plane passing through the intersection of the two planes
$\vec{r}(\hat{i}+\hat{j}+\hat{k})=6$ and
$\vec{r}(2 \hat{i}+3 \hat{j}+4 \hat{k})=-5$ and through the point
$(1,1,1)$

- Watch Video Solution

41. Consider the planes $3 x-4 y+5 z=10$ and $2 x+2 y-3 z=4$ i.Write the equation of the plane through the line of intersection of the above planes.
ii. Write the direction ratios of the line $x=2 y=3 z$
iii. If the line in (ii) is parallel to the plane in (i), show that the plane is $x-20 y+27 z=14$.

- Watch Video Solution

42. Show that the
lines
$\frac{x-a+d}{\alpha+\delta}=\frac{y-a}{\alpha}=\frac{z-a-d}{\alpha+\delta}$ and
$\frac{x-b+c}{\beta+\gamma}=\frac{y-b}{\beta}=\frac{z-b-c}{\beta+\gamma}$ are coplanar.

D Watch Video Solution

43. The planes $2 x-y+4 z=5$ and $5 x-2.5 y+10 z=6$ are
A. perpendicular
B. parallel
C. intersect y-axis
D. passes through $\left(0,0, \frac{5}{4}\right)$

Answer:

D Watch Video Solution

44. Equation to the two planes are $2 x+y-2 z=5$ and
$3 x-6 y-2 z=7$
i.Find the normal vectors to these planes
ii. Find the angle between these two planes.

- Watch Video Solution

45. Prove that if a plane has the intercepts a, b, c and is at a distance of p units from the origin ,
then $\frac{1}{a^{2}}+\frac{1}{b^{2}}+\frac{1}{c^{2}}=\frac{1}{p^{2}}$

- Watch Video Solution

46. Find the distance of the point $(-1,-2,3)$ from the
plane $\vec{r} \cdot(2 \hat{i}-3 \hat{j}+4 \hat{k})=4$
47. If the points ($1,1, \mathrm{p}$) and ($-3,0,1$) are equidistant from the plane $\vec{r} \cdot(3 \hat{i}+4 \hat{j}-12 \hat{k})+13=0$, then find the value op.

- Watch Video Solution

48. Distance between the two planes: $2 x+3 y+4 z=4$ and $4 x+6 y+8 z=12$ is
A. 2 units
B. 4 units
C. 8 units
D. $\frac{2}{\sqrt{29}}$ units

Answer:

- Watch Video Solution

49. Find the angle between the line $\frac{x+1}{2}=\frac{y}{3}=\frac{z-3}{6}$ and the plane $10 \mathrm{x}+2 \mathrm{y}-11 \mathrm{z}=3$.

- Watch Video Solution

50. i.Find the cartesian equation of the plane passing through the point (1,2,-3) and
perpendicular to the vector $2 \hat{i}-\hat{j}+2 \hat{k}$.
ii. Find the angle between the above plane and the
line $\frac{x-1}{2}=\frac{y-3}{3}=\frac{z}{6}$.

- Watch Video Solution

51. Find the equation of the plane that contains the point ($1,-1,2$) and is perpendicular to each of the planes $2 x+3 y-2 z=5$ and $x+2 y-3 z=8$.
52. Find the equation of the plane passing through the point $(-1,3,2)$ and perpendicular to each of the planes $x+2 y+3 z=5$ and $3 x+3 y+z=0$.

- Watch Video Solution

Ncert Textbook Exercise 111

1. Find the direction cosines of a line which makes

equal angles with the coordinate axes.

- Watch Video Solution

2. If a line has the direction ratios $-18,12,-4$, then what are its direction cosines?

- Watch Video Solution

3. Show that the points $(2,3,4),(-1,-2,1),(5,8,7)$ are collinear.

- Watch Video Solution

4. Find the direction cosines of the sides of the triangle whose vertices are $(3,5,-4),(-1,1,2)$ and $(-5,-5,-2)$.

- Watch Video Solution

Ncert Textbook Exercise 112

1. Show that the three lines with direction cosines
$\frac{12}{13}, \frac{-3}{13}, \frac{-4}{13}, \frac{4}{13}, \frac{12}{13}, \frac{3}{13}, \frac{3}{13}, \frac{-4}{13}, \frac{12}{13}$, are mutually perpendicular .

- Watch Video Solution

2. Show that the line through the points (1,-1,2) ,
$(3,4,-2)$ is perpendicular to the line through the
points $(0,3,2)$ and (3,5,6).

- Watch Video Solution

3. Show that the line through the points $(4,7,8)$,
$(2,3,4)$ is parallel to the line through the points
$(-1,-2,1),(1,2,5)$

- Watch Video Solution

4. Find the equation of the line which passes through the point $(1,2,3)$ and is parallel to the vector $3 \hat{i}+2 \hat{j}-2 \hat{k}$.

- Watch Video Solution

5. Find the equation of the line in vector and in cartesian form that passes through the point with position vector $2 \hat{i}-\hat{j}+4 \hat{k}$ and is in the direction $\hat{i}+2 \hat{j}-\hat{k}$

- Watch Video Solution

6. Find the cartesian equation of the line which passes through the point $(-2,4,-5)$ and parallel to
the line given by
$\frac{x+3}{3}=\frac{y-4}{5}=\frac{z+8}{6}$.

D Watch Video Solution

7. The cartesian equation of a line is
$\frac{x-5}{3}=\frac{y+4}{7}=\frac{z-6}{2}$. Write its vector form.

- Watch Video Solution

8. Find the vector and the cartesian equations of the lines that pass through the origin and ($5,-2,3$).
9. Find the vector and the cartesian equations of the line that passes through the points $(3,-2,-5)$, (3,-2,6).

- Watch Video Solution

10. Find the angle between the following pairs of
lines: $\vec{r}=3 \hat{i}+\hat{j}-2 \hat{k}+\lambda(\hat{i}-\hat{j}-2 \hat{k})$ and
$\vec{r}=2 \hat{i}-\hat{j}-56 \hat{k}+\mu(3 \hat{i}-5 \hat{j}-4 \hat{k})$

- Watch Video Solution

11. Find the angle between the following pairs of lines:
i. $\frac{x-2}{2}=\frac{y-1}{5}=\frac{z+3}{-3}$ and
$\frac{x+2}{-1}=\frac{y-4}{8}=\frac{z-5}{4}$
ii. $\frac{x}{2}=\frac{y}{2}=\frac{z}{1}$ and $\frac{x-5}{4}=\frac{y-2}{1}=\frac{z-3}{8}$

D Watch Video Solution

12. Find the values of p so that the lines
$\frac{1-x}{3}=\frac{7 y-14}{2 p}=\frac{z-3}{2}$
and
$\frac{7-7 x}{3 p}=\frac{y-5}{1}=\frac{6-z}{5}$ are at right angles.

D Watch Video Solution

13. Show that the lines $\frac{x-5}{7}=\frac{y+2}{-5}=\frac{z}{1}$ and $\frac{x}{1}=\frac{y}{2}=\frac{z}{3}$ are perpendicular to each other.

- Watch Video Solution

14. Find the shortest distance between the lines

$$
\begin{array}{ll}
\vec{r}=(\hat{i}+2 \hat{j}+\hat{k})+\lambda(\hat{i}-\hat{j}+\hat{k}) \quad \text { and } \\
\vec{r}=2 \hat{i}-\hat{j}-\hat{k}+\mu(2 \hat{i}+\hat{j}+2 \hat{k})
\end{array}
$$

15. Find the shortest distance between the lines

$$
\begin{aligned}
& \frac{x+1}{7}=\frac{y+1}{-6}=\frac{z+1}{1} \\
& \frac{x-3}{1}=\frac{y-5}{-2}=\frac{z-7}{1}
\end{aligned}
$$

- Watch Video Solution

16. Find the shortest distance between the lines

$$
\begin{aligned}
& \text { whose vector equations } \\
& \vec{r}=(\hat{i}+2 \hat{j}+3 \hat{k})+\lambda(\hat{i}-3 \hat{j}+2 \hat{k}) \\
& \vec{r}=4 \hat{i}+5 \hat{j}+6 \hat{k}+\mu(2 \hat{i}+3 \hat{j}+\hat{k})
\end{aligned}
$$

- Watch Video Solution

17. Find the shortest distance between the lines
whose vector equations are

$$
\begin{aligned}
& \vec{r}=(\hat{i}+2 \hat{j}+3 \hat{k})+\lambda(\hat{i}-3 \hat{j}+2 \hat{k}) \quad \text { and } \\
& \vec{r}=4 \hat{i}+5 \hat{j}+6 \hat{k}+\mu(2 \hat{i}+3 \hat{j}+\hat{k})
\end{aligned}
$$

- Watch Video Solution

Ncert Textbook Exercise 113

1. In each of the following cases, determine the direction cosines of the normal to the plane and the distance from the origin .
a. $z=2, b . x+y+z=1, c .2 x+3 y-z=5, d .5 y+8=0$

- Watch Video Solution

2. Find the vector equation of a plane with is at a distance of 7 units from the origin and normal to the vector $3 \hat{i}+5 \hat{j}-6 \hat{j}$.

- Watch Video Solution

3. Find The Cartesian equation of the following planes.
i. $\vec{r} \cdot(\hat{i}+\hat{j}-\hat{k})=2$
ii. $\vec{r} \cdot(2 \hat{i}+3 \hat{j}-4 \hat{k})=1$
iii. $\vec{r} \cdot[(s-2 t) \hat{j} \hat{i}+(3-t) \hat{j}+(2 s+t) \hat{k}]=15$

- Watch Video Solution

4. In the following cases, find the coordinates of the foot of the perpendicular drawn from the origin.
a. $2 x+3 y+4 z-12=0$
b. $3 y+4 z-6=0$
C. $x+y+z=1$
d. $5 y+8=0$
5. Find the vector and cartesian equations of the planes
a. that passes through the point $(1,0,-2)$ and normal to the planes is $\hat{i}+\hat{j}-\hat{k}$ b. that passes through the point $(1,4,6)$ and the normal vector to the plane is $\hat{i}-2 \hat{j}+\hat{k}$.

- Watch Video Solution

6. Find the intercepts cut off by the plane $2 x+y-z=5$.
7. Find the equation of the plane with intercept 3 on the y-axis and parallel to ZOX plane.

- Watch Video Solution

8. Find the vector equation of the plane passing through the intesection of the planes
$\vec{r} \cdot(2 \hat{i}+2 \hat{j}-3 \hat{k})=7, \vec{r} \cdot(2 \hat{i}+5 \hat{j}+3 \hat{k})=9$
and through the point $(2,1,3)$.

- Watch Video Solution

9. Find the equation of the plane through the line of intersection of the planes $x+y+z=1$ and $2 x+3 y+4 z=5$ which is perpendicular to the plane $x-$ $y+z=0$

- Watch Video Solution

10. In the follwing cases, determine whether the given planes are parallel or perpendicular and in case they are neither, find the angles between them.
a. $7 x+5 y+6 z+30=0$ and $3 x-y-10 z+4=0$
b. $2 x+y+3 z-2=0$ and $x-2 y+5=0$
c. $2 x-2 y+4 z+5=0$ and $3 x-3 y+6 z-1=0$
d. $2 x-y+3 z-1=0$ and $2 x-y+3 z+3=0$
e. $4 x+8 y+z-8=0$ and $y+z-4=0$

- Watch Video Solution

11. In the following cases, find the distance of each of the given points from the corresponding given plane.

Point Plane
a. $(0,0,0) \quad 3 x-4 y+12 z=3$
b. $(3,-2,1) \quad 2 x-y+2 z+3=0$
c. $(2,3,-5) \quad x+2 y-2 z=9$
d. $(-6,0,0) \quad 2 x-3 y+6 z-2=0$

Additional Questions For Practice 111

1. A line is inclined to the x-axis at 45° and y-axis at 60°. Find the angle at which the line is inclined to z-axis.

- Watch Video Solution

2. For what values of α and β the points (1, 2, 3), (α,
$\beta, 7)$ and $(2,10,1)$ are collinear.

Additional Questions For Practice 112

1. Write the vector equation of a line passing through the points $(-3,1,2)$ and $(2,3,4)$.

- Watch Video Solution

2. Consider the vector $2 \hat{i}+2 \hat{j}-3 \hat{k}$. Find the equation of line passing through $A(3.4,5)$ and parallel to given vector, in the vector form and in the Cartesian form.
3. Consider the points $A(5,1,6)$ and $B(3,4,1)$
i.Find the cartesian equation of the line through A and B.
ii. Find the point where the line crosses the $y z$ plane.

D Watch Video Solution

4. Find the vector and Cartesian equation of the line pasing through the points (3,4,-7) and (5,1,6)
5. Find the equation of line passing through $(-2,4,-5)$ and is parallel to the line $\frac{x+3}{3}=\frac{y-4}{5}=\frac{z+8}{6}$.

D Watch Video Solution

6. Show that the line joining the points ($2,2,2$) and
$(4,4,4)$ passes through the origin.

- Watch Video Solution

7. Find the angle between the lines
$\vec{r}=\hat{i}-\hat{j}+\hat{k}+\lambda(2 \hat{i}-2 \hat{j}+\hat{k})$

$$
\vec{r}=2 \hat{i}-\hat{j}+2 \hat{k}+\mu(\hat{i}+\hat{j}+2 \hat{k})
$$

- Watch Video Solution

8. Find the angle between the lines having direction ratios 2,-1,1 and 5,1,2.

- Watch Video Solution

9. Find the coordinates of the point where the line through the points $A(3,4,1)$ and $B(5,1,6)$ crosses the XY plane.
10. Find the angle between the pair of lines direction ratios $2,6,3$ and $1,2,2$.

- Watch Video Solution

11. Find the value of p so that the lines
$\frac{x-5}{7}=\frac{y+2}{-5}=\frac{z}{1} \quad$ and $\quad \frac{x}{p}=\frac{y}{2}=\frac{z}{3} \quad$ are
perpendicular to each other.

D Watch Video Solution
12. Show that the lines
$\frac{x-1}{-3}=\frac{11 y-22}{20}=\frac{z-3}{2}$
and
$\frac{11-11 x}{30}=\frac{y-5}{1}=\frac{6-z}{5}$ are perpendicular to each other.

- Watch Video Solution

13. Find the shortest distance between the lines

$$
\begin{aligned}
& \frac{x+1}{7}=\frac{y+1}{-6}=\frac{z+1}{1} \\
& \frac{x-3}{1}=\frac{y-5}{-2}=\frac{z-7}{1}
\end{aligned}
$$

14. Find the shortest distance between the lines

$$
\begin{aligned}
& \frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4} \\
& \frac{x-2}{3}=\frac{y-3}{4}=\frac{z-5}{5}
\end{aligned}
$$

and

- Watch Video Solution

15. Find the distance between the lines

$$
\begin{aligned}
& \vec{r}=3 \hat{i}+2 \hat{j}-4 \hat{k}+\lambda(\hat{i}+2 \hat{j}+2 \hat{k}) \quad \text { and } \\
& \vec{r}=5 \hat{i}-2 \hat{k}+\mu(\hat{i}+2 \hat{j}+2 \hat{k})
\end{aligned}
$$

D Watch Video Solution

1. Find the vector and cartesian equation of plane which is at a distance 5 units from the origin and having a normal vector $3 \hat{i}+2 \hat{j}-\hat{k}$.

- Watch Video Solution

2. Find The Cartesian equation of the following planes.
i. $\vec{r} \cdot(\hat{i}+\hat{j}-\hat{k})=2$
ii. $\vec{r} \cdot(2 \hat{i}+3 \hat{j}-4 \hat{k})=1$
iii. $\vec{r} \cdot[(s-2 t) j \hat{i}+(3-t) \hat{j}+(2 s+t) \hat{k}]=15$
3. Find the normal vector to the plane $4 x+2 y+3 z$
$-6=0$

- Watch Video Solution

4. A plane is at a distance 3 units from the origin.

The direction ratios of normal to the plane are
$1,-2,1$. Find the vector and cartesian equation of the
plane.

- Watch Video Solution

5. Find the Cartesian equation of the plane through the point with position vector $2 \hat{i}-\hat{j}+\hat{k}$ and perpendicular to the vector $4 \hat{i}+2 \hat{j}-3 \hat{k}$.

- Watch Video Solution

6. Find the equation of the plane passing through the points (1, 1,-1), (2, 3, 5) and (-1,4,-5).

D Watch Video Solution
7. Find the equation of plane passing through (2, 5,
1), (3, 4, 2) and (2,2,-1).

D Watch Video Solution

8. Find the vector equation of the plane pass ing through the intersection of the planes
$\vec{r} \cdot(\hat{i}+\hat{j}+\hat{k})=6$ and
$\vec{r} \cdot(2 \hat{i}+3 \hat{j}+4 \hat{k})=-5$, and the point $(1,1,1)$.

(D) Watch Video Solution

9. Find the vector and cartesian equation of a plane passing through the intersection of the planes

$$
\begin{aligned}
& \text { planes } \quad \vec{r} \cdot(2 \hat{i}+\hat{j}+3 \hat{k})=7 \\
& \vec{r} \cdot(2 \hat{i}+5 \hat{j}+3 \hat{k})=9 \text { and the point }(2,1,3)
\end{aligned}
$$

and

- Watch Video Solution

10. Find the angle between the planes
$2 x-y+z=6$ and $x+y+2 z=7$

- Watch Video Solution

11. Find the angle between the two planes $3 x-6 y+$ $2 z=7$ and $2 x+2 y-2 z=5$.

D Watch Video Solution

12. Find the distance of the point $(2,1,-1)$ from the plane $\vec{r} \cdot(\hat{i}-2 \hat{j}+4 \hat{k})=9$.

D Watch Video Solution

13. Find the angle between the line
$\vec{r}=(2 \hat{i}+2 \hat{j}+\hat{k})+\lambda(2 \hat{i}-3 \hat{j}+2 \hat{k})$ and the
plane $\vec{r} \cdot(3 \hat{i}-2 \hat{j}+5 \hat{k})=4$

- Watch Video Solution

Ncert Miscellaneous Exercise

1. Show that the line joining the origin to the point
$(2,1,1)$ is perpendicular to the line determined by
the points (3,5,-1),(4,3,-1)

D Watch Video Solution
2. If l_{1}, m_{1}, n_{1} and l_{2}, m_{2}, n_{2} are the direction cosines of two mutually perpendicular lines, show that the direction cosines of the line perpendicular
to both of these are
$m_{1} n_{2}-m_{2} n_{1}, n_{1} l_{2}-n_{2} l_{1}, l_{1} m_{2}-l_{2} m_{1}$

- Watch Video Solution

3. Find the angle between the lines whose direction ratios are $\mathrm{a}, \mathrm{b}, \mathrm{c}$ and $\mathrm{b}-\mathrm{c}, \mathrm{c}-\mathrm{a}, \mathrm{a}-\mathrm{b}$.
4. Find the equation of a line parallel to x-axis and passing through the origin.

- Watch Video Solution

5. If the coordinates of the points A, B, C, D be $(1,2,3)$,
$(4,5,7),(-4,3,-6)$ and $(2,9,2)$ respectively , then find the angle between the line $A B$ and $C D$.

- Watch Video Solution

6. If the lines $\frac{x-1}{-3}=\frac{y-2}{2 k}=\frac{z-3}{2}$ and $\frac{x-1}{3 k}=\frac{y-1}{1}=\frac{z-6}{-5}$ are perpendicular , find
the value of k.

- Watch Video Solution

7. Find the vector equation of the line passing through ($1,2,3$) and perpendicular to the plane $\vec{r} \cdot(\hat{i}+2 \hat{j}-5 \hat{k})+9=0$

- Watch Video Solution

8. Find the equation of the plane passing through
(a,b,c) are parallel to the plane
$\vec{r} \cdot(\hat{i}+\hat{j}+\hat{k})=2$.

- Watch Video Solution

9. Find the shortest distance between the lines

$$
\begin{array}{ll}
\vec{r}=6 \hat{i}+2 \hat{j}+2 \hat{k}+\lambda(\hat{i}-2 \hat{j}+2 \hat{k}) \quad \text { and } \\
\vec{r}=-4 \hat{i}-\hat{k}+\mu(3 \hat{i}-2 \hat{j}-2 \hat{k})
\end{array}
$$

- Watch Video Solution

10. Find the coordinates of the point where the line through ($5,1,6$) and ($3,4,1$) crosses the $Y Z-$-plane.

- Watch Video Solution

11. Find the coordinates of the point where the line through $(5,1,6)$ and $(3,4,1)$ crosses the $Z X$-plane .

- Watch Video Solution

12. Find the coordinates of the point where the line through $(3,-4,-5)$ and $(2,-3,1)$ crosses the plane $2 x+y+z=7$.

- Watch Video Solution

13. Find the vector and cartesian equations of the
plane passing through the point ($-1,3,2$) and
perpendicular to the planes. $x+2 y+2=5$ and $3 x+y+2 z=8$.

- Watch Video Solution

14. If the points ($1,1, \mathrm{p}$) and ($-3,0,1$) are equidistant from the plane $\vec{r} \cdot(3 \hat{i}+4 \hat{j}-12 \hat{k})+13=0$, then find the value op.

- Watch Video Solution

15. Find the equation of the plane passing through the line of intersection of the planes
$\vec{r} \cdot(\hat{i}+\hat{j}+\hat{k})=1$
$\vec{r} \cdot(2 \hat{i}+3 \hat{j}-\hat{k})+4=0$ and parallel to x axis.

D Watch Video Solution

16. If O is the origin and the coordinates of P be
$(1,2,-3)$, then find the equation of the plane passing through P and perpendicular to $O P$.

- Watch Video Solution

17. Find the equation of the plane which contains the line of intersection of the planes
$\vec{r} \cdot(\hat{i}+2 \hat{j}+3 \hat{k})-4=0$
$\vec{r} \cdot(2 \hat{i}+\hat{j}-\hat{k})+5=0 \quad$ and \quad which
perpendicular to the
$\vec{r} \cdot(5 \hat{i}+3 \hat{j}-6 \hat{k})+8=0$

- Watch Video Solution

18. Find the angle between the line
$\vec{r}=(2 \hat{i}+2 \hat{j}+\hat{k})+\lambda(2 \hat{i}-3 \hat{j}+2 \hat{k})$ and the
plane $\vec{r} .(3 \hat{i}-2 \hat{j}+5 \hat{k})=4$

- Watch Video Solution

19. Find the vector equation of the line passing through $(1,2,3)$ and parallel to the planes
$\vec{r} \cdot(\hat{i}-\hat{j}+2 \hat{k})=5$ and $\vec{r} \cdot(3 \hat{i}+\hat{j}+\hat{k})=6$.

- Watch Video Solution

20. If a, b, c are distinct +ve real numbers and $a^{2}+b^{2}+c^{2}=1$ then $a b+b c+c a$ is

- Watch Video Solution

21. The planes $2 x-y+4 z=5$ and $5 x-2.5 y+10 z=6$ are
A. perpendicular
B. parallel
C. intersect y-axis
D. passes through $\left(0,0, \frac{5}{4}\right)$

Answer:

- Watch Video Solution

Unit Test

1. Find the direction consines of a line whose

 direction ratios are 1,3,-2
- Watch Video Solution

2. Find the angle between the planes $2 x-3 y+4 z=1$ and $-x+y=4$

D Watch Video Solution

3. Find the cartesian and vector equation of a line which passes through the point $(1,2,3)$ and
parallel to the line $\frac{-x-2}{1}=\frac{y+3}{7}=\frac{2 z-6}{3}$

- Watch Video Solution

4. Find the equation of the plane passing through the points ($3,4,2$), (2, -2, -1) and ($7,0,1$).

- Watch Video Solution

5. Find the distance of the point $(5,-5,-10)$ from the point of intersection of a straight line passing through the points $A(4,1,2)$ and $B(7,5,4)$ with the plane $x-y+z=5$.

- Watch Video Solution

6. Find the equation of the plane through the intersection of the planes $x+3 y+6=0$ and $3 x-y$ $4 z=0$ whose perpendicular distance from the orgin is equal to 1 .

- Watch Video Solution

7. Find the foot of the perpendicular drawn from the point $(1,0,3)$ to the join of points $(4,7,1)$ and (3,5,3).
8. Find the shortest distance between the lines

$$
\begin{aligned}
\vec{r} & =(-\hat{i}+5 \hat{j})+\lambda(-\hat{i}+\hat{j}+\hat{k}) \\
\vec{r} & =(-\hat{i}-3 \hat{j}+2 \hat{k})+\mu(3 \hat{i}+2 \hat{j}+\hat{k})
\end{aligned}
$$

- Watch Video Solution

Objective

1. The distance between x axis and the point $(3,12,5)$
is
A. 3
B. 13
C. 14
D. 12

Answer: B

- Watch Video Solution

2. The perpendicular distance of the point $(6,5,8)$
from y-axis
A. 5 units
B. 6 units
C. 10 units
D. 9 units

Answer: C

- Watch Video Solution

3. If $\frac{1}{2}, \frac{1}{3}, n$ are the direction cosines of a line,
then the value of n is
A. $\sqrt{23} / 6$
B. $23 / 36$
C. $2 / 3$
D. $3 / 2$

Answer: A

- Watch Video Solution

4. A line makes angles of 45° and 60° with the $z-$ axis and the x-axis respectively. The angle made by it with y-axis is
A. 30° or 150°
B. 60° or 120°
C. 45° or 135°
D. 90°

Answer: B

- Watch Video Solution

5. If direction cosines of a line are $\frac{1}{c}, \frac{1}{c}, \frac{1}{c}$, then.
A. 0 It c lt 1
B. c gt 2
C. $c= \pm \sqrt{2}$
D. $c= \pm \sqrt{3}$

Answer: D

- Watch Video Solution

6. The coordinates of a point P are $(3,12,4)$ w.r.t. the origin O . Then the direction cosines of OP are
A. $3,12,4$
B. $\frac{1}{4}, \frac{1}{3}, \frac{1}{2}$
C. $\frac{3}{\sqrt{13}}, \frac{12}{\sqrt{13}}, \frac{4}{\sqrt{13}}$
D. $\frac{3}{13}, \frac{12}{13}, \frac{4}{13}$

Answer: D

- Watch Video Solution

7. The direction cosines of a line that makes equal angles with the three axes in the space are
A. $\pm \frac{1}{\sqrt{3}}, \pm \frac{1}{3}, \pm \frac{1}{3}$
B. $\pm \frac{1}{\sqrt{3}}, \pm \frac{1}{\sqrt{3}}, \pm \frac{1}{\sqrt{3}}$
C. $\pm \frac{6}{7}, \pm \frac{2}{7}, \pm \frac{3}{7}$
D. $\pm \sqrt{\frac{1}{7}}, \pm \sqrt{\frac{3}{14}}, \pm \sqrt{\frac{1}{14}}$

8. If the direction cosines of a line are k, k, k, then

A. kgt 0
B. 0 lt k lt 1
C. $\mathrm{k}=1$
D. $k=\frac{1}{3}$ or $\frac{-1}{\sqrt{3}}$

Answer: D

- Watch Video Solution

9. The direction cosines of a straight line, whose projections on the coordinate axes, OX, OY, OZ are 12,4,13 respectively , are
A. $\frac{12}{29}, \frac{4}{29}, \frac{13}{29}$
B. $\frac{12}{\sqrt{329}}, \frac{4}{\sqrt{329}}, \frac{13}{\sqrt{329}}$
C. $\frac{1}{12}, \frac{1}{4}, \frac{1}{3}$
D. $\frac{12}{329}, \frac{4}{329}, \frac{13}{329}$

Answer: B
10. The vector equation of the straight line $\frac{1-x}{3}=\frac{y+1}{-2}=\frac{3-z}{-1}$ is
A. $\vec{r}=(\hat{i}-\hat{j}+3 \hat{k})+\lambda(3 \hat{i}+2 \hat{j}-\hat{k})$
B. $\vec{r}=(\hat{i}-\hat{j}+3 \hat{k})+\lambda(3 \hat{i}-2 \hat{j}-\hat{k})$
C. $\vec{r}=(3 \hat{i}-2 \hat{j}-\hat{k})+\lambda(\hat{i}-\hat{j}+3 \hat{k})$
D. $\vec{r}=(3 \hat{i}+2 \hat{j}-\hat{k})+\lambda(\hat{i}-\hat{j}+3 \hat{k})$

Answer: A
11. The line $\frac{x-x_{1}}{0}=\frac{y-y_{1}}{1}=\frac{z-z_{1}}{2}$ is
A. a perpendicular to the x-axis
B. perpendicular to the yz-plane
C. parallel to the y-axis
D. parallel to the xz-plane

Answer: A
12. A unit vector parallel to the straight line $\frac{x-2}{3}=\frac{3+y}{-1}=\frac{z-2}{-4}$ is
A. $\frac{1}{\sqrt{26}}(3 \hat{i}-\hat{j}+4 \hat{k})$
B. $\frac{1}{\sqrt{26}}(\hat{i}+3 \hat{j}-\hat{k})$
C. $\frac{1}{\sqrt{26}}(3 \hat{i}-\hat{j}-4 \hat{k})$
D. $\frac{1}{\sqrt{26}}(3 \hat{i}+\hat{j}+4 \hat{k})$

Answer: C

D Watch Video Solution
13. The two lines $x=a y+b, z=c y+d$ and $x=a^{\prime} y+b$ ', $z=c ' y+d$ will be perpendicular, if and only if
A. $a a^{\prime}+b b^{\prime}+c c^{\prime}=0$
B. $\left(a+a^{\prime}\right)\left(b+b^{\prime}\right)+\left(c+c^{\prime}\right)=0$
C. $a a^{\prime}+c c^{\prime}+1=0$
D. $a a^{\prime}+b b^{\prime}+c c^{\prime}+1=0$

Answer: C
14. If the vector equation of a line

$$
\begin{aligned}
& \frac{x-2}{2}=\frac{2 y-5}{-3}=z+1 \\
& \vec{r}=2 \hat{i}+\frac{5}{2} \hat{j}-\hat{k}+\lambda\left(2 \hat{i}-\frac{3}{2} \hat{j}+p \hat{k}\right) \text { then } \mathrm{p}
\end{aligned}
$$ is equal to

A. 0
B. 1
C. 2
D. 3

Answer: B
15. If the staight line $\frac{x-1}{k}=\frac{y-2}{2}=\frac{z-3}{3}$
and $\frac{x-2}{3}=\frac{y-3}{k}=\frac{z-1}{3}$ intersect at a point, then the integer k is equal to
A. -5
B. 5
C. 2
D. -2

Answer: A

- Watch Video Solution

16. The equation of the line joining the points
$(-3,4,11)$ and $(1,-2,7)$ is

$$
\begin{aligned}
& \text { А. } \frac{x+3}{2}=\frac{y-3}{3}=\frac{z-11}{4} \\
& \text { в. } \frac{x+3}{-2}=\frac{y-4}{3}=\frac{z-11}{2} \\
& \text { С. } \frac{x+3}{-2}=\frac{y+4}{3}=\frac{z+11}{2}
\end{aligned}
$$

D. $x+3$

Answer: B

- Watch Video Solution

17. The vector equation of the line $6 x-3=3 y+4=2 z-2$ is
A. $\vec{r}=\hat{i}-\hat{j}+\hat{k}+\lambda(6 \hat{i}+\hat{j}+\hat{k})$
B. $\vec{r}=6 \hat{i}+3 \hat{j}+2 \hat{k}+\lambda(3 \hat{i}+4 \hat{j}-2 \hat{k})$
C.

$$
\vec{r}=\left(\frac{1}{2} \hat{i}-\frac{4}{3} \hat{j}+\hat{k}\right)+\lambda\left(\frac{1}{6} \hat{i}+\frac{1}{3} \hat{j}+\frac{1}{2} \hat{k}\right)
$$

D. None of these

Answer: C

D Watch Video Solution

18. The angle between the staight lines

$$
\frac{x+1}{2}=\frac{y-2}{5}=\frac{z+3}{4}
$$

$$
\frac{x-1}{1}=\frac{y+2}{2}=\frac{z-3}{-3} \text { is }
$$

A. 45°
B. 30°
C. 60°
D. 90°

Answer: D

- Watch Video Solution

19. If the lines $\frac{x-1}{-3}=\frac{y-2}{2 k}=\frac{z-3}{2}$ and
$\frac{x-1}{3 k}=\frac{y-5}{1}=\frac{z-6}{-5} \quad$ are \quad mutually
perpendicular then k is equal to

$$
\begin{aligned}
& \text { A. } \frac{-10}{7} \\
& \text { B. } \frac{-7}{10} \\
& \text { C. }-10 \\
& \text { D. }-7
\end{aligned}
$$

Answer: A

- Watch Video Solution

20. A line makes angles α, β, γ with the coordinates axes. If $\alpha+\beta=90^{\circ}$ then γ is equal
A. 0°
B. 90°
C. 180°
D. 60°

Answer: B

- Watch Video Solution

21. The angle between the lines $x=1, y=2$ and $y=-1, z=0$
is
A. 90°
B. 30°
C. 60°
D. 0°

Answer: A

- Watch Video Solution

22. The distance between the lines $\vec{r}=\vec{a}_{1}+t \vec{b}$
and $\vec{r}=\vec{a}_{2}+s \vec{b}$ is
A. $\left|\left(\vec{a}_{2}-\vec{a}_{1}\right) \vec{b}\right|$
B. $\frac{\left|\left(\vec{a}_{2}-\vec{a}_{1}\right) \times \vec{b}\right|}{|\vec{b}|}$
c. $\left|\frac{\left(\vec{a}_{2}-\vec{a}_{1}\right) \times \vec{b}}{\left|\vec{a}_{2}-\vec{a}_{1}\right|}\right|$
D. $\left|\frac{\left(\vec{a}_{2}-\vec{a}_{1}\right) \times \vec{b}}{\left|\vec{a}_{2}-\vec{a}_{1}\right||\vec{b}| \mid}\right|$

Answer: B

- Watch Video Solution

23. The vector equation of a plane which is at a distance of $\frac{6}{\sqrt{29}}$ from the origin and its normal
vector from the origin is $2 \hat{i}-3 \hat{j}+4 \hat{k}$ is
А. $\vec{r} \cdot(2 \hat{i}-3 \hat{j}+4 \hat{k})=\frac{6}{\sqrt{29}}$
В. $\vec{r} \cdot\left(\frac{2}{\sqrt{29}} \hat{i}-\frac{3}{\sqrt{29}} \hat{j}+\frac{4}{\sqrt{29}} \hat{k}\right)=\frac{6}{\sqrt{29}}$
C. both (a) and (b)
D. none of these

Answer: B

- Watch Video Solution

24. The equation of a plane with intercepts 2,3, and

4 on the x, y and z axes respectively is
A. $2 x+3 y+4 z=12$
B. $6 x+4 y+3 z=12$
C. $2 x+3 y+4 z=1$
D. $6 x+4 y+3 z=1$

Answer: B

D Watch Video Solution

25. The direction cosines of the normal to the plane $6 x-2 y-2 z=1$ are

$$
\text { A. }\left(\frac{6}{7}, 3, \frac{-2}{7}\right)
$$

$$
\begin{aligned}
& \text { B. }(6,-3,-2) \\
& \text { C. } \frac{1}{7}(6,-3,-2) \\
& \text { D. } \frac{1}{7}(6,3,2)
\end{aligned}
$$

Answer: C

D View Text Solution

26. The distance of the point $(2,1,-1)$ from the plane
$x-2 y+4 z=9$ is
A. $\frac{\sqrt{13}}{21}$
B. $\frac{13}{21}$
C. $\frac{13}{\sqrt{21}}$
D. $\sqrt{\frac{13}{21}}$

Answer: C

- Watch Video Solution

27. If the plane $2 x-y+z=0$ is parallel to the line

$$
\frac{2 x-1}{2}=\frac{2-y}{2}=\frac{z+1}{a}, \text { then the value of } \mathrm{a} \text { is }
$$

A. 4
B. -4
C. 2
D. -2

Answer: B

- Watch Video Solution

28. The equation of the plane passing through
$(2,3,4)$ and parallel to the plane $5 x-6 y+7 z=3$ is
A. $5 x-6 y+7 z+20=0$
B. $5 x-6 y+7 z-20=0$
C. $-5 x+6 y-7 z+3=0$
D. $5 x+6 y+7 z+3=0$

Answer: B

- View Text Solution

29. The vector equation of the plane through the
point $(2,1,-1)$ and parallel to the plane
$\vec{r} \cdot(\hat{i}+3 \hat{j}-\hat{k})=0$ is
A. $\vec{r} \cdot(\hat{i}+9 \hat{j}+11 \hat{k})=6$
B. $\vec{r} \cdot(\hat{i}-9 \hat{j}+11 \hat{k})=4$
C. $\vec{r} \cdot(\hat{i}+3 \hat{j}-\hat{k})=6$
D. $\vec{r} \cdot(\hat{i}+3 \hat{j}-\hat{k})=4$

Answer: C

- Watch Video Solution

30. The equation of the plane passing through $(1,2,3)$ and parallel to $3 x-2 y+4 z=5$ is
A. $3 x-2 y+4 z=11$
B. $3 x-2 y+4 z=0$
C. $3 x-2 y+4 z=10$
D. $3(x-1)-2(y-2)+4(z-3)=5$

- Watch Video Solution

31. The staight line passing through the point $(1,0,-2)$ and perpendicular to the plane $x-2 y+5 z-7=0$ is

$$
\begin{aligned}
& \text { A. } \frac{x-1}{1}=\frac{y}{0}=\frac{z-5}{-2} \\
& \text { B. } \frac{x-1}{5}=\frac{y}{-2}=\frac{z+2}{1} \\
& \text { C. } \frac{x-5}{-2}=\frac{y-1}{-5}=\frac{z}{1} \\
& \text { D. } \frac{x-1}{1}=\frac{y}{-2}=\frac{z+2}{5}
\end{aligned}
$$

32. Equation of the line passing through $\hat{i}+\hat{j}-3 \hat{k}$ and perpendicular to the plane $2 x-$ $4 y+3 z+5=0$ is
A. $\frac{x-1}{2}=\frac{1-y}{-4}=\frac{z-3}{3}$
B. $\frac{x-1}{2}=\frac{1-y}{4}=\frac{z+3}{3}$
C. $\frac{x-2}{1}=\frac{y+4}{1}=\frac{z-3}{3}$
D. $\frac{x-1}{-2}=\frac{1-y}{-4}=\frac{z-3}{3}$

Answer: B
33. The angle between a normal to the plane $2 x$ $y+2 z-1=0$ and the $z-a x i s$ is
A. $\cos ^{-1}\left(\frac{1}{3}\right)$
B. $\sin ^{-1}\left(\frac{2}{3}\right)$
C. $\cos ^{-1}\left(\frac{2}{3}\right)$
D. $\sin ^{-1}\left(\frac{1}{3}\right)$

Answer: C
34. Distance between the parallel planes $2 x+y+2 z=8$ and $4 x+2 y+4 z+5=0$ is

> A. $\frac{7}{2}$
> B. $\frac{5}{2}$
> C. $\frac{3}{2}$
> D. $\frac{9}{2}$

Answer: A

- Watch Video Solution

35. The angle θ between the line $\vec{r}=\vec{a}+\lambda \vec{b}$ and the plane $\vec{r} \cdot \widehat{n}=d$ is given by

$$
\begin{aligned}
& \text { A. } \sin ^{-1}\left(\frac{\vec{b} \cdot \widehat{n}}{|\vec{b}| \cdot|\vec{n}|}\right) \\
& \text { B. } \cos ^{-1}\left(\frac{\vec{b} \cdot \widehat{n}}{|\vec{b}| \cdot|\vec{n}|}\right) \\
& \text { C. } \sin ^{-1}\left(\frac{\vec{a} \cdot \hat{n}}{|\vec{a}|}\right) \\
& \text { D. } \cos ^{-1}\left(\frac{\vec{a} \cdot \widehat{n}}{|\vec{a}|}\right)
\end{aligned}
$$

Answer: A
36. The reflection of the point (α, β, γ) in the xy plane is
A. $(\alpha, \beta, 0)$
B. $(0,0, \gamma)$
C. $(-\alpha,-\beta, \gamma)$
D. $(\alpha, \beta,-\gamma)$

Answer: D

