

CHEMISTRY

BOOKS - MODERN PUBLICATION

CHEMICAL KINETICS

1. Express the rate of the following reaction : $4PH_3
ightarrow P_4 + 6H_2$

Watch Video Solution

2. Express the rate of the following reaction : $2NO_2
ightarrow 2NO + O_2$

3. The concentrations of a reactant R at different times are given below:

t(s)	$[R](mol L^{-1})$	t(s)	$[R](mol L^{-1})$
0	160×10 ⁻³	5	80 × 10 ⁻³
10	40×10 ⁻³	20	10 × 10 ⁻³
30	2.5×10 ⁻³		

Calculate the average rate of reaction, R
ightarrow P during different intervals

of time.

Watch Video Solution

4. From the concentration of C_4H_9Cl (butyl chloride) at different times given below, calculate the average reaction: rate of $C_4H_9Cl + H_2O \rightarrow C_4H_9OH + HCl$ during different intervals of time. $t(s) \quad C_{4}H_{9}Cl(mol \ L^{-1})$ t(s)C_4H_9Cl(mol 0.100 300 0 0.0549 0.0905 400 50 0.0439 0.0820 500 100 0.0335 0.0741700 150 0.0210 0.0671 800 200

5. Ammonia and oxygen react at high temperature as : $4NH_3(g) + 5O_2(g) \rightarrow 4NO(g) + 6H_2O(g)$ In an experiment, rate of formation of NO is $3.6 \times 10^{-3} mol L^{-1} s^{-1}$. Calculate (i) rate of disapperance of ammonia, (ii) rate of formation of water.

Watch Video Solution

6. The decomposition of N_2O_5 in $\mathbb{C}1_4$ at 318K has been studied by monitoring the concentration of N_2O_5 in the solution. Initially the concentration of N_2O_5 is $2.33molL^{-1}$ and after 184 minutes, it is reduced to 2.08 mol L^{-1} . The reaction takes place according to the equation

 $2N_2O_5(g) o 4NO_2(g) + O_2(g)Calcate the avera \geq rate of this reaction \in$ NO_2` during this period?

7. Dinitrogen pentoxide decomposes at 475K as: $N_2O_5(g) \rightarrow N_2O_4(g) + \frac{1}{2}O_2(g)$ If the initial pressure is 125 mm and after 30 minutes of the reaction, total pressure of the gaseous mixture is 148 mm, calculate the average rate of reaction in atm min^{-1}

Watch Video Solution

8. Dinitrogen pentoxide decomposes at 475K as: $N_2O_5(g) \rightarrow N_2O_4(g) + \frac{1}{2}O_2(g)$ If the initial pressure is 125 mm and after 30 minutes of the reaction, total pressure of the gaseous mixture is 148 mm, calculate the average rate of reaction in $molL^{-1}s^{-1}$.

> Watch Video Solution

9. Calculate the overall order of a reaction which has the rate expression:

Rate = k [A]^(1/2) [B]^(3/2)

10. Calculate the overall order of a reaction which has the rate expression:

Rate = k [A]^(3/2) [B]⁽⁻¹⁾

11. The reaction A+B
ightarrow C has zero order. What is its rate equation

Watch Video Solution

12. What is meant by the rate constant, 'k' of a reaction. If the concentration be expressed in mol L^{-1} units and time in seconds, what would be the units for k for a first order reaction ?

13. What are the units of rate constant for a zero order reaction ? (concentrations are expressed in mol L^{-1} and time in seconds).

14. Write the units of the rate constant for a nth order reaction. Deduce from this the units of rate constant for a (i) half order reaction (ii) 3/2th order reaction (iii) third order reaction.

> Watch Video Solution

15. Identify the reaction order of the following rate constants.

$$k = 2.3 imes 10^{-5} Lmol^{-1} s^{-1}.$$

Watch Video Solution

16. Identify the reaction order from each of the following rate constants.

$$k=3 imes 10^{-4}s^{-1}$$

17. The rate law for a reaction of A, B and C has been found to be rate = $k[A][B][C]^2$. How would the rate of reaction change when concentration of C is doubled ?

Watch	Video	Solution

18. The rate law for a reaction of A, B and C has been found to be rate = $k[A][B][C]^2$. How would the rate of reaction change when concentration of A is halved ?

Watch Video Solution

19. The rate law for a reaction of A, B and C has been found to be rate = $k[A][B][C]^2$. How would the rate of reaction change when concentration of both B and C are doubled ?

20. The rate law for a reaction of A, B and C has been found to be rate = $k[A][B][C]^2$. How would the rate of reaction change when concentration of each of A, B and C are tripled ?

23. A reaction is second order with respect to a reactant. How is the rate

of reaction affected if the concentration of the reactant is: reduced to

half ?

Watch Video Solution

24. The decomposition of hydrogen peroxide in the presence of iodide ion has been found to be first order in H_2O_2 : $2H_2O_2(aq) \xrightarrow{1^-(aq)} 2H_2O(l) + O_2(g)$. The rate constant has been found to be $1.01 \times 10^{-2} \text{ min}^{-1}$: (a) Calculate the rate of reaction when $[H_2O_2] = 0.4 \text{ mol lit}^{-1}$. (b) What concentration of $[H_2O_2]$ would give a rate of $1.12 \times 10^{-2} \text{ mol lit}^{-1} \text{ min}^{-1}$?

Watch Video Solution

25. The decomposition of hydrogen peroxide in the presence of iodide ion has been found to be first order with respect to H_2O_2 with rate constant k is $1.01 \times 10^{-2} \text{ min}^{-1}$. Calculate the rate of reaction when $[H_2O_2] = 0.15 mol L^{-1}$

26. The decomposition of hydrogen peroxide in the presence of iodide ion has been found to be first order in H_2O_2 : $2H_2O_2(aq) \xrightarrow{1^-(aq)} 2H_2O(l) + O_2(g)$. The rate constant has been found to be $1.01 \times 10^{-2} \text{ min}^{-1}$: (a) Calculate the rate of reaction when $[H_2O_2] = 0.4 \text{ mol lit}^{-1}$.

(b) What concentration of $[H_2O_2]$ would give a rate of $1.12 imes 10^{-2}$ mol lit $^{-1}$ min $^{-1}$?

Watch Video Solution

27. For the reaction $2A + B + C \rightarrow A_2B + C$ The rate law has been found to be Rate = $k[A][B]^2$ with $k = 2.0 \times 10^{-6} mol^{-2}L^2s^{-1}$ For this reaction, determine the initial rate of reaction with $[A] = 0.1 molL^{-1}, [B] = 0.2 molL^{-1}, [C] = 0.8 molL^{-1}$. Determine the rate after 0.04 mol L^{-1} of A has been reacted. **28.** How will rate of reaction change when $\left[A\right]_0$ is doubled for a zero order reaction

Watch Video Solution
Watch video Solution

29. Is there any reaction for which reation rate does not decrease with

time ?

Watch Video Solution

30. How will rate of reaction change when $[A]_0$ doubled and tripled for

zero order reaction?

31. How will rate of reaction change when $\left[A\right]_0$ doubled and tripled for

second order reaction ?

35. For a zero order reaction will the molecularity be equal to zero ?

• Watch Video Solution 36. The rate of reaction is equal to rate constant of the reaction. What is the order of reaction? • Watch Video Solution

37. What is activation energy? How is related to rate constant of a

reaction?

Watch Video Solution

38. For a reaction : $2NH_3(g) \stackrel{Pt}{\longrightarrow} N_2(g) + 3H_2(g)$ Rate =k . Write the

order and molecularity of this reaction.

39. For a reaction : $2NH_3(g) \stackrel{Pt}{\longrightarrow} N_2(g) + 3H_2(g)$ Rate =k . Write the unit of k.

41. Identify the reaction order from each of the following rate constants.

$$k=3\times 10^{-4}s^{-1}$$

42. Identify the order of a reaction of the following rate constants :

 $k = 9.3 imes 10^{-4} mol L^{-1} s^{-1}$

43. For the reaction : $Ester + H^+ \rightarrow Acid + Alcohol, rate= k$ [Ester] $[H^+]^0$. Find the order of the reaction .

Watch Video Solution

44. For the assumed reaction : $X_2+2Y_2
ightarrow 2XY_2$, write the rate equation in terms of the rate of disappearance of Y_2 .

45. For the reaction $: Cl_2(g) + 2NO(g) \to 2NOCl(g)$ The rate law is expressed as rate = $k[NO]^2[Cl_2]$ What is the overall order of the reaction

46. Express the rate of the following reaction in terms of disappearance of hydrogen in the following reaction : $3H_2(g) + N_2(g) \rightarrow 2NH_3(g)$

Watch Video Solution

47. The decomposition reaction of ammonia gas on platinum surface has a rate constant, $k=2.5 imes10^{-4}molL^{-1}s^{-1}$. What is the order of the reaction ?

Watch Video Solution

48. What is molecularity of reaction

$$CI
ightarrow rac{1}{2} Cl_2$$

50. If the concentration be expressed in mol L^{-1} units and time in seconds, what would be units for rate constant, k for a zero order reaction?

Watch Video Solution

51. If the concentration be expressed in mol L^{-1} units and time in seconds, what would be units for rate constant, k for a first order reaction?

52. Identify the order of a reaction if the units of its rate constant are :

 $L^{-1}mols^{-1}$

Watch Video Solution

53. Identify the order of a reaction if the units of its rate constant are :

 $Lmol^{-1}s^{-1}$.

Watch Video Solution

54. A reaction is second order with respect to a reactant. How is the rate

of reaction affected if the concentration of the reactant is: reduced to

half ?

55. In the reaction : $aA + bB \rightarrow products$, if the concentration of A is doubled (keeping B constatnt), the initial rate becomes four times and if B is doubled (keeping A constatnt), the rate become double. What is the rate law equation and order of the reaction ?

Watch Video Solution

56. The rate constant of a reaction is $3 imes 10^2 min^{-1}$. What is the order of

reaction ?

Watch Video Solution

57. For a reaction, A+B
ightarrow Product, the rate law is given by, r = k [

A][^](1/2) [B][^]2. What is the order of the reaction?

58. The rate law for a reaction is

 $\mathsf{Rate} \texttt{=} k[A]^{1 \, / \, 2}[B]^2$

Can the reaction be an elementry reaction. Explain.

Watch Video Solution

60. The rate constant for a reaction of zero order in A is 0.0030 $molL^{-1}s^{-1}$. How long will it take for the initial concentration of A to fall from 0.10 M to 0.075 M.

61. The decomposition of N_2O_5 at 318 K according to the following equation follows first order reaction: $N_2O_5(g) \rightarrow 2NO_2(g) + \frac{1}{2}O_2(g)$ The initial concentration of N_2O_5 was $1.24 \times 10^{-2} mol L^{-1}$ and that after 60 minutes was $0.20 \times 10^{-2} mol L^{-1}$. Calculate the rate constant of the reaction at 318 K.

Watch Video Solution

62. The decomposition of a compound is found to follow first order rate law. If it takes 15 minutes for 20 percent of original material to react, calculate the specific rate constant?

Watch Video Solution

63. The decomposition of a compound is found to follow first order rate law. If it takes 15 minutes for 20 percent of original material to react, calculate the time at which 10 percent of the original material remains unreacted.

64. The decomposition of a compound is found to follow first order rate law. If it takes 15 minutes for 20 percent of original material to react, calculate the time it takes for the next 20 per cent of the reactant left to react after first 15 minutes.

65. The following data were obtained during the first order thermal decomposition of N_2O_5 (g) constant volume: at $2N_2O_5(g) o 2N_2O_4(g) + O_2(g)$ - 3 (0) ---2 - 4 (0) - 2 (0) S.No. Time/s Total Pressure/(atm) 0.51. 0 2.100 0.512Calculate the rate constant.

66. The following data were obtained during the first order thermal decomposition of SO_2Cl_2 at constant volume .

 $SO_2Cl_2(g)
ightarrow SO_2(g) + Cl_2(g)$

Experiment	Times/s	Total pressure/at
1	0	0.5
2	100	0.6

Calculate the rate of reaction when total pressure is 0.65 atm.

67. Calculate the half life period of first order reaction where the specific

rate constant is $200s^{-1}$

68. Calculate the half-life of a first order reaction from their rate constants given below: $2 \min^{-1}$

69. Calculate the half life period of first order reaction where the specific

rate constant is $4year^{-1}$

O Watch Video Solution

70. Fill in the blanks with appropriate answers- Milk contains ______which is converted into ______ in the presence of a bacteria during the formation of curd.

71. For a first order reaction, calculate the ratio between the time taken to complete three-fourth of the reaction and the time taken to complete half of the reaction.

Watch Video Solution

72. The rate of decomposition of hydrogen peroxide at a particular temperature was measured by titrating its solution with acidic $KMnO_4$ solution. Following results were obtained:

Time, t (min)	0	10	20	
mol (KMnO.)	22.8	13.8	8.3	
4			adar	

Show that the reaction is of first order .

Watch Video Solution

73. The rate of decomposition of hydrogen peroxide at a particular temperature was measured by titrating its solution with acidic $KMnO_4$ solution. Following results were obtained:

Time, t (min)	0	10	20	
mol(KMnO)	22.8	13.8	8.3	_
4			dar	

Calculate the rate constant ?

74. The following results were obtained for the decomposition of nitrogen peroxide in an inert solvent :

t (s)	0	300	600	900	00
Vol. of O,					
evolved (cm ³)	0	3.42	6.30	8.95	34.75

Show that the reaction is of first order and also calculate the rate constant.

Watch Video Solution

75. The experimental data for decomposition of N_2O_5 $2N_2O_5
ightarrow 4NO_2 + O_2$ in gas phase at 318K are given below:

t/s	0	400	800	1200	1600	2000	2400	2800	3200
$10^{2} \times [N_{2}O_{5}]/mol \ L^{-1}$	1.63	1.36	1.14	0.93	0.78	0.64	0.53	0.43	0.35

What is the rate law?

76. What is glauber salt?

	s glauber sait:					
C Wat	ch Video Solution	1				
77. Rice,ma	aize,sugar and pot	tato con	tain	in them.		
78. The	experimental	data	for	decomposition	of	N_2O_5
$2N_2O_5 ightarrow$	$4NO_2+O_2$ in g	as phase	e at 318	BK are given below:		

t/s	0	400	800	1200	1600	2000	2400	2800	3200
$10^2 \times [N_2O_5]/mol \ L^{-1}$	1.63	1.36	1.14	0.93	0.78	0.64	0.53	0.43	0.35

What is the rate law?

79. The experimental data for decomposition of N_2O_5 $2N_2O_5 \rightarrow 4NO_2 + O_2$ in gas phase at 318K are given below:

t/s	0	400	800	1200	1600	2000	2400	2800	3200
$10^2 \times [N_2O_5]/mol L^{-1}$	1.63	1.36	1.14	0.93	0.78	0.64	0.53	0.43	0.35

What is the rate law?

Watch Video Solution

80. The experimental data for decomposition of N_2O_5 $2N_2O_5 o 4NO_2 + O_2$ in gas phase at 318K are given below:

t/s	0	400	800	1200	1600	2000	2400	2800	3200
$10^2 \times [N_2O_5]/mol L^{-1}$	1.63	1.36	1.14	0.93	0.78	0.64	0.53	0.43	0.35

Calculate the half-life Period from k and compare it with (b).

81. The following data were obtained for the reaction: $2NO(g) + Br_2(g)
ightarrow 2NOBr(g)$

		Initial con	c. Initial rate	
	[NO]	$[Br_{2}]$	(mol L-1 min-1)	
speriment	0.10	0.10	1.3 × 10-6	
1	0.20	0.10	5.2 × 10-6	
II	0.20	0.30	1.56 × 10-5	
III	il an	dare with m		

Determine: the orders with respect to NO and Br_2

Watch Video Solution

82. The following data were obtained for the reaction: $2NO(g) + Br_2(g)
ightarrow 2NOBr(g)$

,		Initial con	c. Initial rat	_
	[NO]	$[Br_2]$	(mol L-1 min-1)	
speriment	0.10	0.10	1.3 × 10-6	_
I	0.20	0.10	5.2 × 10-6	
П	0.20	0.30	1.56 × 10-5	
111	the or	dare with m		_

Determine the rate law?

following data were obtained for the 83. The reaction: $2NO(q) + Br_2(q) \rightarrow 2NOBr(q)$ Initial conc. Initial rate $[Br_2]$ (mol L-1 min-1) [NO] Superiment 0.10 0.10 1.3 × 10-6 0.10 0.20 5.2 × 10-6 0.300.201.56 × 10-5 11 111

I and are with reasons

Determine rate constant.

Watch Video Solution

84. What is the order of the reaction if the unit of rate constant is s - 1?

Functionant		Initial cone	Initial rate
Experiment	[NO ₂] ₀	$[F_2]_0$	mol L-1 min-1
1	0.20	0.05	6.0×10^{-3}
2	0.40	0.05	1.2×10^{-2}
3	0.80	0.10	4.8×10^{-2}

Determine: order of reaction.

Watch Video Solution

86. The following data were obtained for the reaction: $2NO_2(g) + F_2(g)
ightarrow 2NO_2F$

Experiment	[NO ₂] ₀	Initial con [F ₂] ₀	c. Initial rate mol L ⁻¹ min ⁻¹
1	0.20	0.05	6.0 × 10 ⁻³
2	0.40	0.05	1.2×10^{-2}
3	0.80	0.10	4.8×10^{-2}

Determine: rate law.

87. The following data were obtained for the reaction: $2NO_2(g) + F_2(g)
ightarrow 2NO_2F$

	-	-	
Experiment		Initial conc.	Initial rate
	$[NO_2]_0$	$[F_2]_0$	mol L ^{-,} min ^{-,}
1	0.20	0.05	6.0×10^{-3}
2	0.40	0.05	1.2×10^{-2}
3	0.80	0.10	4.8×10^{-2}
•			

Determine: rate of reaction when $[NO_2] = 0.50 mol L^{-1}$ and $[F_2] = 0.60 mol L^{-1}$.

Watch Video Solution

88. The initial rate of reaction : $A + 5B + 6C \leftrightarrow 3L + 3M$ has been determined by measuring the rate of disappearance of A under the

following conditions :

Expt.	[A]	[B] ₀	$[C]_0$	Initial rate
No.	M	M	M	M/min ⁻¹
1.	0.02	0.02	0.02	2.08×10^{-3}
2.	0.01	0.02	0.02	1.04×10^{-3}
3.	0.02	0.04	0.02	4.16×10^{-3}
4.	0.02	0.02	0.04	8.32×10^{-3}

Determine the order of reaction with respect to each reactant and overall order of the reaction. What is the rate constant ? Calculate the initial rate of the reaction when the concentration of all the reactants is 0.01 M. Calculate the initial rate of change in concentration of B and L.

89. Nitrogen pentoxide decomposes according to equation : $2N_2O_5(g) \rightarrow 4NO_2(g) + O_2(g)$ This first order reaction was allowed to proceed at $40^{\circ}C$ and the data below were collected :

$[N_2O_5](M)$	Time (min)
0.400	0.00
0.289	20.0
0.209	40.0
0.151	60.0
0.109	80.0

Calculate the rate constant. Include units with your answer.

90. Nitrogen pentoxide decomposes according to equation : $2N_2O_5(g) \rightarrow 4NO_2(g) + O_2(g)$ This first order reaction was allowed to proceed at $40^{\circ}C$ and the data below were collected :

Time (min)	$[N_2O_5](M)$
0.00	0.400
20.0	0.289
40.0	0.209
60.0	0.151
80.0	0.109

What will be the concentration of N_2O_5 after 100 minutes ?

92. The reaction : $CH_3COF + H_2O = CH_3COOH + HF$ has been

studied under the following initial conditions:

Experiment I	Experiment II
$[H_0O]_0 = 1.00 M$	$[H_2 O]_0 = 0.02 M$
$[CH_{s}COF]_{0} = 0.01 M$	$\left[CH_{3}COF\right]_{0}=0.80\ M$

Calculate the order of the reaction and the rate constant for the reaction.

Watch Video Solution	

93. The half life period for the conversion of ammonium cyanate into urea at 303 K. at initial concentration of 0.1 mol/l and 0.2 mol/l are 1152 and 568 min respectively. What is the order of reaction.

94. A first order reaction has a rate constant of 0.0051 \min^{-1} . If we begin with 0.10 M concentration of the reactant, what concentration of reactant will remain in Solution after 3 hours ?

transfer genetic character from one generation to other.

Watch Video Solution

96. A first order reaction is 20% complete in the 10 minutes. Calculate the time period for 75% completion of the reaction.

Watch Video Solution

97. A first order reaction takes 23.1 minutes for 50% completion. Calculate the time required for 75% completion of this reaction $(\log 2 = 0.301), (\log 3 = 0.4771)(\log 4 = 0.6021)$

Watch Video Solution

98. The rate constant for the first order reaction is $60s^{-1}$. How much time will it take to reduce the concentration to reactant to $\frac{1}{10}$ th of initial
value ?

99. The half-life for radioactive decay of $.^{14}C$ is 5730 years. An archaeological artifact contented wood that has only 80% of the $.^{14}C$ found in living tree. Estimate the age of the sample.

100. Calculate two third life of a first order reaction having $k=5.48 imes10^{-14}s^{-1}.$

Watch Video Solution

101. The reaction : $SO_2Cl_2 \xrightarrow{k_1} SO_2 + Cl_2$ is a first order reaction with half life $3.15 \times 10^4 s$ at 575 K. What percentage of SO_2Cl_2 would be decomposed on heating at 575 K for 90 minutes? 102. The rate of decomposition of N_2O_5 in CCl_4 solution has been

measured at 318 K and the following results were obtained :

were	0	135	339	689	1680
t(min)	2.08	1.91	1.67	1.35	0.57
C (M)	derofre	action an	dealaula	taitant	0.07

Find the order of reaction and calculate its rate constant. What is its half

life period ?

Watch Video Solution

103. A first order reaction is 15% complete in 20 minutes. How long will it

take to complete 60%?

104. Show that in case of a first order reaction, the time taken for completion of 99.9% reaction is ten times the time required for half

change of the reaction.

Watch Video Solution

105. The decomposition of phosphine, PH_3 , proceeds according to the following equation : $4PH_3(g) \rightarrow P_4(g) + 6H_2(g)$ It is found that the reaction follows the following rate equation : Rate = $k[PH_3]$. The half-life of PH_3 is 37.9 s at 120° C. How much time is required for 3/4th of PH_3 to decompose?

Watch Video Solution

106. The decomposition of phosphine, PH_3 , proceeds according to the following equation : $4PH_3(g) \rightarrow P_4(g) + 6H_2(g)$ It is found that the reaction follows the following rate equation : Rate = $k[PH_3]$. The half-life of PH_3 is 37.9 s at 120° C. How much time is required for 3/4th of PH_3 to decompose?

107. Sucrose decomposes in acid solution into glucose and fructose according to the first order rate law, with $t_{\frac{1}{2}}$ =3.00 hours. What fraction of sample of sucrose remains after 8 hours?

Watch Video Solution

108. The thermal decomposition of a compound is first order. If 50 % of the. compound is decomposed in 120 minutes, how long will it take for 90 % of this compound decompose?

Watch Video Solution

109. Starting from 10g of a radioactive element, 0.25 g was left after 5

years. Calculate Rate constant for the decay of the radioactive element.

113. The half-life of first order decomposition of NH_4NO_3 is 2.10 hr at 288

K temperature

 $NH_4NO_3(aq)
ightarrow N_2O(g) + 2H_2O(l).$ If 6.2 of NH_4NO_3 is allowed to

decompose, the required for NH_4NO_3 to decompose 90 % is :

Watch Video Solution

114. The half life time of a first order decomposition of nitramide is 2.1 hour at $15^{\circ}C$. $NH_2NO_2(aq) \rightarrow N_2O(g) + H_2O(I)$ If 6.2 of NH_2NO_2 is allowed to decompose 99%, calculate volume of dry N_2O produced at this point measured at S.T.P.

> Watch Video Solution

115. The decomposition of Cl_2O_7 at 400 K in the gas phase to Cl_2 and O_2 is a first order reaction. After 55 seconds at 400 K, the pressure of Cl_2O_7 falls from 0.062 to 0.044 atm. Calculate the rate constant.

116. The decomposition of Cl_2O_7 at 400 K in the gas phase to Cl_2 and O_2 is a first order reaction. After 55 seconds at 400 K, the pressure of Cl_2O_7 falls from 0.062 to 0.044 atm Calculate the pressure of ` after 100 s of decomposition at this temperature.

Watch Video Solution

117. What is the number of water molecules contained in a drop of water

weighing 0.06g?

Watch Video Solution

118. Calculate the mass of 3.011 (10 $^{*}24$) molecules of nitrogen gas.

119. The absolute mass of one molecule of a substance is 5.32 (10*-32) g .

What is its molecular mass .

120. For a decomposition reaction, the values of rate constants, k at two different temperatures are given below :

 $k_1 = 2.15 imes 10^{-7} Lmol^{-1} s^{-1}$ at 650K

 $k_2 = 2.39 imes 10^{-7} Lmol^{-1} s^{-1}$ at 700K

calculate activation energy for the reaction.

Watch Video Solution

121. In general it is observed that the rate of a chemical reaction becomes double for every 10° rise in temperature. If this generalisation holds for a reaction in the temperature range 2908 K to 398 K, what would be the value of activation energy for the reaction.

(R=8.314 J $K^{-1}mol^{-1}$)

122. The rate of reaction becomes four times when the temperature changes from 293 K to 313 K. Calculate the energy of activation (E_a) of the reacton assuming that it does not change with temperature. $[R = 8.314 J K^{-1} mol^{-1}, \log 4 = 0.6021]$

123. The rate constant of a reaction at 700K and 760K are $0.011M^{-1}s^{-1}$ and $0.105M^{-1}s^{-1}$ respectively. Calculate the value of Arrhenius parameter.

124. A first order reaction takes 23.1 minutes for 50% completion. Calculate the time required for 75% completion of this reaction $(\log 2 = 0.301), (\log 3 = 0.4771)(\log 4 = 0.6021)$

125. The values of rate constant for the decomposition of HI into H_2 and

 I_2 at different temperatures are given below:

T(K)				0
$k(M^{-1}s^{-1})$	633	667	710	738
-	0.19	1.00	8.31	25.1
		7		

Draw a graph between In k and 1/T and calculate the values of Arrhenius parameters.

126. Rate constant 'k' of a reaction varies with temperature 'T' according to the equation: $\log k = \log A - \frac{E_a}{2.303R} \left(\frac{1}{T}\right)$ where E_a is the activation energy. When a graph is plotted for log k vs. $\frac{1}{T}$, a straight line with a slope of - 4250 K is obtained. Calculate E_a for the reaction $(R = 8.314 J K^{-1} mol^{-1})$

127. The rate constant for a reaction is found to be $1.96 \times 10^{-2}s^{-1}$ at 313K. The activation energy of the reaction is 93.62 kJ mol^{-1} . Calculate the frequency factor ,A.

128. The rate constants of a reaction at 500K and 700K are $0.02s^{-1}$ and

 $0.07 s^{-1}$ respectively. Calculate the values of E_a and A.

Watch Video Solution

129. Calculate the mass of 1 mole of each one of the following : NaCl

130. Calculate the mass of 1 mole of each one of the following : CaCO3

131. Two reactions of the same order have equal pre-exponential factors but their activation energies difter by 24.9 kJ mol^{-1} . Calculate the ratio between the rate constants of these reactions at $27^{\circ}C$. (Gas constant, $R = 8.3JK^{-1}mol^{-1}$).

Watch Video Solution

132. A hydrogenation reaction is carried out at 500K. If the same reaction is carried out in the presence of a catalyst at the same rate, the temperature required is 400K. Calculate the activation energy of the reaction if the catalyst lowers the activation barrier by $20kJmol^{-1}$.

- a) 100 kJ/mol
- b) 80 kJ/mol
- c) 60 kJ/mol
- d) none of these

133. The time required for 10% completion of a first order reaction at 298K is equal to that required for its 25% completion at 308K. If the value of A is $4 \times 10^{10} s^{-1}$. Calculate k at 318K and E_a .

reactant remains ?

137. For a first order reaction, time taken for half of the reaction to complete is t_1 and 3/4 of the reaction to complete is t_2 . How are t_1 and t_2 related ?

> Watch Video Solution

138. A reaction is first order in A and second order in B.

Write the differential rate equation.

> Watch Video Solution

139. A reaction is first order in A and second order in B

How is the rate affected on increasing the concentration of B three times

?

140. A reaction is first order in A and second order in B. How is the rate

affected when the concentrations of both A and B are doubled?

n	Solution	Video	Watch	C
---	----------	-------	-------	---

141. Express the relation between the half life period of a reactant and its initial concentration for a reaction of nth order.

Watch Video Solution

142. For the reaction :

 $C_{12}H_{22}O_{11} + H_2O \xrightarrow{HI} C_6H_{12}O_6 + O_6H_{12}O_6$

Write : (a) Rate of reaction expression.

(b) Molecularity of reaction

(c) Order of reaction

143. Complete the reaction : $NH_4NO_3(s) \longrightarrow$
Vatch Video Solution
144. Fill in the blanks is present in the blood and also called as
leukocytes.
Watch Video Solution
145. Fill in the blanksis the component of the blood which
contains food, wastes, enzymes and protein.
Watch Video Solution
146. Fill in the blanks is the tissue of the plant that carries
water and nutrient from soil to the stems and leaves.
Watch Video Solution

147. Complete the following terms- Sweat contains
Watch Video Solution
148. Fill in the blanks transport blood that has low oxygen content from right ventricles to the lungs.
Watch Video Solution
149. Fill in the blanks is an explosive also called as tenerite.
Watch Video Solution
150. Fill in the blanks- Gun powder is made up of
Watch Video Solution

151. What value of k is predicted for the rate constant by Arrhenius equation if $T o \infty$? Is this value physically reasonable ?

155. Why does equilibrium constant not change with the Presence of a

catalyst ?

• Watch Video Solution 156. What is the fraction of molecules having energy equal to or greater

than activation energy, E_a ? What is this quantity called ?

Watch Video Solution

157. What is the effect adding catalyst on the free energy of a reaction?

Watch Video Solution

158. For a reaction: $A + B \rightarrow P$, the rate law is given as: Rate = $k[A][B]^2$ How is the rate of reaction affected when the concentration of B is doubled?

159. For a reaction: $A + B \rightarrow P$, the rate law is given as: Rate = $k[A][B]^2$

What is the order of reaction if A is present in large excess.

Watch Video Solution

160. The concentration of a reactant changes from 0.03 M to 0.02 M in 25 minutes. Calculate the average rate of reaction using units of time both in minutes and seconds .

O Watch Video Solution

161. In a reaction, $2A \rightarrow Products$, the concentration of A decreases from 0.5 mol L^(-1) to $0.4molL^{-1}$ in 10 minutes. Calculate the rate during this interval?

162. For a reaction, $A + B \rightarrow$ Product, the rate law is given by, r = k [A]^(1/2) [B]^2. What is the order of the reaction?

163. The conversion of molecules X to Y follows second order kinetics. If concentration of X is increased to three times how will it affect the rate of formation of Y ?

Watch Video Solution

164. A first order reaction has a rate constant $1.15 imes 10^{-3} s^{-1}$. How long

will 5g of this reactant take to reduce to 3 g?

165. Time required to decompose SO_2Cl_2 to half of its initial amount Is 60 minutes. If the decomposition is a first order reaction, calculate the rate constant of the reaction.

166. What is the effect of temperature on the rate constant of a reaction? How can this effect of temperature on rate constant be represented quantitatively?

Watch Video Solution

167. The rate of the chemical reaction doubles for an increase of 10 K In

absolute temperature from 298 K. Calculate E_a .

168. The activation energy for the reaction $2HI(g) \rightarrow H_2 + I_2(g)$ is 209.5 kJ mol⁽⁻¹⁾ at 58IK.Calculate the fraction of molecules of reactants having energy equal to or greater than activation energy?

169. From the rate expression for the following reactions, determine their order of reaction and the dimensions of the rate constants: $3NO(g) \rightarrow N_2O(g)Rate = k[NO]^2$

170. From the rate expression for the following reactions, determine their order of reaction and the dimensions of the rate constants: $H_2O_2(aq) + 3I^{-(aq)} + 2H^+ \rightarrow 2H_2O(I) + I^- _3Rate = k[H_2O_2][I^-]$

171. From the rate expression for the following reactions, determine their order of reaction and the dimensions of the rate constants: $CH_3CHO(g) \rightarrow CH_4(g) + CO(g)Rate = k[CH_3CHO]^{rac{3}{2}}$

172. From the rate expression for the following reactions, determine their order of reaction and the dimensions of the rate constants: $C_2H_5CI(g) \rightarrow C_2H_4(g) + HCI(g)Rate = k[C_2H_5CI]$

Watch Video Solution

173. For the reaction: $2A + B \rightarrow A2B$ the $rate = k[A][B]^2$ with $k = 2.0 \times 10^{-6} mol^{-2} L^2 s^{-1}$. Calculate the initial rate of the reaction when $[A] = 0.1 mol L^{-1}$, $[B] = 0.2 mol L^{-1}$. Calculate the rate of reaction after [A] is reduced to $0.06 mol L^{-1}$.

174. The decomposition of NH3 on platinum surface is zero order reaction. What are the rates of production of N_2 and H_2 if $k = 2.5 \times 10^{-4} mol L^{-1} s^{-1}$?

Watch Video Solution

175. The decomposition of dimethyl ether leads to the formation of CH_4, H_2 and CO and the reaction rate is given by $Rate = k[CH_3OCH_3]^{\frac{3}{2}}$. The rate of reaction is followed by increase in pressure in a closed vessel, so the rate can also be expressed in terms of the partial pressure of dimethyl ether, i.e., $Rate = k \left(P_{CH_3OCH_3}^{\frac{3}{2}} \right)$ If the pressure is measured in bar and time in minutes, then what are the units of rate and rate constants?

Watch Video Solution

176. Discuss the various factors affecting the rates of chemical reactions.

of reaction affected if the concentration of the reactant is: doubled

Watch Video Solution

178. A reaction is second order with respect to a reactant. How is the rate of reaction affected if the concentration of the reactant is: reduced to half?

Watch Video Solution

179. What is the effect of temperature on the rate constant of a reaction? How can this effect of temperature on rate constant be represented quantitatively?

180. In a pseudo first order hydrolysis of ester in water the following results were obtained:

	0	30	60	90
(Fster)/mol L ⁻¹	0.55	0.31	0.17	0.085
Esterr	-			1

Calculate the

average rate of reaction between the time interval 30 to 60 seconds.

181. In a pseudo first order hydrolysis of ester in water the following

results were obtained:

	0	30	60	90
Vs	0.55	0.31	0.17	0.085
Ester		1	Sen alter	Lateration

Calculate the

pseudo first order rate constant for the hydrolysis of ester.

182. A reaction is first order in A and second order in B.

Write the differential rate equation.

Watch Video Solution
183. A reaction is first order in A and second order in B
How is the rate affected on increasing the concentration of B three times

?

Watch Video Solution

184. A reaction is first order in A and second order in B. How is the rate

affected when the concentrations of both A and B are doubled?

185. In a reaction between A and B, the initial rate reaction $\left(r_{o}
ight)$ was

measured for different initial concentrations of A and B as given below :

A/mol L ⁻¹	0.20	0.20	0.40	
B/mol L ⁻¹	0.30	0.10	0.05	
r_/mol L ⁻¹ s ⁻¹	5.07 × 10 ⁻⁵	5.07 × 10 ⁻⁵	1.43 × 10 ⁻⁴	

What is the order of the reaction with respect to A and B?

186. The following results have been obtained during the kinetic studies

of the reaction : 2A + B
ightarrow C + D

Experiment	[A]/mol L ⁻¹	[B]/mol L ⁻¹	Initial rate of formation of D/mol L ⁻¹ min ⁻¹
I	0.1	0.1	6.0×10^{-3}
п	0.3	0.2	7.2 × 10 ⁻²
ш	0.3	0.4	2.88 × 10 ⁻¹
IV	0.4	0.1	2.40×10^{-2}

Determine the 'rate law and the rate constant for the reaction

187. The reaction between A and B is first order with respect to A and zero

Experiment	[A]/mol L-1	[B]/mol L ⁻¹	Initial rate/ mol L ⁻¹ min ⁻¹
I	0.1	0.1	2.0×10^{-2}
П		0.2	4.0×10^{-2}
ш	0.4	0.4	2.0×10^{-2}
IV	-	0.2	

order with respect to B. Fill in the blanks in the following table:

188. Calculate the half-life of a first order reaction from its rate constant

which is

200 $S^{\,-1}$

189. Calculate the half-life of a first order reaction from their rate

constants given below: $2 \min^{-1}$

190. Calculate the half-life of a first order reaction from their rate constants given below: $4years^{-1}$

Watch Video Solution

191. The half-life for radioactive decay of $.^{14}C$ is 5730 years. An archaeological artifact contented wood that has only 80% of the $.^{14}C$ found in living tree. Estimate the age of the sample.

 $N_2O_52N_2O_5
ightarrow 4NO_2 + O_2$ in gas phase at 318K are given below:

0	400	800	1200	1600	2000	2400	2800	3200
1.63	1.36	1.14	0.93	0.78	0.64	0.53	0.43	0.35
1	0 .63	0 400 .63 1.36	0 400 800 .63 1.36 1.14	0 400 800 1200 .63 1.36 1.14 0.93	0 400 800 1200 1600 .63 1.36 1.14 0.93 0.78	0 400 800 1200 1600 2000 .63 1.36 1.14 0.93 0.78 0.64	0 400 800 1200 1600 2000 2400 .63 1.36 1.14 0.93 0.78 0.64 0.53	0 400 800 1200 1600 2000 2400 2800 .63 1.36 1.14 0.93 0.78 0.64 0.53 0.43

Plot $[N_2O_5]$ against t.

0	Watch	NVideo Solution			

 $2N_2O_5
ightarrow 4NO_2 + O_2$ in gas phase at 318K are given below:

t/s	0	400	800	1200	1600	2000	2400	2800	3200
$10^2 \times [N_2O_5]/mol \ L^{-1}$	1.63	1.36	1.14	0.93	0.78	0.64	0.53	0.43	0.35

What is the rate law?

Watch Video Solution

194. The experimental data for decomposition of N_2O_5 $2N_2O_5
ightarrow 4NO_2 + O_2$ in gas phase at 318K are given below:

t/s	0	400	800	1200	1600	2000	2400	2800	3200
$10^2 \times [N_2O_5]/mol \ L^{-1}$	1.63	1.36	1.14	0.93	0.78	0.64	0.53	0.43	0.35

What is the rate law?

Watch Video Solution

195. The experimental data for decomposition of N_2O_5 $2N_2O_5 \rightarrow 4NO_2 + O_2$ in gas phase at 318K are given below:

t/s	0	400	800	1200	1600	2000	2400	2800	3200
$10^2 \times [N_2O_g]/mol \ L^{-1}$	1.63	1.36	1.14	0.93	0.78	0.64	0.53	0.43	0.35

What is the rate law?

Watch Video Solution

196. Fill in the blanks- Mixture of ______ is used as domestic fuel.

Watch Video Solution

198. The rate constant for a first order reaction is 60 s⁽⁻¹⁾. How much time will it take to reduce the initial concentration of the reactant to its $I/16^{(th)}$ value?

Watch Video Solution

199. During nuclear explosion, one of the products is ${}^{90}Sr$ with half-life of 28.1 years. If $1\mu g$ of ${}^{90}Sr$ was absorbed in the bones of a newly born baby instead of calcium, how much of it will remain after 10 years and 60 years if it is not lost metabolically.

200. Show that the time required for 99% completion of a first order reaction In twice the time required for the completion of 90%.

Watch Video Solution	

201. A first order reaction takes 40 min for 30% completion. Calculate $t_{\frac{1}{2}}$.

	Watch	Video	Solution
. /			

202. For the decomposition of azoisopropane to hexane and nitrogen at

543 K, the following data is obtained.

t(sec)	P(mm of Hg)
0	35.0
360	54.0
790	63.0
120	11 11 11 11 11 11 11 11 11 11 11 11 11

Calculate the rate constant.

203. The following data were obtained during the first order thermal decomposition of SO_2Cl_2 at a constant volume. $SO_2Cl_2(g) \rightarrow SO_2(g) + Cl_2(g)$

Experiment	Time/s ⁻¹	Total pressure/atm
Experiment	0	0.5
1	100	0.6
4	100	total

Calculate the rate of the reaction when total pressure is 0.65 atm.

Watch Video Solution

204. The rate constant for the decomposition of N_2O_5 at various

temperatures is given below :

T/°C	0	20	40	60	80
$10^5 \times k/s^{-1}$	0.0787	1.70	25.7	178	2140
10 . 120				-	alaulate

Draw a graph between In k and 1/T and calculate the values of A and E_a .

Predict the rate constant at 30° and $50^{\circ}C$.

205. The rate constant for the decomposition of hydrocarbons is $2.418 \times 10^{-5} s^{-1}$ at 546 K. If the energy of activation is 179.9 kJ/mol, what will be the value of pre-exponential factor.

Watch Video Solution

206. Consider a certain reaction $A \rightarrow Products$ with k=2.0 xx 10^(-2) S^{-1} Calculate the concentration of A remaining after 100 s if the initial concentration of A is 1.0 mol L^(-1).

Watch Video Solution

207. Sucrose decomposes in acid solution into glucose and fructose according to the first order rate law, with $t_{\frac{1}{2}}$ =3.00 hours. What fraction of sample of sucrose remains after 8 hours?

208. The decomposition of hydrocarbon follows the equation $k=ig(4.5 imes10^{11}S^{-1}ig)e^{-28000rac{K}{T}}$ Calculate E_a

Watch Video Solution

209. The rate constant for the first order decomposition of H_2O_2 is given by the following equation: log $k = 14.34 - 1.25 \times 10^4 \frac{K}{T}$ Calculate E_a for this reaction and at what temperature will its half-period be 256 minutes?

Watch Video Solution

210. The decomposition of A into product has value of k as $4.5 \times 10^3 s^{-1}$ at 10°C and energy of activation 60 kJ mol^{-1} . At what temperature would k be $1.5 \times 10^4 s^{-1}$?

211. The time required for 10% completion of a first order reaction at 298K is equal to that required for its 25% completion at 308K. If the value of A is $4 imes10^{10}s^{-1}$. Calculate k at 318K and E_a .

Watch Video Solution

212. The rate of a reaction quadruples when the temperature changes from 293 K to 313 K. Calculate the energy of activation of the reaction assuming that it does not change with temperature.

Watch Video Solution

213. State a condition under which a bimolecular reaction is kinetically first order reaction.

214. The following rate data were obtained at 303 K for the following

 $\mathsf{reaction}: 2A+B \to C+D$

Experiment	[A]	[B]	Initial rate of formation of D
I	0.1	0.1	6.0×10^{-3}
п	0.3	0.2	7.2×10^{-2}
ш	0.3	0.4	2.88×10^{-1}
IV	0.4	0.1	2.4×10^{-2}

The order of the reaction is :

215. For a reaction at 500 K, $NO_2(g) + CO(g) o CO_2(g) + NO(g)$ the

proposed mechanism is as given below :

 $NO_2(g) + NO_2(g)
ightarrow NO(g) + NO_3(g)$ (slow)

$$NO_3(g)+CO(g)
ightarrow CO_2(g)+NO_2(g)$$
 (fast)

What is rate law for the reaction ?

216. For which type of reactions, order and molecularity have same value ?

D Watch Video Solution

217. In a reaction when the concentration of reactants is tripled, the rate

of reaction becomes 27 times. What is order of reaction ?

Watch Video Solution

218. The time required for 100% completion of a zero order reaction is

Watch Video Solution

219. For a reaction $A + B \rightarrow$ Products, the rate law is Rate $= k[A][B]^{3/2}$ can the reaction be an elementary reaction :

220. For a certain reaction large fraction of molecules has energy more

than the threshold energy, yet the rate of reaction is very slow. Why?

Watch Video Solution		

221. For a zero order reaction will the molecularity be equal to zero ?

Watch Video Solution

222. For a general reaction $A \rightarrow B$, plot of concentration of A vs time is given in figure below. Answer the following question on the basis of this graph.

223. For a general reaction $A \rightarrow B$, plot of concentration of A vs time is given in figure below. Answer the following question on the basis of this graph.

224. For a general reaction $A \rightarrow B$, plot of concentration of A vs time is given in figure below. Answer the following question on the basis of this graph.

225. The reaction between $H_2(g)$ and $O_2(g)$ is highly feasible yet allowing

the gases to stand at room temperature in the same vessel does not lead

to the formation of water. Explain.

Watch Video Solution

226. Why does the rate of a reaction increase with rise in temperature?

230. Thermodynamic feasibility of the reaction alone cannot decide the

rate of the reaction. Explain with the help of one example .

234. Why can we not determine the order of a reaction by taking into consideration the balanced chemical equation?

235. Derive the rate law expression for the reaction: $2P + Q \rightarrow$ Products if the first step is the reversible dimerization of P, followed reaction of P_2 with Q in a bimolecular rate controlling step. Assume that the equilibrium concentration of P_2 is very small as compared to [P].

Watch Video Solution

236. The $t_{1/2}$ of a reaction is halved as the initial concentration' the reactant is doubled. What is the order of the reaction?

237. For a zero order reaction, starting with initial concentration C_0 , how

long will it take for the reaction to go to completion ?

238. The probable mechanism for the reaction : $Hg_2^{2+} + TI^{3+} \rightarrow 2Hg^{2+} + TI^+$ $Hg_2^{2+} \stackrel{K}{\longleftrightarrow} Hg^{2+} + Hg$ $Hg + TI^{3+} \stackrel{k'}{\longrightarrow} Hg^{2+} + TI^+$ is Derive the rate law. **Value Video Solution**

For this reaction : Give the relationship between k and $t_{1/2}$ of the reaction.

For this reaction : If initial concentration for this reaction becomes half,

how will $t_{1/2}$ vary?

concentration of ammonia as $:-rac{d[NH_3]}{dt}=rac{k_1[NH_3]}{1+k_2[NH_3]}$ what will be

the order of reaction when : concentration of NH_3 is very high ?

246. The rate of decomposition of ammonia is found to depend upon the concentration of ammonia as $:-\frac{d[NH_3]}{dt} = \frac{k_1[NH_3]}{1+k_2[NH_3]}$ what will be the order of reaction when : concentration of ammonia is very low ?

Watch Video Solution

247. For a reaction $A \xrightarrow{k}$ product, the reaction occurs as : $A \xrightarrow{k_1} A^* \xrightarrow{k_2} B^* \xrightarrow{k_3}$ product

The overall rate constant k is given as: $k=2k_1igg(rac{k_2}{k_3}igg)^{2/3}$

If E_{a1} , E_{a2} and E_{a3} are the activation energies of these steps, then what is the relation between overall activation energy E_a and the activation energies of these steps.

Watch Video Solution

248. For a reversible reaction $H_2(g) + I_2(g) \xleftarrow{k_1 \\ k_2} 2HI$ derive an expression for the formation of HI.

249. The decomposition of N_2O_5 according to the equation, $2N_2O_5(g) \leftrightarrow 4NO_2(g) + O_2(g)$ is a first order reaction. After 30 min from the start of the decomposition in a closed vessel, the total pressure developed is found to be 284.5 mm of Hg and on complete decomposition, the total pressure is 584.5 mm of Hg. Calculate the rate constant of the reaction.

Watch Video Solution

250. The half life for the reaction: $N_2O_5 \rightarrow 2NO_2 + \frac{1}{2}O_2$ is 2.4 hours at $30^{\circ}C$ Starting with 100 g of N_2O_5 , how many grams wil remain after a period of 9.6 hours ?

Watch Video Solution

251. The half life for the reaction: $N_2O_5 o 2NO_2+rac{1}{2}O_2$ is 2.4 hours at $30\,^\circ C$ What time would be required to reduce $5 imes 10^{10}$ molecules of

Watch Video Solution

252. A piece of wood from an archaeological source has a ${}^{14}C$ activity which Is 60% of the activity found in fresh wood today. Calculate the age of the archaeological sample (the half life period of C-14 is 5770 years).

Watch Video Solution

253. What is the maximum number of electrons an L shell of the atom can

accommodate ?

254. The β - activity of a sample of CO_2 prepared from a contemporary wood gave a count rate 25.5 counts per minute (c.p.m). The same mass of CO_2 from an ancient wooden statue gave a count rate of 20.5 c.p.m. in

the same counter conditions. Calculate its age to the nearest 50 years taking $t_{1/2}$ for ^{14}C as 5770 years. What would be the expected count rate of an identical mass of CO_2 from a sample which is 4000 years old ?

Watch.	Video	Colution
vvalcii	video	SOLUTION

EXERCISE

1. How can we express the rates of following reactions in terms of concentration of reactants and products ?

 $2O_3 \leftrightarrow 3O_2$

Watch Video Solution

2. How can we express the rates of following reactions in terms of concentration of reactants and products ?

 $2NO+Br_2\leftrightarrow 2NOBr$

3. How can we express the rates of following reactions in terms of concentration of reactants and products ?

 $2ICl(g) + H_2(g)
ightarrow I_2(g) + 2HCl(g)$

Watch Video Solution

4. For the reaction, $N_2+3H_2
ightarrow 2NH_3$ the rate of reaction measured as $\Lambda[NH_2]$

 $rac{\Delta[NH_3]}{\Delta t}$ was found to be $2.4 imes 10^{-4} mol L^{-1} s^{-1}$. Calculate the rate of

reaction expressed in terms of (i) N_2 and (ii) H_2 .

Watch Video Solution

5. For the reaction : $2N_2O_5
ightarrow 4NO_2 + O_2$ the rate of reaction measured

as $rac{\Delta[NO_2]}{\Delta t}$ was found to be $1 imes 10^{-3} mol L^{-1} s^{-1}$. Calculate rate of

reaction expressed in terms of N_2O_5 .

6. A reaction, $3X \to 2Y + Z$ proceeds in a closed vessel. The rate of disappearance of X, $-\Delta[X]/\Delta t$ is found to be 0.072 mol $L^{-1}s^{-1}$. Calculate : $\frac{\Delta[Y]}{\Delta t}$ and $\frac{\Delta[Z]}{\Delta t}$ Watch Video Solution

7. Consider the reaction: $4NO_2(g) + O_2(g) \rightarrow 2N_2O_5(g)$ In an experiment, rate of reaction of O_2 is 0.024 mol $L^{-1}s^{-1}$. Calculate (i) the rate disappearance of NO_2 and (ii) rate of formation of N_2O_5 .

Watch Video Solution

8. Explain with examples the meaning of the terms average rate and instantaneous rate of the reaction.

9. A reaction $3X \rightarrow 2Y + Z$ procees in a closed vessel. The rate of disappearance of X is found to be 0.072 mol $L^{-1}s^{-1}$. Calculate the rate of appearance of Y.

10. The rate of formation of a Second order dimerisation reaction is $5.8 \times 10^{-4} mol L^{-1} s^{-1}$ at 0.01 mol L^{-1} monomer concentration. Calculate the rate constant.

Watch Video Solution

11. The gas phase decomposition of $COCl_2$, $COCl_2(g) \rightarrow CO(g) + Cl_2(g)$ follows the rate law : rate = $k[COCl_2]^{3/2}$

What are the units of its rate constant ?

12. Identify the reaction order for each of the following rate constants -

 $k=7.6 imes 10^{-4} molliter^{-1}s^{-1}$

13. Identify the reaction order for each of the following rate constants -

 $k=5.6 imes 10^{-3}mol^{-1}liters^{-1}$

Watch Video Solution

14. Identify the reaction order for each of the following rate constants -

$$k = 7.1 imes 10^{-5} s^{-1}$$

Watch Video Solution

15. Identify the reaction order for each of the following rate constants -

$$k = 1.25 imes 10^{-2} mol^{-2} liter^2 s^{-1}$$

16. Identify the reaction order for each of the following rate constants -

$$k = 5.0 imes 10^{-6} atm^{-1} s^{-1}$$

17. For a reaction: A + B o Products, the rate is given as $k[A]^{1/3}[B]^2$.

What are the units of its rate Constant ?

Watch Video Solution

18. The rate law for a reaction is found to be : Rate = $k \Big[NO_2^- [I^-] [H^+]^2 \Big]$ How would the rate of reaction change when concentration of I^- is halved ?

19. The rate law for a reaction is found to be : Rate = $k \left[NO_2^{-} \left[I^{-} \right] \left[H^{+} \right]^2 \right]$ How would the rate of reaction change when concentration of H^{+} is doubled ?

Watch Video Solution

20. The rate law for a reaction is found to be : Rate = $k \left[NO_2^- \left[I^- \right] \left[H^+ \right]^2 \right]$ How would the rate of reaction change when concentration of each of NO_2^- , I^- and H^+ are tripled ?

Watch Video Solution

21. For the reaction : $2A o A_2$, the rate of reaction becomes 27 times When the Concentration of A is increased three times. What is the order of the reaction ?

22. For a reaction $X \to Y$, the rate of reaction increases by a factor of 1.857 when the concentration of x is increase by 1.5 times. What is the order of reaction with respect of X ?

23. The decomposition of N_2O_5 in carbon tetrachloride solution has been found to be first order with respect to N_2O_5 with rate constant, $k - 6.2 \times 10^{-4}s6 - 1$ $N_2O_5(G) \rightarrow 2NO_2(g) + \frac{1}{2}O_2(g)$ Calculate the rate of reaction when $[N_2O_5] = 2.50 mol L^{-1}$

Watch Video Solution

24. The decomposition of N_2O_5 in carbon tetrachloride Solution has been found to be first order With respect to N_2O_5 with rate constant, $k = 6.2 imes 10^{-4} s^{-1} \quad N_2 O_5(solution) o 2 NO_2(solution) + 1/2O_2(g)$

Calculate the rate of the reaction when $\left[N_2O_5
ight]=0.50molL^{-1}$

Watch Video Solution

25. The decomposition of N_2O_5 in carbon tetrachloride solution has been found to be first order with respect to N_2O_5 with rate constant, $k = 6.2 \times 10^{-4} s^{-1}$ $N_2O_5(G) \rightarrow 2NO_2(g) + \frac{1}{2}O_2(g)$ What concentration of N_2O_5 would give a rate of $4.2 \times 10^{-3} molL^{-1}s^{-1}$?

Watch Video Solution

26. The rate of a reaction : $2A + B \rightarrow A_2B$ has the rate law : rate = $k[A]^2$ with rate constant equal to 0.50 $molL^{-1}s^{-1}$. Calculate the rate of the reaction When [A] = 0.60 $molL^{-1}$ [B] = 0.05 $molL^{-1}$ **27.** The rate of a reaction $2A + B \rightarrow A_2B$.

has rate law : rate = k $[A]^2$ with the rate constant equal to 0.50 mol^{-1} L sec⁻¹. Calculate the rate of reaction when

(i) [A] = 0.60 mol L^{-1} , [B] =-0.05 mol L^{-1} and

(ii) When concentration of A and B have been reduced to 1/4 th

28. During the decomposition of N_2O_5 dissolved in carbon tetrachloride

at 303 K, the following results were obtained :

Time (min)	0	40	80	120	160	- 54
Vol. of O2					120	100
collected (cc)	0	15.6	28.6	38.6	46.8	

Show that the reaction is of first order. Also calculate the rate constant.

29. Diazobenzene chloride decomposes as : $C_6H_5N_2Cl \rightarrow C_6H_5Cl + N_2$ The volume of N 2 evolved at different times was measured and following results were obtained :

			1000
Time (min) 0	20	70	00
Vol. of N ₂ (ml) 0	10	33	162

Calculate the (i) order of the reaction and (ii) rate constant.

Watch Video Solution

30. The rate constant for the decomposition of N_2O_5 is $6.0 imes 10^{-4} s^{-1}$.

At what time will the initial concentration of 1 M be reduced to 0.2 M if

the reaction is of first order ?

31. What are the benefits of taking vitamin C in the diet?

32. Fill in the blanks helps in the absorption of iron in the body
and helps to heal wound.
Watch Video Solution
33. Fill in the blanksis also known as ascorbic acid and is found in
citrus fruits.
Watch Video Solution

34. The following rate data were obtained for the reaction : $2NO(g) + O_2(g) \rightarrow 2NO_2(g)$ Concentration (mol L⁻¹) Rate of reaction [NO] [O] mol L⁻¹ grl

Experiment	[NO]	[O ₂]	mol L ⁻¹ s ⁻¹	
I	0.30	0.30	0.096	
П	0.60	0.30	0.384	
ш	0.30	0.60	0.192	
IV IV	0.60	0.60	0.768	_

Determine the rate law expression and order of the reaction.

35. For the reaction : $2NO(g) + Cl_2(g)
ightarrow 2NOCl(g)$ the following data

Experiment	Initial [NO] (M)	Initial [Cl ₂](M)	Initial rate of disappearance of Cl ₂ (M/min)
	[] ()	0.15	0.60
1	0.15	0.15	1.20
2	0.15	0.30	2.40
3	0.30	0.15	2,40
4	0.25	0.25	1263.

were collected. All the measurements were taken at 263 K.

Write the expression for rate law.

Watch Video Solution

36. For the reaction : $2NO(g) + Cl_2(g)
ightarrow 2NOCl(g)$ the following data

were collected. All the measurements were taken at 263 K.

Experiment	Initial [NO] (M)	Initial [Cl ₂](M)	Initial rate of disappearance of Cl ₂ (M/min)
	[110] (0.15	0.60
1	0.15	0.15	1.20
2	0.15	0.30	2.40
3	0.30	0.15	2,40
4	0.25	0.25	and a second

Calculate the value of rate constant and specify its units .

37. For the reaction : $2NO(g) + Cl_2(g)
ightarrow 2NOCl(g)$ the following data

Experiment	Initial [NO] (M)	Initial [Cl ₂](M)	Initial rate of disappearance of Cl ₂ (M/min)
1	0.15	0.15	0.60
1	0.15	0.10	1.20
2	0.15	0.30	2 40
3	0.30	0.15	2.10
4	0.25	0.25	agent is a second s

were collected. All the measurements were taken at 263 K.

What is initial rate of disappearance of Cl_2 in exp.4 ?

Watch Video Solution

38. Fill in the blanks in the following table which treats a reaction of a compound A with a compound B, that is the first order with respect to A and zero order with respect to B.

Experiment	[A] mol L ⁻¹	[B] mol L ⁻¹	Initial re
	0.1	0.1	2.0 × 10-2 main
I	0.1	0.2	4.0 × 10-2 mol 1-1
11	0.4	0.4	L-1 Dine
III TV	_	0.2	2.0 × 10-2 mol 1
IV	1	the initial rate	of reaction was

of In a reaction between A and B, the initial rate of reaction was measured
39. In a reaction between A and B, the initial rate of reaction was measured for the ferent initial concentrations of A and B as given below :

*-			
A (M) B (M)	0.20 0.30 5.07 × 10 ⁻⁵	0.20 0.10 5.07 × 10 ⁻⁵	0.40 0.05 1.43 × 10 ⁻⁴
r (IMIS)	0.01	1.1	

What is the order of reaction with respect to A and B?

Watch Video Solution

40. In a hydrolysis reaction, 5g ethyl acetate is hydr olyzed in presence of dilute HCl in 300 minutes. If the reaction 15 of first order and the initial concentration of ethyl acetate 18 22 g/L, calculate the rate constant of the reaction.

41. A first order reaction is 20% complete in 10 minutes. Calculate the

time taken for the reaction to go to 80% completion.

42. A first order reaction takes 40 min for 30% completion. Calculate t_{1} .

What is the half-life period of the reaction ?

45. The half life period for a reaction of first order is 2.31×10^3 min. How long will it take for $\frac{1}{5^{th}}$ of the reactants to be left behind.

46. A reaction is first order with vosbect to reactant P having rate constant 6 min^{-1} . If we start with [P] = 0.5 mol L^{-1} , when would [P] reach the value of 0.05 mol L^{-1} ? Calculate half life period of the reaction

Watch Video Solution

47. For a first order reaction, half life period $(t_{1/2})$ is 100 seconds. How long will it take for the reaction to complete 75%?

Watch Video Solution

48. The rate constant for a first order reaction is $80s^{-1}$. How much time will it take to reduce the concentration of the reactants to $\frac{1}{18^{th}}$ of Its initial value ?

49. The pressure of a gas decomoposing at the surface of a solid catalyst

has been measured at different times and the results are given below :

t(s)	0	100	200	300
p(Pa)	4.00×10^{3}	3.50×10^{3}	3.00×10^{3}	2.5×10^{3}
F .	the order of -			210 11 20

Determine the order of reaction, its rate constant and half life period.

Watch Video Solution

50. The half life period of a substance is 60 min at a certain initial concentration. When the concentration is reduced to one half of the initial concentration, the half life period is found to be 30 min. Calculate the order of the reaction.

51. The thermal decomposition of a compound is first order. If 50 % of the. compound is decomposed in 120 minutes, how long will it take for 90 %

O Watch Video Solution

52. A first order reaction takes 69.3 minutes for 50% completion. Calculate

the time required for 80% completion of the reaction.

Watch Video Solution

53. The rate of a reaction increases four times when the temperature changes from 300 K to 320 K. Calculate the energy of activation of the reaction assuming that it does not change with temperature $(R = 8.314 J K^{-1} mol^{-1}).$

Watch Video Solution

54. The reaction, $2NO_2 \rightarrow 2NO + O_2$ has an activation energy of 110 kJ mol^{-1} . At $400^\circ C$, the rate constant is 7.8 $mol^{-1}Ls^{-1}$. What is the value

56. Calculate the mass of of 1 mole of each one of the following : Na2O2

Watch Video Solution

57. Write the electronic configuration of an element X whose atomic number is 12.

59. What would be the electronic configuration of a positively charged sodium ion, Na+ ? What would be its atomic number ?

Watch Video Solution

60. The rate constant for a first order reaction becomes six times when the temperature is raised from 350 to 400 K. Calculate the activation energy for the reaction. (Gas constant $R = 8.314 J K^{-1} mol^{-1}$)

61. The rate constant for a reaction is 1.6×10^{-5} and $6.36 \times 10^{-3}s^{-1}$ at 600 K and 700 K respectively. Calculate the activation energy for the reaction.

Watch Video Solution
62. Fill in the blanksis used in killing moulds and fungi of plants.
Watch Video Solution

63. The rate constant of a reaction is $1.2 \times 10^{-3} \sec^{-1}$ at $30^{\circ}C$ and $2.1 \times 10^{-3} \sec^{-1}$ at $40^{\circ}C$. Calculate the energy of activation of the reaction.

64. For the decomposition of ethyl iodide : $C_2H_5I \rightarrow C_2H_4 + HI$ the rate constants are $1.60 \times 10^{-5}s^{-1}$ and 6.36×10^{-3} at 600K and 700K respectively. Calculate the activation energy for the reaction .

65. The specific rate constant for the combination of H_2 and I_2 to form HI $H_2 + I_2 \rightarrow 2HI$ is $2.34 \times 10^{-3} mol L^{-1} s^{-1}$ at 773K. Calculate the activation energy for the reaction.

Watch Video Solution

66. Rate constant, k of a reaction varies with temperature as: $\log k = Cons \tan t - \frac{E_a}{2.303RT}$ where E_a is the activation energy. When a Graph is plotted for log k vs 1/T ,a straight line with a slope of -6670K is obtained. Calculate the energy of activation for this reaction. ($R = 8.314JK^{-1}mol^{-1}$) **67.** The activation energy of a first order reaction at 300 K is 60 kJ mol^{-1} . In the Presence of a Catalyst, the activation energy gets lowered to 50 kJ mol^{-1} at 300 K. How many times the reaction rate changes in the Presence of a catalyst at the same temperature ?

Watch Video Solution

68. The decomposition of A into product has value of k as $4.5 \times 10^3 s^{-1}$ at 10°C and energy of activation 60 kJ mol^{-1} . At what temperature would k be $1.5 \times 10^4 s^{-1}$?

Watch Video Solution

69. True or False : The units of rate constant of a zero order reaction are

same as the units of rate of a reaction.

70. For first order reaction, rate constant

72. True or False : The rate of a multistep reaction is determined by the

fastest step in the sequence.

73. True or False : For the second order reaction with respect to a

reactant rate becomes 8 times when its concentration is tripled.

74. True or False : The units of rate constant of a zero order reaction are

same as the units of rate of a reaction.

75. True or False : The half life Period for a first order reaction is independent of its initial Concentration.

Watch Video Solution

76. True or False : If $[A]_0$ is the initial concentration of a reactant following first order reaction, then after three half lives its concentration becomes $\frac{[A]_0}{3^2}$.

77. Define molecularity of a reaction.

Watch Video Solution

 78. True or False : Higher the activation energy of a reaction, faster is the reaction.

 Image: Watch Video Solution

79. The molecularity of a reaction can never be a fraction.

> Watch Video Solution

80. True or False : For a first order reaction, plot of $\ln([A]_0/[A])$ versus time has a positive slope whose value is equal to the rate constant of the reaction.

81. True or False : The time taken for 3/4 th of a first order reaction to complete is 1.5 times the half life period.

Watch Video Solution
82. For a first order reaction :
Watch Video Solution
83. Fill in the blanks is used in the hydrogenation of alkynes to alkenes.
Watch Video Solution
84. What is the composition of brass and what are its uses?
Watch Video Solution

85. Fill in the blanks- Bronze is made up of and is used in
86. is an alloy used in making guns, pistols etc.
Watch Video Solution
87. The difference in energy between the energy of activated complex and
87. The difference in energy between the energy of activated complex and the average energy of reactants is called
87. The difference in energy between the energy of activated complex and the average energy of reactants is called
87. The difference in energy between the energy of activated complex and the average energy of reactants is called
87. The difference in energy between the energy of activated complex and the average energy of reactants is called

89. Fill in the blanks- Wool, cotton, silk is known as fibres.		
Watch Video Solution		
90. The rate of a reaction when the concentration of each reactant is		
taken as unity is called		
Wateh Video Colution		
91. Explain the concept of activation energy.		
Vatch Video Solution		
92. Example for first order reaction.		
Vatch Video Solution		

93. If the rate of reaction : $N_2 + 3H_2 \rightarrow 2NH_3$ measured as $\Delta[NH_3]/\Delta t$ was found to be $3.6 \times 10^{-4} mol L^{-1} s^{-1}$, then rate of reaction expressed as $\Delta[H_2]/\Delta t$ is

94. The sum of powers to which concentration terms are raised in the rate law expression is called of the reaction.

Watch Video Solution

95. For a reaction : A + B
ightarrow Products, the rate is given as $k[A]^{1/3}B^2$.

The units of its rate constant are

96. When the concentration of a reactant of a second order is tripled,

then rate will become times.

97. If half life period of a first order reaction is 32 min, then the time taken

for concentration to be reduced to 1/16 th is

Watch Video Solution

99. True or False : For a zero order reaction, plot of [A] vs t is a horizontal

line.

100. A reaction is second order with respect to a reactant. How is the rate

of reaction affected if the concentration of the reactant is: reduced to

half?

Watch Video Solution

101. Average life time is more/less than half life time for a first order reaction.

Watch Video Solution

102. For fast reactions, activation energy is low/high.

103. The molecularity of hydrolysis of cane sugar is two/one.

Watch Video Solution

104. Increase in rate of reaction with rise in temperature is mainly due to

increase in collision frequency/effective collisions.

Watch Video Solution

105. For an endothermic reaction, activation energy for the forward reaction is more/less than activation energy for the backward reaction.

Watch Video Solution

106. For exothermic reaction, E_a (forward) - E_a (backward) is +ve /-ve.

107. For a second order reaction, when the concentration of the reactant

is tripled rate becomes nine/eight times.

115. How is half life period of a first order reaction related to its rate

constant ?

Watch Video Solution

116. What are the units of rate constant for a zero order and a first order

reaction ?

Watch Video Solution

117. If k_1 and k_2 are rate constants at temperatures T_1 and T_2 respectively, then according to Arrhenius equation,

118. The rate law for the reaction $CHCl_3(g)+Cl_2(g)
ightarrow CCl_4+HCI$

is rate = $k[CHCl_3][Cl_2]^{1/2}$. What is the order of reaction ?

122. Give one example of zero order reaction.

123. Which is the rate determining step of a reaction ?

Watch Video Solution
124. The temperature coefficient of a reaction is:
Watch Video Solution
125. In a reaction, $2A ightarrow Products$, the concentration of A decreases

from 0.5 mol L^(-1) to $0.4 mol L^{-1}$ in 10 minutes. Calculate the rate during this interval?

Watch Video Solution

126. The rate constant of a reaction is $3 imes 10^2 min^{-1}$. What is the order

of reaction ?

130. Express the rate of the following reaction in terms of disappearance

of hydrogen in the following reaction : $3H_2(g) + N_2(g)
ightarrow 2NH_3(g)$

131. The reaction: A+2B o C obeys rate equation. Rate = $k[A]^{1/2}[B]^{3/2}$ What is the order of this reaction?

And the second
Watch Video Solution

132. Define order of a reaction.

Watch Video Solution

133. Define activation energy of a reaction.

134. A first order reaction has a half life period of 34.65 seconds. Its rate

constant is

A.
$$2 imes 10^{-2} s^{-1}$$

B. $4 imes 10^{-4} s^{-1}$
C. $20 s^{-1}$
D. $2 imes 10^{-4} s^{-1}$

Watch Video Solution

135. If a graph is plotted between log k and 1/T the slope of the straight line so obtained is given by

$$A. - \frac{E_a}{R}$$

$$B. - \frac{E_a}{2.303R}$$

$$C. - \frac{2.303}{E_a. R}$$

$$D. - \frac{E_a}{2.303}$$

136. Reactions with very low activation energies are generally

A. very slow

B. very fast

C. exothermic

D. endothermic

Watch Video Solution

137. Which of the following does not influence the reaction rate?

A. Nature of reactants

B. Conc. of reactants

C. Temperature of the reaction

D. Molecularity of the reaction.

138. Unit of rate constant for zero order reaction is

A. $molL^{-1}s^{-1}$ B. s^{-1} C. $Lmol^{-1}s^{-1}$

D. $L^2 mol^{-2}s^{-1}$

Watch Video Solution

139. A catalyst :

A. increasing activation energy

B. decreasing activation energy

D. $mollitre^{-1}s^{-1}$

141. The value of k for a reaction is $2.96 imes 10^{30} s^{-1}$, what is the order of

the reaction?

A. Zero

B. 3

C. 2

D. 1

142. A reaction was found to be of second order with respect to concentration of carbon monoxide . If the concentration of carbon monoxide is doubled, the rate of reaction will :

A. triple

B. increase by a factor of 4

C. double

D. remain unchanged

Watch Video Solution

143. What is the unit of rate of reaction ?

A. $mol^{-1}Ls^{-1}$

B. $molLs^{-1}$

C. mol^2Ls^{-1}

D. $molL^{-1}s^{-1}$

Watch Video Solution

144. Half life period of a first order reaction is :

A. $t_{1\,/\,2} = 693\,/\,k$

B. $t_{1/2} = 0.693 \, / \, k$

C. $t_{1/2} = 6.93/k$

D. None of these

Watch Video Solution

145. Calculate the half-life of a first order reaction from its rate constant which is 200 $S^{\,-1}$

A. $3.465 imes10^{-2}s$

B. $3.465 imes 10^{-3} s$

C. $1.150 imes 10^{-2} s$

D. 1.150 imes 10 ^{-3}s

146. The change in any one of the reactants or products per unit time is

called

A. order of a reaction

B. rate of a reaction

C. rate constant of a reaction

D. molecularity of a reaction

Watch Video Solution

147. The rate of a reaction is $1.209 imes 10^{-4} L^2 mol^{-2} s^{-1}$. The order of the

reaction is :

A. zero

B. first

C. second

D. third

148. A larger increase in reaction rate with small rise in temperature is due to

A. increase in number of activated molecules

B. increase in number of collisions

C. lowering of activation energy

D. shortening of mean free path

149. Discuss the various factors affecting the rates of chemical reactions.

Watch Video Solution

150. What is meant by order of a chemical reaction ? The reaction : $2NO_2 + F_2 \rightarrow 2NO_2F$ has been found to be first order with respect to NO_2 and with respect to F_2 . Write the rate law equation for the reaction.

Watch Video Solution

151. What is meant by order of a chemical reaction ? The reaction : $2NO_2 + F_2 \rightarrow 2NO_2F$ has been found to be first order with respect to NO_2 and with respect to F_2 . What is the overall order of the reaction ?

152. What is meant by order of a chemical reaction ? The reaction : $2NO_2 + F_2 \rightarrow 2NO_2F$ has been found to be first order with respect to NO_2 and with respect to F_2 . Suggest a suitable mechanism for the reaction.

Watch Video Solution

153. Explain with examples the meaning of the terms average rate and instantaneous rate of the reaction.

Watch Video Solution

154. Consider the rate equation $Rate = k[A]^n$ What is the change of rate

that occurs on doubling the concentration of A, when n=0?

155. Consider the rate equation $Rate = k[A]^n$ What is the change of rate

that occurs on doubling the concentration of A, when n=1?

156. Consider the rate equation $Rate = k[A]^n$ What is the change of rate

that occurs on doubling the concentration of A, when n = 2?

Watch Video Solution

157. Consider the reaction $A \xrightarrow{k} P$. The change in concentration of A with time is shown in the following plot:

Watch Video Solution

158. Consider the reaction $A \xrightarrow{k} P$. The change in concentration of A with time is shown in the following plot:

Derive the expression for the time required for the completion of the reaction.

159. What is meant by the rate constant, 'k' of a reaction. If the concentration be expressed in mol L^{-1} units and time in seconds, what would be the units for k for a zero order reaction ?

160. What is meant by the rate constant, 'k' of a reaction. If the concentration be expressed in mol L^{-1} units and time in seconds, what would be the units for k for a first order reaction ?

162. Show that half life period for a zero order reaction is directly proportional to initial concentration of reactants.

163. What is the effect of temperature on rate of a reaction.

165. Write the difference between molecularity and order of reaction?

Watch Video Solution

166. Define the following terms : Pseudo first order reaction.

Watch Video Solution

167. For Zero order reaction. The integrated rate equation is :

168. What is the difference between instantaneous rate of a reaction and

rate constant?

172. A reaction is first order in A and second order in B.

Write the differential rate equation.

176. Example for first order reaction.

177. State the order with respect to each reactant and overall order for the following reaction :

 $H_2O_2 + 3I^{\,-} + 2H^{\,+}
ightarrow 2H_2O + I_3^{\,-}(aq)$

 $\mathsf{Rate}{=}K[H_2O_2]\big[I^{\,-}\,\big]$

What are the units of rate constant?

Watch Video Solution

178. Define molecularity of a reaction.

179. Define activation energy of a reaction.

181. What is difference between order of reaction and molecularity of reaction ?

> Watch Video Solution

182. Define the following terms : Pseudo first order reaction.

187. The half life period of a zero order reaction is independent of initial

concentration

188. The reaction : 2A+B
ightarrow C+D has the rate equation as: rate =

 $k[A]^x[B]^y$ What is the molecularity of the reaction?

Watch Video Solution

189. The reaction : 2A+B
ightarrow C+D has the rate equation as: rate =

 $k[A]^{x}[B]^{y}$ Order of the reaction when B is present in large excess.

190. Discuss the effect of catalyst on the activation energy.

191. What is the value of integrated Rate reaction in zero order reaction?

is the order of reaction?

199. A reaction is second order with respect to a reactant. How is the rate of reaction affected if the concentration of the reactant is: reduced to half?

200. Show that the time required for completion of 3/4th of a first order reaction ia twice the time required for the completion of 1/2 of the reaction.

Watch Video Solution

201. What is meant by zero order reaction? Give an example of such a reaction.

202. What is half life of a reaction? If the half life of a first order reaction in A is 2 minutes, how long will it take to reach 25% of initial concentration?

D	Watch	Video	So	ution

203. Define order of a reaction.

Watch Video Solution

204. Identify the reaction order of the following units of reaction rate

constants.

 $molL^{-1}s^{-1}$.

205. Identify the reaction order of the following units of reaction rate

constants.

 $Lmol^{-1}s^{-1}$.

Watch Video Solution

206. Give an example of a pseudo first order reaction.

Watch Video Solution

207. A first order reaction takes 40 min for 30% completion. Calculate $t_{\frac{1}{2}}$.

208. The half life period of a zero order reaction is independent of initial

concentration

209. For the reaction :

 $C_{12}H_{22}O_{11} + H_2O \xrightarrow{HI} C_6H_{12}O_6 + O_6H_{12}O_6$

Write : (a) Rate of reaction expression.

(b) Molecularity of reaction

(c) Order of reaction

Watch Video Solution

210. For the reaction :

 $C_{12}H_{22}O_{11} + H_2O \xrightarrow{HI} C_6H_{12}O_6 + O_6H_{12}O_6$

Write : (a) Rate of reaction expression.

(b) Molecularity of reaction

(c) Order of reaction

Watch Video Solution

211. Unit of rate constant for zero order reaction is

give graphical representation of integrated rate law equation.

215. Define average rate of a reaction.

Watch Video Solution

217. Define rate of a reaction.

218. What is the effect of temperature on rate of a reaction.

225. Define rate of a reaction.

229. Identify the order of a reaction if the units of its rate constant are :

 $L^{-1}mols^{-1}$

Watch Video Solution

230. Identify the order of a reaction if the units of its rate constant are :

 $Lmol^{-1}s^{-1}$.

Watch Video Solution

231. A reaction is of second order with respect to a reactant. How is its

rate affected if the concentration of the reactant is doubled?

232. For a reaction, $A + B \rightarrow$ Product, the rate law is given by, r = k [

A]^(1/2) [B]². What is the order of the reaction?

233. First order reaction is found to have rate constant, $k=5.5 imes10^{-14}s^{-1}$. Find the half life to the reaction.

234. For a chemical reaction R o P the variation in the concentration

(R) vs. time (t) plot is given as

Predict the order of the reaction.

235. For a chemical reaction R o P the variation in the concentration (R) vs. time (t) plot is given as

What is the slope of the curve ?

Watch Video Solution

236. What is difference between order of reaction and molecularity of reaction ?

237. A first order reaction has a rate constant $1.15 imes 10^{-3} s^{-1}$. How long

will 5g of this reactant take to reduce to 3 g?

Watch Video Solution

238. Zero order reaction means that the rate of a reaction is independent of concentration of reactants. Write an example for a zero order reaction.

Watch Video Solution

239. Zero order reaction means that the rate of a reaction is independent

of concentration of reactants. Write the integral rate expression for the

zero order reaction, R $\rightarrow~$ P.

240. The temperature dependence of the rate of a chemical equation can be accurately explained by Arrhenius equation. With the help of Arrhenius equation, calculate the rate constant for the first order reaction: $C_2H_5I(g) \rightarrow C_2H_4(g) + HI(g)$ at 700 K. Energy of activation (E_a) for the reaction is 209 kJ mol^{-1} and rate constant at 600 K is $1.60 \times 10^{-5}s^{-1}$. Universal gas constant, R = 8.314 $JK^{-1}mol^{-1}$).

241. Write down the unit of rate constant for zero order reaction.

> Watch Video Solution

242. Give relationship between half life period and concentration for different order of reactions.

How is the rate affected on increasing the concentration of B three times

?

247. A reaction is second order in A and first order in B. How is the rate affected when the concentrations of both A and B are doubled ?

Watch Video Solution	I
-----------------------------	---

248. A first order reaction takes 40 minutes for 30% decomposition. Calculate $t_{1/2}$ for this reaction. (Given log 1.428 = 0.1548)

Watch Video Solution

249. For a first order reaction, show that time required for 99% completion is twice the time required for the completion of 90% of reaction.

250. Deduce the rate equation for a zero order reaction.

Watch Video Solution

251. The half life period for the decomposition of a compound is 20 min. If initial concentration is increased two times, its half life period becomes 10 min. Calculate the order of reaction.

Watch Video Solution

252. Define activation energy of a reaction.

253. Show that in case of a first order reaction, the time taken for completion of 99.9% reaction is ten times the time required for half change of the reaction.

254. Consider a general reaction $aA + bB \rightarrow cC + dD$. The rate expression for the reaction is : Rate $=k[A]^x[B]^y$ Establish the significance of '(a + b)â \in TM and '(x + y)â \in TM in terms of order and molecularity.

Watch Video Solution

255. Consider a general reaction $aA + bB \rightarrow cC + dD$. The rate expression for the reaction is : Rate = $k[A]^x[B]^y$ Write any two differences between order and molecularity.

Watch Video Solution

256. "Reactions with zero order is possible, but zero molecularity is not". Justify the statement.

257. The term 'order and molecularity ' are common in chemical kinetics.

What do you mean by order and molecularity?

Watch Video Soluti	on

258. The term 'order and molecularity ' are common in chemical kinetics. Write two factors influencing rate of a reaction.

Watch Video Solution

259. The term 'order and molecularity ' are common in chemical kinetics.

Write Arrhenius equation.

260. Derive the integrated rate equation for the rate constant for a first order reaction. What would be units of the first order rate constant, if the

concentration is expressed in moles per litre and time to seconds ? Also

give graphical representation of integrated rate law equation.

Watch Video Solution

261. Differentiate between order and molecularity of a chemical reaction.

O Watch Video Solution

262. For the hydrolysis of methyl acetate in aqueous solution, the following results were obtained:

t/s	0	30	60
(CH COOCH ₂]/mol L ⁻¹	0.60	0.30	0.15
101130000 g	tion		

Show that it follows pseudo first order reaction, as the concentration of

water remains constant.

263. For the hydrolysis of methyl acetate in aqueous solution, the following results were obtained:

Calculate the average rate of reaction between the time interval 30 to 60

seconds. (Given log 2 = 0.3010, log 4=0.6021)

Watch Video Solution

264. For a reaction: $A + B \rightarrow P$, the rate law is given as: Rate = $k[A][B]^2$ How is the rate of reaction affected when the concentration of B is doubled?

Watch Video Solution

265. For a reaction: A + B
ightarrow P, the rate law is given as: Rate = $k[A][B]^2$

What is the order of reaction if A is present in large excess.

266. A first order reaction takes 30 minutes for 50 % completion.

Calculate the time required for 90 % completion of the reaction.

Watch Video Solution
267. Explain the following terms : Rate of a reaction.
Watch Video Solution
268. Define activation energy of a reaction.
Watch Video Solution
200 The decouver this of a branching DII and a standing to the

269. The decomposition of phosphine, PH_3 , proceeds according to the following equation : $4PH_3(g) \rightarrow P_4(g) + 6H_2(g)$ It is found that the reaction follows the following rate equation : Rate = $k[PH_3]$. The half-life

```
of PH_3 is 37.9 s at 120^\circ C. How much time is required for 3/4th of PH_3 to decompose?
```


270. The decomposition of phosphine, PH_3 , proceeds according to the following equation : $4PH_3(g) \rightarrow P_4(g) + 6H_2(g)$ It is found that the reaction follows the following rate equation : Rate = $k[PH_3]$. The half-life of PH_3 is 37.9 s at 120° C. What fraction of the original sample of PH_3 remains behind after 1 minute?

Watch Video Solution

271. Define order of a reaction

Watch Video Solution

272. Define molecularity of a reaction.

273. The rate of a reaction increases four times when the temperature changes from 300 K to 320 K. Calculate the energy of activation of the reaction assuming that it does not change with temperature $(R = 8.314 J K^{-1} mol^{-1})$.

Watch Video Solution

274. Explain the factors affecting rate of a reaction.

Watch Video Solution

275. The rate constant of a first order reaction increases from $4 \times 10^{-2} \rightarrow 8 \times 10^{-2}$ when the temperatur changes from $27^{\circ}C$ to $37^{\circ}C$. Calculate the energy of activation $(Ea) \cdot \log 2 = 0.301), \log 3 = 0.4771, \log 4 = 0.6021$

276. For a reaction: $A + B \rightarrow P$, the rate law is given as: Rate = $k[A][B]^2$ How is the rate of reaction affected when the concentration of B is doubled?

Watch Video Solution

277. For a reaction: A + B
ightarrow P, the rate law is given as: Rate = $k[A][B]^2$

What is the order of reaction if A is present in large excess.

278. A first order reaction takes 23.1 minutes for 50% completion. Calculate the time required for 75% completion of this reaction $(\log 2 = 0.301), (\log 3 = 0.4771)(\log 4 = 0.6021)$

279. The decomposition of sulphuryl chloride to SO_2 and Cl_2 is a first order reaction whose half life is 30 minutes. What percentage of the reactant will be decomposed in 2 hours ?

280. The activation energy of a first order reaction at 300 K is 60 kJ mol^{-1} . In the Presence of a Catalyst, the activation energy gets lowered to 50 kJ mol^{-1} at 300 K. How many times the reaction rate changes in the Presence of a catalyst at the same temperature ?

Watch Video Solution

281. The rate constant for a first order reaction is 5.70×10^{-5} and $1.64 \times 10^{-4} s^{-1}$ at $25^{\circ}C$ and $40^{\circ}C$ respectively. Calculate the activation energy and the Arrhenius frequency factor.

282. A first order reaction has $k = 1.5 \times 10^{-6} s^{-1}$ at $200^{\circ}C$. If the reaction is allowed to run for 10 hours, what percentage of the initial concentration would have changed into the product ? What is the half life period of the reaction ?

Watch Video Solution

283. A first order reaction is 20% complete in 10 minutes. Calculate the

time taken for the reaction to go to 75% complete.

Watch Video Solution

284. A first order reaction is 20 % complete in 10 minutes. Calculate

Specific rate constant of the reaction

285. The rate constants for the decomposition of HI at $283^{\circ}C$ and $508^{\circ}C$ are 3.517×10^{-7} and 3.954×10^{-2} respectively. Calculate the frequency factor at $283^{\circ}C$ and energy of activation of the reaction.

286. The catalytic decomposition of hydrogen peroxide was studied by liberating it at different intervals with $KMnO_4$ solution. Calculate the rate constant from the following data assuming the reaction to be of the

first order :

t (seconds)	0	600	1200
KMnO ₄ (mL)	22.8	13.8	8.2
*			

287. What is the maximum number of electrons which can be accommodated in the K shell of an atom ?

288. A first order reaction is 15% complete in 20 minutes. How long will it

take to complete 60% ? (log 1.1766 = 0.0705. log 2.6 = 0.3979).

289. A first order reaction is 40%. Complete in 50 minute. How long will it take to 80% complete.

Watch Video Solution

290. In a hydrolysis reaction, 5g ethyl acetate is hydr olyzed in presence of dilute HCl in 300 minutes. If the reaction 15 of first order and the initial concentration of ethyl acetate 18 22 g/L, calculate the rate constant of the reaction.

291. A first order reaction is 15% complete in 20 minutes. How long will it

take to complete 20%. Watch Video Solution 292. The half life period for a reaction of first order is 2.31×10^3 min. How long will it take for $\frac{1}{5^{th}}$ of the reactants to be left behind. Watch Video Solution

293. The half life period of a first order reaction is 3 minutes. Calculate the

time taken to complete 75% of the initial concentration.

294. The following data were obtained during the first order thermal decomposition of SO_2Cl_2 at a constant volume : $SO_2Cl_2(g) \rightarrow SO_2(g) + Cl_2(g)$

Time/s ⁻¹	Total Pressure/atm
0	0.4
100	0.7
	Time/s⁻¹ 0 100

Calculate the rate constant. (Given : $\log 4 = 0.6021$, $\log 2 = 0.3010$)

Watch Video Solution

295. A first order reaction is 75% complete in 60 min. Find the half-life of

the reaction.

Watch Video Solution

296. A first order reaction takes 40 minutes for 20% completion. Calculate

its half life period.

297. For a first-order reaction, it takes 5 minutes for the initial concentration of 0.6 mol L^{-1} to become 0.4 mol L^{-1} . How long will it

```
take for the initial concentration to become 0.3 molL^{-1}?
```


298. What is the maximum number of electrons which can be accommodated in the innermost shell of an atom ?

299. Raman's mother was trying again and again to burn a big lump of coal. But it was not catching fire easily. Raman suggested her mother to break the big lump of coal into small pieces and then burn it. His mother did so and she was happy to find that the coal pieces started burning rapidly. Now answer the following question : What was the idea behind Raman's suggestion ?

300. What is the maximum number of electrons an M shell of the atom

can accommodate ?

Watch Video Solution

301. If the concentration be expressed in mol L^{-1} units and time in seconds, what would be units for rate constant, k for a first order reaction?

A. $mollitre^{-1}s^{-1}$

 $B. mol^{-1} litres^{-1}$

C. s^{-1}

D. $mol^2 litre^{-2}s^{-1}$

302. The half-life period for a first order reaction is 69.3 s. Its rate constant is:

A. $10^{-2}s^{-1}$

B. $10^{-4}s^{-1}$

C. $10s^{-1}$

D. $10^2 s^{-1}$

Watch Video Solution

303. What is the unit of rate constant for second order reaction ?

A. $litremol^{-1}s^{-1}$

B. $mollitre^{-2}s^{-1}$

C. s^{-1}

D. $mollitre^{-1}s^{-1}$

304. Half life period of a first order reaction is :

A. directly proportional to the initial concentration of the reactant

B. half of the rate constant

C. same for all reactions

D. independent of initial concentration of reactants.

Watch Video Solution

305. For the reaction, $A \rightarrow C$, it is found that the rate of the reaction quadruples when the concentration of A is doubled. The rate for the reaction is. Rate = $[A]^n$ where the value of n is :

B. 2

C. zero

D. 3

- ALC: NO.

Watch Video Solution

306. For a chemical reaction A+B
ightarrow C, the following data were found :

Initial conc.	Initial Conc.	Rate
of A (mol litre ⁻¹)	of B (mol litre ⁻¹)	(mol litre ⁻¹ sec ⁻¹)
2.0	3.0	0.10
6.0	3.0	0.90
6.0	6.0	0.90

The correct rate expression from these data is :

A.
$$r=k[A]^2[B]^2$$

 $\mathsf{B.}\,r=k[A][B]$

 $\mathsf{C.}\,r=k[A]^2$

$$\mathsf{D}.\,r=k[A][B]^2$$

307. On increasing temparature of the reacting system by 10 degrees, the rate of reaction almost doubles. The most appropriate reason for this is :

A. Collision frequency increases

- B. Activation energy decreases by increase in temperature
- C. The fraction of molecules having energy equal to threshold energy

or more increases

D. The value of threshold energy decreases.

308. The rate of a first order reaction is $1.8 \times 10^{-3} mol L^{-1} min^{-1}$ when the initial concentration is 0.3 mol L^{-1} . The rate constant in the units of second is :

A. $1 imes 10^{-2} s^{-1}$ B. $1 imes 10^{-4} s^{-1}$ C. $6 imes 10^{-2} s^{-1}$ D. $6 imes 10^{-2} s$

Watch Video Solution

309. The rate for the first order reaction is $0.69 \times 10^{-2} mol L^{-1} min^{-1}$ and the initial concentration is 0.2 mol L^{-1} . The half life period is :

A. 1205 s

B. 330 s

C. 600 s

D.1s.

Watch Video Solution

310. For the first order reaction, the half life period is (if k is rate constant and a is initial concentration),

A.
$$\frac{\ln 2}{k}$$

B. $\frac{1}{ka}$
C. $\frac{\ln k}{2}$
D. $\frac{\log k}{2}$

311. If k_1 and k_2 are rate constants at temperatures T_1 and T_2 respectively, then according to Arrhenius equation,

$$\begin{aligned} \mathsf{A}.\log\frac{k_2}{k_1} &= \frac{2.303R}{E_a} \bigg(\frac{1}{T_1} - \frac{1}{T_2} \bigg) \\ \mathsf{B}.\log\frac{k_2}{k_1} &= \frac{E_a}{2.303R} \bigg(\frac{1}{T_1} - \frac{1}{T_2} \bigg) \\ \mathsf{C}.\log\frac{k_1}{k_2} &= \frac{E_a}{2.303R} \bigg(\frac{1}{T_1} - \frac{1}{T_2} \bigg) \\ \mathsf{D}.\log\frac{k_1}{k_2} &= \frac{E_a}{2.303} \bigg(\frac{1}{T_1} - \frac{1}{T_2} \bigg) \end{aligned}$$

Watch Video Solution

312. The rate constant of a reaction is $1.2 imes 10^{-5} mol^{-2} {
m litre}^2 s^{-1}$. The

order of the reaction is:

A. Zero

B. 1

C. 2

Watch Video Solution

313. The following rate data were obtained at 303 K for the following

 $\mathsf{reaction}: 2A + B \to C + D$

Experiment	[A]	[B]	Initial rate of formation of D
I	0.1	0.1	6.0×10^{-3}
п	0.3	0.2	7.2×10^{-2}
III	0.3	0.4	2.88×10^{-1}
IV	0.4	0.1	2.4×10^{-2}

The order of the reaction is :

A. 2

B. 3

C. 1

D. 4

314. For a reaction $X \to Y$, the rate of reaction increases by a factor of 1.857 when the concentration of x is increase by 1.5 times. What is the order of reaction with respect of X ?

A. 1

B. 1.5

C. 2

D. 2.5

Watch Video Solution

315. For a reaction $2NO(g) + O_2(g)
ightarrow 2NO_2(g)$

Rate= k $[NO]^2[O_2]$, if the volume of the reaction vessel is double. What is the rate of reaction.

A. will diminish to 1/4 of initial value

B. will diminish to 1/8 of initial value

C. will grow 4 times

D. will grow 8 times.

Watch Video Solution

316. For the first order reaction, time required for 99% completion is :

A. half the time required for completion of 90% of reaction

B. thrice the time required for 90% completion of reaction

C. twice the time required for 90% completion of reaction

D. none of these.

317. In the reversible reaction $2NO_2 \leftrightarrow N_2O_4$, the rate of disappearance of NO_2 is equal to

A.
$$rac{2k_1}{k_2}[NO_2]^2$$

B. $2k_1[NO_2] - 2k_2[N_2O_4]$
C. $2k_1[NO_2]^2 - 2k_2[N_2O_4]$
D. $(2k_1 - k_2)[NO_2]$.

Watch Video Solution

318. For the reaction $2N_2O_5 \rightarrow 4NO_2 + O_2$ rate and rate constant are 1.22×10^{-4} and $3.4 \times 10^{-5} s^{-1}$ respectively then the concentration of N_2O_5 at that time will be

A. 1.732

B. 3.6

 $\mathsf{C}.\,1.02 imes10^{-4}$

D. $3.4 imes 10^5$.

Watch Video Solution

319. For zero order reaction, the integrated rate equation is :

A. $kt = rac{A}{[A]_0}$ B. $kt = [A] - [A]_0$ C. $[A] = -kt + [A]_0$ D. $[A] = kt - [A]_0$

Watch Video Solution

320. For a first order reaction involving decomposition of N_2O_5 the following information is available : $2N_2O_5(g) \rightarrow 4NO_2(g) + O_2(g)Rate = k[N_2O_5]$

$$N_2O_5(g)
ightarrow 2NO_2(g) + rac{1}{2}O_2(g)Rate = k'[N_2O_5].$$
 Which of the

following expressions is true ?

A. k=k'

B. k' =2k

C. k' =1/2k

D. kgt k'.

Watch Video Solution

321. Which of the following graphs corresponds to first order reaction:

322. Which of the following is correct for a zero order reaction

A.
$$t_{3\,/\,4} = 2 t_{1\,/\,2}$$

B.
$$t_{3/4} = 1.5t_{1/2}$$

C. $t_{3/4} = rac{1}{2}t_{1/2}$
D. $t_{3/4} = rac{1}{3}t_{1/2}$

Watch Video Solution

323. The half life period for a zero order reaction is equal to

A.
$$2k / [A]_0$$

B. $\frac{[A]_0}{2k}$
C. $\frac{0.693}{k}$
D. $\frac{0.693}{k[A]_0}$

324. For a second order reaction rate at a particular time x. if the initial concentration is tripled, the rate will become.

A. 3x

 $\mathsf{B.}\,9x^2$

C. 9x

D. 27x.

Watch Video Solution

325. When In K is plotted against 1/T, the slope was found to be $-10.7 imes10^3 K$ activation energy for the reaction would be :

A. $-78.9kJmol^{-1}$

B. $2.26 k Jmol^{-1}$

C. $88.9kJmol^{-1}$

Watch Video Solution

326. For a zero order reaction, linear plot was obtained for [A] vs t. The slope of the line is equal to:

A. k_0

 $B. - k_0$

C. $\frac{0.693}{k_0}$ D. $-\frac{k_0}{2.303}$

Watch Video Solution

327. For a reaction having rate law expression Rate= $k[A]^{3/2}[B]^{-1/2}$. If

the concentration of both A and B becomes four times, the rate of

reaction:

A. becomes four times

B. becomes 16 times

C. decreases four times

D. remains same.

Watch Video Solution

328. For a chemical reaction A
ightarrow B ,it is observed that the rate of reaction doubles when the concentration of A is increased four times. The

order of reaction in A is :

A. Two

B. One

C. Half

D. Zero

329. The reaction $-N_2O_5(inCCl_4) \rightarrow 2NO_2 + \frac{1}{2}O_2(g)$ is first order in N_2O_5 with rate constant $6.2 \times 10^{-4}s^{-1}$. What is the value of rate of reaction when $[N_2O_5] = 1.25molL^{-1}$?

A.
$$7.75 imes 10^{-4} mol L^{-1} s^{-1}$$

- B. $6.35 imes 10^{-3} mol L^{-1} s^{-1}$
- C. $5.15 imes 10^{-5} mol L^{-1} s^{-1}$
- D. $3.55 imes 10^{-4} mol L^{-1} s^{-1}$

Watch Video Solution

330. Reaction $A \rightarrow B$ follows second order kinetics. Doubling the concentration of A wil increase the rate of formation of B by a factor of :

D. 4

Watch Video Solution

331. A reaction is 50% completes in 2 hours and 75 % completes in 4 hours. The order of reaction is

A. 0

B. 1

C. 2

D. 3

332. For the reaction $2N_2O_5 \rightarrow 4NO_2 + O_2$ rate and rate constant are 1.22×10^{-4} and $3.4 \times 10^{-5} s^{-1}$ respectively then the concentration of N_2O_5 at that time will be

A. 1.732

 $B.\,3.0$

C. $1.02 imes 10^{-4}$

D. $3.4 imes 10^5$.

Watch Video Solution

333. The reaction : $A \rightarrow B$ follows first order kinetics. The time taken for 0.8 mol of A to produce 0.6 mol of B is 1 hour. What is the time taken for Conversion of 0.9 mol of A to produce 0.675 mol of B ?

A.1hour

B. 0.5 hour

C. 0.25 hour

D. 2 hour

Watch Video Solution

334. The time taken for 90% of a first order reaction to complete is approximately

A. 1.1 times that of half life

B. 2.2 times that of half life

C. 3.3 times that of half life

D. 4.4 times that of half life

335. The rate law for a reaction between the Substances A and B is given by Rate = $k[A]^n[B]^m$ On doubling the concentration of A and halving the concentration of B, the ratio of the new rate to the earlier rate of reaction will be

A. m + n

B.n-m

C. 2^{n-m}

 $\mathsf{D.}\,\frac{1}{2^{m+n}}$

336. In a first order reaction, the concentration of the reactant decreases from 800 mol/ dm^3 to 50 mol/ dm^3 in 2×10^4 sec. The rate constant of the reaction in sec⁻¹ is

A. $2 imes 10^4$

B. $3.45 imes 10^{-5}$

C. 1.386 imes 10 $^{-4}$

D. $2 imes 10^{-4}$

Watch Video Solution

337. The rate of a first order reaction is : $1.5 imes 10^{-2} mol L^{-1} min^{-1}$ at 0.5

M concentration of the reactant. The half life of the reaction is :

A. 23.1 min

B. 8.73 min

C. 7.53 min

D. 0.383 min.

338. The rate equation for the reaction $2A + B \rightarrow C$ is found to be rate =k[A][B]. The correct statement in relation to this reaction is that the

A. units of k must be s^{-1}

B. $t_{1/2}$ is constant

C. rate formation of C is twice the rate of disappearance of A.

D. value of k is independent of the initial concentration of A and B.

Watch Video Solution

339. A substance undergoes first order decomposition. The decomposition follows we parallel first order reactions as :

 $k_1 = 1.26 imes 10^{-4} s^{-1} \; k_2 = 3.8 imes 10^{-5} s^{-1}$ The percentage distribution

of B and C are

A. 75% B and 26% C

B. 80% B and 20% C

C. 60% B and 40% C

D. 76.83% B and 23.17% C

Watch Video Solution

340. A reactant (A) forms two products : $A \xrightarrow{k_1} B$, Activation energy, E_{a1} $A \xrightarrow{k_2} C$, Activation energy, E_{a2} If $E_{a2} = 2E_{a1}$, then k_1 and k_2 are related as

A.
$$k_1=k_2e^{E_{a1}/\,RT}$$

$$\mathsf{B}.\,k_2=k_1e^{E_{a2}\,/\,RT}$$

C.
$$k_1 = Ak_2 e^{E_{a1}/RT}$$

D.
$$k_1=2k_2e^{E_{a2}\,/\,RT}$$

341. Consider the reaction : $N_2(g)+3H_2(g)
ightarrow 2NH_3(g)$ The equality

relationship between
$$\frac{d[NH_3]}{dt}$$
 and $\frac{d[H_2]}{dt}$ is
A. $+\frac{dt[NH_3]}{dt} = -\frac{2}{3}\frac{d[H_2]}{dt}$
B. $+\frac{dt[NH_3]}{dt} = -\frac{3}{2}\frac{d[H_2]}{dt}$
C. $+\frac{dt[NH_3]}{dt} = -\frac{d[H_2]}{dt}$
D. $+\frac{dt[NH_3]}{dt} = -\frac{1}{2}\frac{d[H_2]}{dt}$

Watch Video Solution

342. The correct electronic configuration of a chloride ion is : (a) 2, 8 (b) 2,

8, 4 (c) 2, 8, 8 (d) 2, 8, 7

A. A and B both

B. Neither A nor B

C. A only

D. C only.

Watch Video Solution

343. In a first-order reaction $A \rightarrow B$, if k is rate constant and initial concentration of the reactant A is 0.5 M, then the half-life is :

A.
$$\frac{\log 2}{k}$$

B.
$$\frac{\log 2}{k\sqrt{0.5}}$$

C.
$$\frac{\ln 2}{k}$$

D.
$$\frac{0.693}{0.5k}$$

Watch Video Solution

344. If 60% of a first order reaction was completed in 60 minutes, 50% of the same reaction would be completed in approximately : (log 4 = 0.60, log 5 = 0.69)

A. 45 minutes

B. 60 minutes

C. 40minutes

D. 50 minutes

Watch Video Solution

345. The bromination of acetone that occurs in acid solution is represented by the equation $CH_3COCH_3(aq) + Br_3(aq) \rightarrow CH_3COCH_2Br(aq) + H^+(aq) + Br^-(aq)$ These kinetic data were obtained for given reaction concentrations.

Initial concentrations, M		
[CH,COCH]]	[Br ₂]	[H +]
0.30	0.05	0.05
0.30	0.10	0.05
0.30	0.10	0.10
0.40	0.05	0.20
Initial Rate, dis	appearance of Br ₂ ,	Ms^{-1}
5	5.7×10^{-5}	
5	.7 × 10 ⁻⁵	
1	.2 × 10 ⁻⁴	
3.	1×10^{-4}	
	in the second	

Based on these data, the rate of reaction is :

A. $rate = k[CH_{3}COCH_{3}][Br_{2}]$ B. $rate = k[CH_{3}COCH_{3}][Br_{2}][H^{+}]^{2}$ C. $rate = k[CH_{3}COCH_{3}][Br_{2}][H^{+}]$ D. $rate = k[CH_{3}COCH_{3}][H^{+}]$

Watch Video Solution

346. For a reaction : $A + B \rightarrow$ product, it is observed that (i) on doubling the concentration of A only, the rate of reaction is also doubled. (ii) on doubling the initial concentration of both A and B, there is change by a factor of 8 in the rate of reaction. The rate of reaction is given by

A.
$$Rate = k[A][B]^2$$

$$\mathsf{B.} \, Rate = k[A]^2 [B]^2$$

$$\mathsf{C.} \, Rate = k[A][B]$$

D.
$$Rate = k[A]^2[B]$$

Watch Video Solution

347. Half life period of a first order reaction is 1386 seconds. The specific rate constant of the reaction is :

A.
$$0.5 imes 10^{-2} s^{-1}$$

B. $0.5 imes 10^{-3} s^{-1}$
C. $5.0 imes 10^{-2} s^{-1}$
D. $5.0 imes 10^{-3} s^{-1}$

349. In the reaction $BrO_3^-(aq)+5Br^-+6H^+ o 3Br_2+3H_2O$ the rate of appearance of bromine is relate to the rate of disappearance of bromide ions as

$$\begin{array}{l} \mathsf{A.} \ \frac{d[Br_2]}{dt} = \ - \ \frac{5}{3} \frac{d[Br^-]}{dt} \\ \mathsf{B.} \ \frac{d[Br_2]}{dt} = \ \frac{5}{3} \frac{d[Br^-]}{dt} \\ \mathsf{C.} \ \frac{d[Br_2]}{dt} = \ \frac{3}{5} \frac{d[Br^-]}{dt} \\ \mathsf{D.} \ \frac{d[Br_2]}{dt} = \ - \ \frac{3}{5} \frac{d[Br^-]}{dt} \end{array}$$

Watch Video Solution

350. During the kinetic study of the reaction. $2A + B \rightarrow C + D$, following results were obtained: Based on the above data which one of

the following is correct?

Run	[A]/mol L ⁻¹	[B]/mol L ⁻¹	Initial rate of formation of D/mol L ⁻¹ min ⁻¹
I	0.1	0.1	6.01×10^{-3}
п	0.3	0.2	7.2×10^{-2}
ш	0.3	0.4	2.88×10^{-1}
IV	0.4	0.1	2.40×10^{-2}

Based on the above data which one of the following is correct?

A.
$$Rate = k[A]^{2}[B]^{2}$$

B. $Rate = k[A][B]^{2}$
C. $Rate = k[A]^{2}[B]$
D. $Rate = k[A][B]$

Watch Video Solution

351. For the reaction $N_2O_5(g) \rightarrow 2NO_2(g) + \frac{1}{2}O_2(g)$ the value of rate of disappearance of N_2O_5 is given as $6.25 \times 10^{-3} mol L^{-1} s^{-1}$. The rate of formation of NO_2 and O_2 is given respectively as :

A.
$$6.25 imes 10^{-3} mol L^{-1} s^{-1}$$
 and $3.125 imes 10^{-3} mol L^{-1} s^{-1}$

B.
$$6.25 imes 10^{-3} mol L^{-1} s^{-1}$$
 and $6.25 imes 10^{-3} mol L^{-1} s^{-1}$

C.
$$6.25 imes 10^{-3} mol L^{-1} s^{-1}$$
 and $6.25 imes 10^{-3} mol L^{-1} s^{-1}$

D.
$$1.25 imes 10^{-2} mol L^{-1} s^{-1}$$
 and $3.125 imes 10^{-3} mol L^{-1} s^{-1}$

352. In a reaction, $A + B \rightarrow$ Product, rate is doubled when the concentration of B is doubled, and rate increases by a factor of 8 when the concentration of both the reactants (A and B) are doubled. Rate law for the reaction can be written as

- A. $Rate = k[A][B]^2$
- B. $Rate = k[A]^2[B]^2$
- $\mathsf{C.} Rate = k[A][B]$
- D. $Rate = k[A]^2[B]$

Watch Video Solution

353. In a zero-order reaction for every 10° rise of temperature, the rate is doubled. If the temperature is increased from $10^{\circ}C$ to $100^{\circ}C$, the rate of the reaction will become

A. 256 times

B. 512 times

C. 64 times

D. 128 times

Watch Video Solution

354. What is the activation energy for a reaction if its rate double when the temperature raised from $20^{\circ}C$ to $35^{\circ}C$? (R = 8.314J/mol/K)

A. $34.7 k Jmol^{-1}$

B. $15.1 k Jmol^{-1}$

C. $342kJmol^{-1}$

D. $269kJmol^{-1}$

355. The rate constant of the reaction $A \rightarrow B$ is 0.6×10^{-3} mole per second. If the concentration of A is 5 M, then concentration of B after 20 minutes is:

A. 0.36 M

B. 0.72M

C. 1.08M

D. 3.60M

Watch Video Solution

356. The activation energy of a reaction can be determined by

A. ln k vs.
$$\frac{1}{T}$$

B. $\frac{T}{\ln k}$ vs. $\frac{1}{T}$

C. In k vs. T

D.
$$\frac{\ln k}{T}$$
 vs. T

Watch Video Solution

357. When initial concentration of a reactant is doubled in a reaction, its

half-life period is not affected. The order of the reaction is

A. second

B. more than zero but less than first

C. zero

D. first

Watch Video Solution

358. The addition of a catalyst during a chemical reaction alters which of

the following quantities?

A. Enthalpy

B. Activation energy

C. Entropy

D. Internal energy

Watch Video Solution

359. The rate of first-order reaction is 0.04 mol $L^{-1}s^{-1}$ at 10 seconds and 0.03 mol $L^{-1}s^{-1}$ at 20 seconds after initiation of the reaction. The half-life period of the reaction is

A. 44.1 s

B. 54.1 s

C. 24.1 s

D. 34.1 s

360. The decomposition of phosphine (PH_3) on tungsten at low pressure is a first order reaction. It is because

A. rate is proportional to the surface coverage

B. rate is inversely proportional to the surface coverage

C. rate is independent of the surface coverage

D. rate of decomposition is very slow

361. What is the time required for a first order reaction to be 99 % complete, compared to the time taken for the reaction to be 90 % complete ?

A. There is no change

B. Time taken is double .

C. Time taken is triple

D. The time required is half of the initial value.

Watch Video Solution

362. The experimental rate law for a reaction : $2A + B \rightarrow$ Product is rate $\propto C_A C_B^{1/2}$. If the concentrations of both A and B are doubled the rate increases by a factor of

A. $\sqrt{2}$

B. 2

 $\mathsf{C.}\,2\sqrt{2}$

D. 4

363. If the initial concentration of the reactant is doubled, the time for half reaction is also doubled. Then order of the reaction is

A. Zero

B. fraction

C. three

D. one

Watch Video Solution

364. For a reaction taking place in three steps, the rate constants are k_1, k_2 and k_3 . The overall rate constant $k = \frac{k_1k_2}{k_3}$. If the energy of activation values for the first, second and third stages are respectively 40, 50 and 60 kJ mol^{-1} , then the overall energy of activation in kJ mol^{-1} is

A. 30

B. 40

C. 60

D. 50

365. For a zero order reaction, the plot of concentration of reactant vs time is (intercept refers to concentration axis).

- A. linear with +ve slope and zero intercept
- B. linear with -ve slope and zero intercept
- C. linear with -ve slope and non-zero intercept
- D. linear with +ve slope and non-zero intercept

366. Consider the following statements : (i) increase in concentration of reactant increases the rate of a zero order reaction (ii) rate constant k is equal to collision frequency A if $E_a = 0$. (iii) rate constant k is equal to collision frequency A if $E_a = \infty$. (iv) In k vs T is a straight line. (v) Ink vs IT is a straight line. Correct statements are

A. (i) and (iv)

B. (ii) and (v)

C. (iii) and (iv)

D. (ii) and (iii)

Watch Video Solution

367. The initial rates of reaction E $3A + 2B + C \rightarrow$ Products, at different initial concentrations are given below

Initial rate, Ms ⁻¹	[A] ₀ ,M	[B] ₀ ,M	[C] ₀ ,M
5.0×10^{-3}	0.010	0.005	0.010
5.0×10^{-3}	0.010	0.005	0.015
1.0×10^{-2}	0.010	0.010	0.010
1.25×10^{-3}	0.005	0.005	0.010

The order with respect to the reactants, A, B and C are respectively

A. 3,2,0

B. 3,2,1

C. 2,1,0

D. 2,2,1

Watch Video Solution

368. For a reaction $A + B \rightarrow C + 2D$, experimental results were collected for three trials and the data obtained are given below :

Trial	[A], M	[B], M	Initial Rate, M
Sat.	0.40	0.20	5.5 × 10-4
9	0.80	0.20	5.5 × 104
2	0.40	0.40	2.2 × 10-3

The correct rate law of the reaction is

A. $rate = k[A]^0[B]^2$

- $\mathsf{B.} Rate = k[A][B]^2$
- $\mathsf{C.} Rate = k[A][B]$

D.
$$r = k[A][B]^0$$

Watch Video Solution

369. In a first order reaction, the concentration of the reactant is reduced to 1/8 of the initial concentration in 75 minutes at 298 K. What is the half-life period of the reaction in minutes ?

B. 15

C. 45

D. 25

Watch Video Solution

370. The activation energy for the reaction if k = A is

A. 83

B. 166

C. 249

D. 332

Watch Video Solution

371. The decomposition of ammonia on tungsten surface at 500 K follows zero order kinetics. The half-life period of this reaction is 45 minutes when the initial pressure is 4 bar. The half life period (minutes) of the reaction when the initial pressure is 16 bar at the same temperature is

A. 120

B. 60

C. 240

D. 180

Watch Video Solution

372. The rate constant of a first order reaction is doubled when the temperature is increased from $20^{\circ}C$ to $25^{\circ}C$. How many times the rate constant will increase if the temperature is raised from $20^{\circ}C$ to $40^{\circ}C$?

B. 8

C. 16

D. 32

Watch Video Solution

373. The rate of a reaction is given by rate, $r = k [H^+]^n$ If the rate becomes 100 times when the pH changes from 3 to 1, the order of the reaction is

A. 0

B. 1

C. 2

D. 3

374. In a first order reaction, 80 % of the reactant at an instant was reduced to 8 % in 4606 seconds. The rate constant of the reaction is

A. $2.303 \times 10^{-4} s^{-1}$ B. $4.606 \times 10^{-3} s^{-1}$ C. $5.000 \times 10^{-3} s^{-1}$ D. $5.000 \times 10^{-4} s^{-1}$

Watch Video Solution

375. The decomposition of N_2O_5 in $\mathbb{C}l_4$ solution at 318 K is studied by monitoring the concentration of N_2O_5 in the solution. Initially the concentration of N_2O_5 is 2.4 mol L^{-1} and after 200 minutes, it is reduced to 2.00 mol L^{-1} . What is the rate of production of NO_2 during this period in mol $L^{-1}min^1$?

A. $4 imes 10^{-3}$

B. $2 imes 10^{-3}$

 $\text{C.1}\times10^{-3}$

D. $2 imes 10^{-4}$

Watch Video Solution

376. In a first order reaction, the concentration of the reactant decreases from 0.6 M to 0.3 M in 30 minutes. The time taken for the concentration to change from 0.1 M to 0.025 M is

A. 60 min

B. 30 min

C. 15 min

D. 50 min

377. The following mechanism has been proposed for the reaction of NO

and Br_2 to form NOBr

 $NO(g) + Br_2(g) \leftrightarrow NOBr_2(g)$ (fast)

 $NOBr_2(g) + NO \leftrightarrow 2NOBr(g)$ (slow)

If the second step is rate determining step, the order of the reaction with

respect to NO(g) is

A. 0

- B. 3
- C. 2

D. 1

Watch Video Solution

378. Rate of a reaction can be expressed by Arrhenius equation as: $k = Ae^{-E/RT}$ In this equation, E represents

A. energy below which colliding molecules will not react.

B. the total energy of the reacting molecules at a temperature T.

C. the fraction of molecules with energy greater than the activation

energy

D. the energy above which all the colliding molecules will react.

379. Consider the reaction, $2A + B \rightarrow$ Products When concentration of B alone was doubled, the half-life did not change. When the concentration of A alone was doubled, the rate increased by two times. The units of rate constant for this reaction are -

A. no unit

B. $molL^{-1}s^{-1}$

C. s^{-1}

D. $Lmol^{-1}s^{-1}$

Watch Video Solution

380. The half life period of a first order reaction is 6.93 minutes. The time required for the completion of 99% of the chemical reaction will be $(\log 2 = 0.301)$

A. 230.3 minutes

B. 23.03 minutes

C. 46.06 minutes

D. 460.6 minutes

Watch Video Solution

381. The time for half life period of a certain reaction $A \rightarrow Products$ is 1 hour. When the initial concentration of the reactant 'A' is 2.0 mol L^{-1} , how much time does it take for its concentration to come from 0.50 to 0.25 mol L^{-1} ? if it is a zero order reaction?

A. 0.25 h

B.1h

C. 4h

D. 0.5 h.

Watch Video Solution

382. The rate of chemical reaction double for every 10° C rise of temperature if the temperature is raised by $50^{\circ}C$, the rate of the reaction increases by

A. 10 times

B. 24 times

C. 32 times

D. 64 times

Watch Video Solution

383. For a first order reaction, (A) \rightarrow Products, the concentration of A changes from 0.1 M to 0.025 M in 40 minutes The rate of reaction when the concentration of A is 0.01 M is

A. $3.47 imes 10^{-4} M/~{
m min}$

B. $3.47 imes 10^{-5}M/~{
m min}$

C. $1.73 imes 10^{-4} M/~{
m min}$

D. $1.73 imes 10^{-5} M/~{
m min}$

384. The rate of a reaction doubles when its temperature changes from 300 K to 310 K Activation energy of such a reaction will be (R = 8.314 $JK^{-1}mol^{-1}$ and log 2 = 0.301)

A. 60.5 kJ mol-1

B. 53.6 kJ mol-1

C. 48.6 kJ mol-1

D. 58.5 kJ mol-1

Watch Video Solution

385. For the non-stoichiometric reaction: $2A + B \rightarrow C + D$, the following kinetic data were obtained in three separate experiments, all at 298 K.

Initial concentration [A]	Initial concentration [B]	Initial rate of formation of C (mol L ⁻¹ s ⁻¹)
01M	0.1 M	1.2×10^{-3}
0.1 M	0.2 M	1.2×10^{-3}
0.2 M	0.1 M	2.4×10^{-3}

The rate law for the formation of C is

A.
$$\displaystyle rac{dC}{dt} = k[A]$$

B. $\displaystyle rac{dC}{dt} = k[A][B]$
C. $\displaystyle rac{dC}{dt} = k[A]^2[B]$
D. $\displaystyle rac{dC}{dt} = k[A][B]^2$

Watch Video Solution

386. Higher-order (n > 3) reactions are rare due to:

A. shifting of equilibrium towards reactants due to elastic collisions

B. loss of active species on collision

C. low probability of simultaneous collision of all the reacting species

D. increase in entropy and activation energy as more molecules are

involved.

Watch Video Solution

387. Decomposition of H_2O_2 follows a first order reaction. In fifty minutes the concentration of H_2O_2 decreases from 0.5 to 0.125 M in one such decomposition. When the concentration of H_2O_2 reaches 0.05 M, the rate of formation of O_2 will be

A. $6.93 imes 10^{-2} molmin^{-1}$

 $ext{B.}\,6.93 imes10^{-4}molL^{-1}min^{-1}$

C. $2.66Lmin^{-1}$ at STP

D. 1.34 imes 10 $^{-2}molmin^{-1}$

388. At 500 K, the half life period of a gaseous reaction at an initial pressure of 80 kPa is 350 sec. When the pressure is 40 kPa, the half life period is 175 sec. The order of the reaction is

A. Zero

B. One

C. three

D. two

Watch Video Solution

389. A substance undergoes first order decomposition. The

decomposition follows we parallel first order reactions as :

$k_1 = 1.26 imes 10^{-4} s^{-1} \ k_2 = 3.8 imes 10^{-5} s^{-1}$ The percentage distribution of B and C are

A. 400K

B. 1000 K

C. 800K

D. 1500 K

Watch Video Solution

390. The rate for the first order reaction is $0.69 imes 10^{-2} mol L^{-1} min^{-1}$

and the initial concentration is 0.2 mol L^{-1} . The half life period is :

A. 0

B. 3

C. 1

D. 2

391. The activation energies of two reactions are E_1 and $E_2(E_1 > E_2)$. If the temperature of the system is increased from T_1 to T_2 the rate constant of the reaction changes from k_1 to k_1 ' in the first reaction and k_2 to k_2 ' in second reaction, predict which of the following expression is correct ?

A.
$$rac{k_1{\,}'}{k_1} = rac{k_2{\,}'}{k_2}$$

B. $rac{k_1{\,}'}{k_1} > rac{k_2{\,}'}{k_2}$
C. $rac{k_1{\,}'}{k_1} < rac{k_2{\,}'}{k_2}$
D. $rac{k_1{\,}'}{k_1} = rac{k_2{\,}'}{k_2} = 0$

Watch Video Solution

392. The activation energy for a reaction at the temperature T K was found to be 2.303 RT J mol-1 .The ratio of the rate constant to Arrhenius factor is

A. 10^{-2} B. $2 imes 10^{-3}$ C. $2 imes 10^{-3}$

D. 2×10^{-2}

Watch Video Solution

393. Half lives of a first order and a zero order reactions are same. Then the ratio of the initial rates of first order reaction to that of the zero order reaction is

A.
$$\frac{1}{0.693}$$

 $\text{B.}\,2\times0.693$

C.0.693

$$\mathsf{D.}\,\frac{2}{0.693}$$

Watch Video Solution

394. If the activation energy for the forward reaction 150 kJ mol^{-1} and that of the reverse reaction is 260 kJ mol^{-1} , what is the enthalpy change for the reaction?

A. 410kJmol^-1`

 $\mathrm{B.}-110 kJ\mathrm{mol}^{-1}\mathrm{`}$

C. 110kJmol^-1`

D. -410kJmol^-1`

395. Fill in the blanks- _____ is an alloy made up of 90% of copper and 10% of aluminium metal and is used in making artificial jewellery.

396. The following data were obtained during the first order decomposition of 2A(g)
ightarrow B(g) + C(s) at a constant volume and at a

particular temperature.

S.No.	Time	Total pressure in Pascal
1	At the end of 10 min	300
2	After completion	200

The rate constant in min^{-1} is

A. 0.0693

B. 69.3

C. 6.93

D. $6.93 imes10^{-4}$

397. The time required for 100% completion of a zero order reaction is

A. ak

B.
$$\frac{a}{2k}$$

C. $\frac{a}{k}$
D. $\frac{2k}{k}$

a

398. The rate of reaction $A \to P$ roducts, at the initial concentration of $3.24 \times 10^{-2}M$ is nine times its rate at another initial concentration of $1.2 \times 10^{-3}M$. The order of the reaction is

A.
$$\frac{1}{2}$$

B. $\frac{3}{4}$

C.
$$\frac{3}{2}$$

D. $\frac{2}{3}$

399. For first order reaction, rate constant

A. indirectly proportional to concentration of the reactant

- B. is proportional to square of concentration of reactant
- C. is dependent of temperature
- D. is independent of temperature

400. Fill in the blanks is an alloy which is used for making coins		
and costly idols.		
Watch Video Solution		
401. Fill in the blanks is an alloy made up of 88% of Cu, 10% of		
Sn and 2% of Zn.		
Watch Video Solution		

402. The half-life for decay of 14C by β -emission is 5730 years. The fraction

of 14C decays, in a sample that is 22,920 years old, would be

A. 1/8

B. 1/16

C.7/8

D. 15/16

403. For a chemical reaction at $27^{\circ}C$, the activation energy is 600 R. The ratio of the rate constants at $327^{\circ}C$ to that of at $27^{\circ}C$ will be

A. 2 B. 40 C. e

 $\mathsf{D.}\,e^2$

Watch Video Solution

404. Fill in the blanks- _____ alloy is made up of 5% of aluminium and

95% of magnesium.

Watch Video Solution

405. Temperature coefficient of a reaction is '2. When temperature is increased from $30^{\circ}C$ to $90^{\circ}C$, the rate of reaction is increased by

A. 60 times

B. 64 times

C. 150times

D. 400 times

Watch Video Solution

406. State the number of electrons present in the outermost shell of the

atoms of the following elements : (i) Neon

Watch Video Solution

407. For the following reaction : $NO_2(g) + CO(g) \rightarrow NO(g) + CO_2(g)$, the rate law is : Rate = $k[NO_2]^2$. If 0.1 mole of gaseous carbon monoxide is added at constant temperature to the reaction mixture, which of the following statements is true ?

A. Both k and the reaction rate remain the same

B. Both k and the reaction rate increases

C. Both k and the reaction rate decreases

D. Only k increases, the reaction rate remains the same

Watch Video Solution

408. The rate of a reaction is given by rate, $r = k [H^+]^n$ If the rate becomes 100 times when the pH changes from 3 to 1, the order of the reaction is

B. 0

C. 1

D. 1.5

Watch Video Solution

409. A piece of wood from an archaeological sample has 5.0 counts min^{-1} per gram of C-14, while a fresh sample of wood has a count of 15.0 $min^{-1}gram^{-1}$. If half-life of C-14 is 5770 years, the age of the archaeological sample is

A. 8,500 years

B. 9,200 years

C. 10,000 years

D. 11,000 years

D Watch Wides Colution

410. For the reaction $A + 2B \rightarrow C$, the reaction rate is doubled if the concentration of A is doubled. The rate is increased by four times when concentrations of both A and B are increased by four times. The order of the reaction is

A. 3 B. 0 C. 1

D. 2

Watch Video Solution

411. Fill in the blanks- _____ is an alloy made up of 95% of aluminium,

1% of magnesium, 4% of copper.

Watch Video Solution

412. The relationship between rate constant and half life period of zero order reaction is given by

A.
$$t_{rac{1}{2}} = [A]_0 2k$$

B. $t_{rac{1}{2}} = rac{0.693}{k}$
C. $t_{rac{1}{2}} = rac{[A]_0}{2k}$
D. $t_{rac{1}{2}} = rac{2[A]_0}{k}$

Watch Video Solution

413. For the reaction $O_{3(g)} + O_{(g)} \rightarrow 2O_{2(g)}$, if the rate law expression is, $rate = K[O_3][O]$, the molecularity and order of the reaction are respectively

A. 2 and 2

B. 2 and 1.33

$$\begin{array}{l} \text{A.} \ \displaystyle \frac{\Delta[SO_2]}{\Delta t} \\ \text{B.} \ \displaystyle \frac{1}{2} \displaystyle \frac{\Delta[SO_2]}{\Delta t} \\ \text{C.} \ \displaystyle - \displaystyle \frac{\Delta[O_2]}{\Delta t} \\ \text{D.} \ \displaystyle \frac{\Delta[SO_3]}{\Delta t} \end{array}$$

416. The reaction takes place in two steps as: (i) $NO_2Cl(g) \xrightarrow{k_1} NO_2(g) + Cl_2(g)$ (ii) NO_2Cl(g) + Cl(g) overset (k_2)rarr NO_2(g) + Cl_2(g)` Identify the reaction intermediate

A. $NO_2Cl(g)$

- B. $NO_2(g)$
- $\mathsf{C.}\, Cl_2(g)$
- $\mathsf{D.}\, Cl(g)$

417. The rate constant and half life of a first order reaction are related to

each other as:

418. Fill in the blanks- _____ is an alloy used for making bells which are used in schools and temples.

Watch Video Solution

419. In the reaction A \rightarrow Products, when the concentration of A was reduced from $2.4 \times 10^{-2} M$ to $1.2 \times 10^{-2} M$, the rate decreased 8 times at the same temperature. The order of the reaction is

A. 0

B. 1

C. 2

D. 3

420. For a chemical reaction, mA o xB, the rate lay is $R=k[A]^2$. If the concentration of A is doubled, the reaction rate will be

A. doubled

B. quadrupled

C. increased by 8 times

D. unchanged

Watch Video Solution

421. Give an example of the given statement- Metals are sonorous.

422. The activation energy of a reaction can be determined by

A. evaluating rate constants at two different temperatures

- B. changing the concentration of reactants
- C. evaluating the concentration of reactants at two different

temperatures

D. evaluating rate constant at standard temperature

Watch Video Solution

423. What is the composition of chromium steel?

Watch Video Solution

424. For a first order reaction, (A) \rightarrow Products, the concentration of A changes from 0.1 M to 0.025 M in 40 minutes The rate of reaction when the concentration of A is 0.01 M is

A. $1.73 imes 10^{-4} Mmin^{-1}$

B. $3.47 imes 10^{-5} Mmin^{-1}$

C. $3.47 imes10^{-4} Mmin^{-1}$

D. $1.73 imes10^{-5} Mmin^{-1}$

425. Consider a reaction $aG + bH \rightarrow$ Products. When concentration of both the reactants G and H is doubled, the rate increases by eight times, However, when the concentration of G is doubled keeping the concentration of H fixed, the rate is doubled. The overall order of the reaction is

A. 0

B. 1

C. 2

D. 3

426. Under the same conditions, initial concentration of 1.386 mol dm^{-3} of a substance becomes half in 40 seconds and 20 seconds through first order and zero order kinetics respectively. Ratio $\left(\frac{k_1}{k_0}\right)$ of the rate constants for first order (k_1) and zero order (k_0) of the reaction is

A. $0.5 mol^{-1} dm^3$

 $\mathsf{B}.\, 1.0 mol^{\,-\,1} dm^3$

 $C. 1.5 moldm^3$

D. $2.0mol^{-1}dm^3$

Watch Video Solution

427. State the number of electrons present in the outermost shell of the

atoms of the following elements : (ii) chlorine

428. Fill in the blanks- ______is an alloy used foe making aircrafts and aeroplane.

429. In the reaction, $P + Q \rightarrow R + S$ +the time taken for 75% reaction of P is twice the time taken for 50% reaction of P. The concentration of Q varies with reaction time as shown in the figure. The overall order of the

430. The initial rate of hydrolysis of methyl acetate (1M) by a weak acid (HA, 1M) is 1/100 th of that of a strong acid (HX, 1M), at $25^{\circ}C$. The K_a of HA is

A. 1×10^{-4} B. 1×10^{-5} C. 1×10^{-6} D. 1×10^{-3}

Watch Video Solution

431. For the elementary reaction $M \rightarrow N$, the rate of disappearance of M increases by a factor of 8 upon doubling the concentration of M. The order of the reaction with respect to M is

A. 4

Watch Video Solution

432. If rate of reaction in terms of disappearance of NH_3 is $-\frac{d[NH_3]}{dt}$, for the reaction : $4NH_3(g) + 5O_2(g) \rightarrow 4NO(g) + 6H_2O(g)$ then which of the following expressions are correct for rate of the reaction :

A.
$$Rate = -rac{4}{5}rac{d[O_2]}{dt}$$

B. $Rate = rac{3}{2}rac{d[H_2O]}{dt}$
C. $Rate = rac{d[NO]}{dt}$
D. $Rate = rac{4}{5}rac{d[O_2]}{dt}$

Watch Video Solution

433. Consider the rate law expression for a reaction : $rate = k ig[NO_2^{-} ig] ig[I^{-} ig] ig[H^{+} ig]^2$

Which of the following is/are not correct ?

A. When concentration of both NO_2^- and I^- are doubled rate

becomes 4 times.

- B. When concentration of H^+ is tripled, rate becomes nine times.
- C. When concentration of each of $H^{\,+},\,NO_2^{\,-}\,$ and $I^{\,-}\,$ are tripled,

rate becomes nine times.

- D. When concentration of NO_2^- is doubled, of I^- is halved and of
 - $H^{\,+}$ is doubled rate becomes 16 times.

434. For a first order reaction :

A. The degree of dissociation is equal to $1-e^{-kt}$

B. A plot of reciprocal of concentration of reactant vs time gives a

straight line.

C. The time taken the completion of 75% of reaction is thrice the $t_{1/2}$

of the reaction.

D. The pre-exponential factor in the Arrhenius equation has the

dimensions of $time^{-1}$.

Watch Video Solution

435. In acidic medium, the rate of reaction between BrO_3^- and Br^- is given by the expression $-\frac{d[BrO_3]}{dt} = k[BrO_3^-][Br^-][H^+]^2$ which of the following statements are correct ?

A. Rate of reaction is independent of the concentration of acid added .

B. Rate of reaction is affected by change in pH of the solution .

C. Doubling the concentration of H^+ ions increases the reaction rate

by 4 times.

D. This is an example of pseudo second order reaction.

Watch Video Solution

436. The rate law for the reaction $: RCl + NaOH \rightarrow ROH + NaCl$ is given as : rate = k[RCl). The rate of this reaction :

A. is doubled by doubling the concentration of NaOH

B. is halved by reducing the concentration of RCI by one half.

C. is increased by increasing the temperature of the reaction.

D. is unaffected by change in temperature.

437. Which of the following statements is not correct. Some antisecptics can be added to soaps, Dilute solutions of some disinfectants can be used as antiseptic, Disinfectants are antimicrobial drugs, Antiseptic medicines can be ingested.

A. changes the Δ H of the reaction

B. decreases the activation energy for the forward and backward reaction equally.

C. provides a new path of higher activation energy.

D. increases the average kinetic energy of reacting molecules

Watch Video Solution

438. Fill in the blanks- ______ is an mixture which is used as domestic

fuel.

Watch Video Solution

439. For the first order reaction $2N_2O_5(g) o 4NO_2(g) + O_2(g)$ which is incorrect:-

- A. the concentration of the reactant decreases exponentially with time.
- B. the half-life of the reaction decreases with increasing temperature.
- C. the half-life of the reaction depends on the initial concentration of

the reactant.

D. the reaction proceeds to 99.6% completion in eight half-life duration.

Watch Video Solution

440. Consider the following reaction for $2NO_2(g) + F_2(g) \rightarrow 2NO_2F(g).$ The expression for the rate of reaction

in terms of the rate of change of Partial pressures of reactant and product is/are

A.
$$rate = - 1/2 [dp(NO_2)/dt]$$

B.
$$rate = 1/2[dp(NO_2)/dt]$$

C.
$$rate = -1/2[dp(NO_2F)/dt]$$

D.
$$rate = 1/2[dp(NO_2F)/dt]$$

Watch Video Solution

441. Arrhenius equation is

A. a high activation energy usually implies a fast reaction.

B. ate constant increases with increase in temperature. This is due to

a greater number of collisions whose energy exceeds the activation

energy.

C. higher the magnitude of activation energy, stronger is the

temperature dependence of the rate constant.

D. the pre-exponential factor is a measure of the rate at which

collisions occur, irrespective of their energy.

Watch Video Solution

442. The integrated rate equations can be fitted with kinetic data to determine the order of a reaction. The integrated rate equations for zero, first and second order reactions are : Zero order : $[Al = -kt + [A]_0$ First order : $\log[A] = -\frac{kt}{2.303} + \log[A]_0$ Second order : $\frac{1}{[A]} = kt + \frac{1}{[A]_0}$ These equations can also be used to calculate the halt life periods of different reactions, which give the time during which the concentration of a reactant is reduced to half of its initial concentration, i.e., at time $t_{1/2}$, $[A] = [A]_0/2$ Answer the following (1 to 5) question : The decomposition of nitrogen pentoxide : $2N_2O_5(g) o 4NO_2(g) + O_2(g)$ is a first order reaction. The plot of log $[N_2O_5]$ vs time (min) has slope = - 0.01389. The rate constant k is

A. $1.389 imes 10^{-2} min^{-1}$

B. $3.2 imes 10^{-2}min^{-1}$

C. $6.03 imes10^{-3}min^{-1}$

D. $71.99 min^{-1}$

Watch Video Solution

443. The integrated rate equations can be fitted with kinetic data to determine the order of a reaction. The integrated rate equations for zero, first and second order reactions are : Zero order : $[Al = -kt + [A]_0$ First order : $\log[A] = -\frac{kt}{2.303} + \log[A]_0$ Second order : $\frac{1}{[A]} = kt + \frac{1}{[A]_0}$ These equations can also be used to calculate the halt life periods of different reactions, which give the time during which the concentration of a reactant is reduced to half of its initial concentration, i.e, at time $t_{1/2}, [A] = [A]_0/2$ Answer the following (1 to 5) question : For a second order reaction, the correct plot of $t_{1/2}$ vs. $1/[A]_0$ is

D.

444. The integrated rate equations can be fitted with kinetic data to determine the order of a reaction. The integrated rate equations for zero, first and second order reactions are : Zero order : $[Al = -kt + [A]_0$ First order : $\log[A] = -\frac{kt}{2.303} + \log[A]_0$ Second order : $\frac{1}{[A]} = kt + \frac{1}{[A]_0}$ These equations can also be used to calculate the halt life periods of different reactions, which give the time during which the concentration of a reactant is reduced to half of its initial concentration, i.e, at time $t_{1/2}$, $[A] = [A]_0/2$ Answer the following (1 to 5) question : For a second order reaction, rate at a particular time is x. if the initial concentration is tripled, the rate will become

A. $9x^2$

B. 27x

C. 9x

D. 3x

445. The integrated rate equations can be fitted with kinetic data to determine the order of a reaction. The integrated rate equations for zero, first and second order reactions are : Zero order : $[Al = -kt + [A]_0$ First order : $\log[A] = -\frac{kt}{2.303} + \log[A]_0$ Second order : $\frac{1}{[A]} = kt + \frac{1}{[A]_0}$ These equations can also be used to calculate the halt life periods of different reactions, which give the time during which the concentration of a reactant is reduced to half of its initial concentration, i.e, at time $t_{1/2}$, $[A] = [A]_0/2$ Answer the following (1 to 5) question : The rate for the first order reaction is 0.0069 mol $L^{-1}min^{-1}$ and the initial concentration is 0.2 mol L^{-1} . The half life period is

A. 636 s

B. 0.635 s

C. 690s

D. 1205s
446. For a zero order reaction, linear plot was obtained for [A] vs t. The slope of the line is equal to:

A.
$$-\frac{k}{2.303}$$

B. $\frac{k}{2.303}$
C. 2.303 k
D. $-k$

Watch Video Solution

447. According to collision theory of chemical reactions, rate of a reaction depends upon collision frequency and fraction of effective collisions. The rate of a reaction generally increases with rise in temperature mainly because of increase in number of effective collisions. Arrhenius proposed a quantitative relation between rate constant and temperature as

 $k = Ae^{-E_a/Rt}$ where E_a is activation energy. It is equal to the difference between threshold energy and average kinetic energy of reacting molecules. Which of the following plot will be linear ?

A. In k versus T with -ve slope

B. in k versus 1/T with -ve slope

C. Ink versus 1/T with +ve slope

D. k versus 1/T with -ve slope.

448. For a first order reaction, the plot of log K versus 1/T gives straight line. The slope of the line has been found to be $a-8.95 \times 10^{-3}$ K. The activation energy for the reaction is

A. $74.4kJmol^{-1}$

B. $-171.4 k Jmol^{-1}$

C. 171.4 $kJmol^{-1}$

D. $20.61 k Jmol^{-1}$

449. The pre-expotential factor in Arrhenius equation of a second order reaction has the units

A. $molL^{-1}s^{-1}$

B. s^{-1}

C. $Lmol^{-1}s^{-1}$

D. dimensionless

450. At $27^{\circ}C$ in the presence of a catalyst, the activation energy of a reaction is lowered by 10 kJ mol^{-1} . The ratio of log k (catalyst)/k (uncatalysed) is

A. 1.741

B. 191.47

C. 0.034

D. 0.0145

451. The rate of a chemical reaction becomes double for every $10^{\circ}C$ rise in temperature. If this generalisation holds for a reaction in the temperature range 290 K to 300 K, what would be the approximate value of E_a for the reaction ?

A. $50kJmol^{-1}$

453. What is the fraction of molecules having energy equal to or greater than activation energy, E_a ? What is this quantity called ?

A.
$$x=-rac{E_a}{RT}$$

B. $x=e^{E_a/RT}$
C. $\log x=-rac{E_a}{2.303RT}$

D.
$$x=10^{-E_a/RT}$$

Watch Video Solution

454. The questions given below consist of an Assertion and a Reason. Use the following key to choose the appropriate answer.

If both assertion and reason are CORRECT and reason is the CORRECT explanation of the assertion.

If both assertion and reason and CORRECT, but reason is NOT THE CORRECT explanation of the assertion.

If assertion is CORRECT but reason is INCORRECT.

If assertion is INCORRECT but reason is CORRECT.

If both assertion and reason are INCORRECT.

Assertion: E° for $Mn^{3+} \mid Mn^{2+}$ is more positive than $Cr^{3+} \mid Cr^{2+}$.

Reason: The third ionistation energy of Mn is larger that than of Cr.

Watch Video Solution

Watch Video Solution

457. Fill in the blanks- _____ is an alloy which is used in the manufacture of lockers, fish plates of railways tracks, part of cutting machines.

Watch Video Solution

458. Assertion : For a second order reaction, graph of [A] vs. t is a straight line. Reason : For second order reaction, $[A] = kt + rac{1}{[A]_0}$

concentration of RCl is reduced to to half cell.

Reason : The rate of reactions is represented by k[RCI] i.e., it is a first order reaction.

- A. (a) Both assertion and reason are correct and reason is the correct explanation of the assertion.
- B. (b) Both assertion and reason are correct and reason is not the

correct explanation of the assertion.

C. (c) Assertion is correct but reason is incorrect.

D. (d) Assertion is incorrect but reason is correct.

Watch Video Solution

463. Which subatomic particle was discovered by : (i) Chadwick (ii) Thomson (iii) Goldstein

464. Match the units in Column I with the type of reaction in Column II

Column I	Column II
(A) s ⁻¹	(p) First order reaction
(B) L ² mol ⁻² s ⁻¹	(q) Second order reaction
(C) L mol ⁻¹ s ⁻¹	(r) Third order reaction
(D) mol $L^{-1} s^{-1}$	(s) Zero order reaction

Watch Video Solution

465. Name the subatomic particle whose relative charge is : (a) +1

Watch Video Solution

466. The answer to each of the following question is a single- digitinteger ranging from 0 to 9. Darken the correct digit. The concentration of R in the reaction $R \rightarrow P$ was measured as a function of time and the following data is obtained :

(R) (molar)	1.0	0.75	0.40	0.10
t(min)	0.0	0.05	0.12	0.18
f (mm)				

469. The rate of a reaction of Br^- ions with BrO_3^- ions in the acidic medium is $rate=kig[Br^-ig]ig[BrO_3^-ig]ig[H^+ig]^2$

The order of reaction

471. An organic compound undergoes first-order decomposition. The time taken for decomposition to 1/8 and 1/10 of its initial concentration are $t_{1/8}$ and $t_{1/10}$ respectively. What is the value of $\frac{[t_{1/8}]}{[t_{1/10}]} \times 10$? (take $\log_{10} 2 = 0.3$)

472. In dilute aqueous H_2SO_4 , the complex diaquodioxalato ferrate (II) is oxidized by MnO_4^- . For this reaction, the ratio of the rate of change of $[H^+]$ to the rate of change of $[MnO_4^-]$ is

0	1	2	3	4	.5	6	7	8	9
					-				

473. The role of a catalyst in a chemical reaction is to change:

A. gibbs energy of reaction.

B. enthalpy of reaction.

C. activation energy of reaction.

D. equilibrium constant.

474. In the presence of a catalyst, the heat evolved or absorbed during

the reaction _____.

A. increases

B. decreases

C. remains unchanged.

D. may increase or decrease.

Watch Video Solution

475. The activation energy of a reaction can be determined by

A. determining the rate constant at standard temperature.

B. determining the rate constants at two temperatures.

C. determining probability of collision.

D. using catalyst.

476. Consider the following figure and mark the correct option.

A. Activation energy of forward reaction is $E_1 + E_2$ and product is

less stable than reactant.

B. Activation energy of forward reaction is $E_1 + E_2$ and product is

More stable than reactant.

- C. Activation energy of both forward and backward reaction is
 - E_1+E_2 and reactant is more stable than Product .

D. Activation energy of backward reaction is E_1 and Product is more

stable than reactant.

477. Consider a first order gas phase decomposition reaction given below : $A(g) \rightarrow B(g) + C(g)$ The initial pressure of the system before decomposition of A was p_i . After lapse of time $\hat{a} \in \hat{a} \in \hat{a}$, total pressure of the System increased by x units and became $\hat{a} \in \hat{p}_t$, The rate constant & for the reaction is given as ___.

A.
$$\frac{2.303}{t} \log \frac{p_i}{p_i - x}$$

B. $\frac{2.303}{t} \log \frac{p_i}{2p_i - p_t}$
C. $\frac{2.303}{t} \log \frac{p_i}{p_i - p_t}$
D. $\frac{2.303}{t} \log \frac{p_i}{p_i x}$

478. According to Arrhenius equation rate constant k is equal to $Ae^{-Ea/RT}$. Which of the following options represents the graph of ln k vs $\frac{1}{T}$?

A.

Β.

C.

479. Consider the Arrhenius equation given below and mark the correct option. $k = A e^{-Ea/RT}$

- A. Rate constant increases exponentially with increasing activation energy and decreasing temperature .
- B. Rate constant decreases exponentially with increasing activation energy and decreasing temperatures .
- C. Rate constant increases exponentially with decreasing activation energy and decreasing temperature.

D. Rate constant increases exponentially with decreasing activation

energy and increasing temperature.

480. A graph of volume of hydrogen released Vs time for the reaction between zinc and dil.HCl is given in figure On the basis of this mark the correct option.

A. Average rate upto 40 seconds $\frac{V_3 - V_2}{40}$ B. Average rate upto 40 seconds is $\frac{V_3 - V}{40 - 30}$ C. Average rate upto 40 seconds is $\frac{V_3}{40}$ D. Average rate upto 40 seconds is $rac{V_3-V_1}{40-20}$

Watch Video Solution

481. Which of the following statements is not correct about order of a reaction ?

A. The order of a reaction can be a fractional number.

- B. Order of a reaction is experimentally determined quantity.
- C. The order of a reaction is always equal to the sum of the stoichiometric coefficients of reactants in the balanced chemical equation for a reaction.
- D. The order of a reaction is the sum of the powers of molar concentration of the reactants in the rate law expression.

482. Consider the graph given in previous question. Which of the following options does not show instantaneous rate of reaction at 40th second ?

A.
$$\frac{V_5 - V_2}{50 - 30}$$

B. $\frac{V_4 - V_2}{50 - 30}$
C. $\frac{V_3 - V_2}{40 - 30}$
D. $\frac{V_3 - V_1}{40 - 20}$

Watch Video Solution

483. Which of the following statements is correct?

A. The rate of a reaction decreases with passage of time as the

concentration of reactants dereases.

B. The rate of a reaction is same at any time during the reaction.

C. The rate of a reaction is independent of temperature change .

D. The rate of a reaction decreases with increase in concentration of

reactant(s).

D Watch Video Solution

484. Which of the following graphs represents exothermic reaction?

A. (i) only

B. (ii) only

C. (iii) only

D. (i) and (ii) only

Watch Video Solution

485. Rate law for the reaction A+2B
ightarrow C is found to be

rate = k[A][B] concentration of reactant B is doubled, keeping the concentration of A constant the value of rate will be

A. the same

B. doubled

C. quadrupled

D. halved

486. Which of the following statements is incorrect about the collision theory of chemical reaction?

A. It considers reacting molecules or atoms to be hard spheres and

ignores their structural features.

- B. Number of effective collisions determines the rate of reaction.
- C. Collision of atoms or molecules possessing sufficient threshold

energy results into the product formation.

D. Molecules should collide with sufficient threshold energy and

proper orientation for the collision to be effective.

487. A first order reaction taken 16 minutes for 50% completion. How much time will it take for 75% completion ?

A. $1.26 imes 10^{15}s$

B. $2.52 imes10^{14}s$

C. $2.52 imes 10^{28}s$

D. infinite

Watch Video Solution

488. Compounds 'A' and 'B' react according to the following chemical equation. $A(g) + 2B(g) \rightarrow 2C(g)$ Concentration of either 'A' or 'B' were changed keeping the concentrations of one of the reactants constant and rates were measured as a function of initial concentration. Following results were obtained. Choose the correct option for the rate equations

for this reaction.

Experiment	Initial	Initial	Initial rate of
	concentration	concentration	formation of
	of [A]/mol L ⁻¹	of [B]/mol L ⁻¹	[Cl/mol L ⁻¹ s ⁻¹
1.	0.30	0.30	0.10
2.	0.30	0.60	0.40
3.	0.60	0.30	0.20

A. $Rate = k[A]^2[B]$

 $\mathsf{B.} Rate = k[A][B]^2$

 $\mathsf{C.} Rate = k[A][B]$

D.
$$r=k[A]^2[B]^0$$

Watch Video Solution

489. Which of the following statements are not correct regarding rate of

catalyst in a chemical reaction

A. It catalyses the forward and backward reaction to the same extent.

B. It alters G of the reaction.

C. It is a substance that does not change the equilibrium constant of a

reaction.

D. It provides an alternate mechanism by reducing activation energy

between reactants and products.

Watch Video Solution

490. Define the following terms : Pseudo first order reaction.

- A. depends on the concentration of reactants present in small amount.
- B. depends on the concentration of reactants present in excess.
- C. is independent of the concentration of reactants.
- D. depends only on temperature.

491. Consider the reaction $A \leftrightarrow B$. The concentration of both the reactants and the products varies exponentially with time. Which of the following figures correctly describes the change in concentration of reactants and products with time?

A.

Β.

C.

D.

Watch Video Solution

492. In the following questions two or more options may be correct. Rate

law cannot be determined from balanced chemical equation if ______.

A. reverse reaction is involved.

B. it is an elementary reaction.

C. it is a sequence of elementary reactions.

D. any of the reactants is in excess.

493. Which of the following statements are applicable to a balanced chemical equation of an elementary reaction?

A. Order is same as molecularity.

B. Order is less than the molecularity.

C. Order is greater than the molecularity.

D. Molecularity can never be zero.

Watch Video Solution

494. What is the maximum number of electrons that can go into the N

shell of an atom ?

Watch Video Solution

495. What is the electronic configuration of a hydrogen atom ?

496. At high pressure the following reaction is zero order. $2NH_3(g) \xrightarrow{1130K} N_2(g) + 3H_2(g)$ Which of the following options

are correct for this reaction?

A. Rate of reaction = Rate constant

B. Rate of the reaction depends on concentration of ammonia.

C. Rate of decomposition of ammonia will remain constant until

ammonia disappears completely.

D. Further increase in pressure will change the rate of reaction.

497. During decomposition of an activated complex

A. energy is always released

- B. energy is always absorbed
- C. energy does not change
- D. reactants may be formed

498. According to Maxwell Boltzmann distribution of energy, _____,

A. the fraction of molecules with most probable kinetic energy

decreases at higher temperatures.

- B. most probable kinetic energy increases at higher temperatures.
- C. the fraction of molecules with most probable kinetic energy

increases at higher temperatures.

D. most probable kinetic energy decreases at higher temperatures.

499. Name the subatomic particle whose relative charge is : (b) -1

Watch	Video	So	lution

500. Which of the following statements are in accordance with the Arrhenius equation?

A. Rate of a reaction increases with increase in temperature.

- B. Rate of a reaction increases with decrease in activation energy.
- C. Rate constant decreases exponentially with increase in temperature.
- D. Rate of reaction decreases with decrease in activation energy.

Watch Video Solution

501. Fill in the blanks, are the things that are made of
wood.
Watch Video Solution

502. Which of the following graphs is correct for a zero order reaction?

A.

ື βeaction rate→

Time→

C.

503. Name the subatomic particle whose relative charge is : (c) 0

Watch Video Solution
504. Complete the reaction

Watch Video Solution

505. Which shell of an atom can accommodate a maximum of : (a) 8

electrons ?

506. Match the items of Column I and Column II.

Column I	A REAL PROPERTY AND A REAL	Column II
(a) Diamond	(i) (ii)	short interval of time ordinarily rate of conversion is impercep
(c) Average rate	(iii)	long duration of time

507. Which shell of an atom can accommodate a maximum of : (b) 32

electrons

Watch Video Solution

508. Name the shell of an atom which can accommodate a maximum of :

(a) 2 electrons

509. Name the shell of an atom which can accommodate a maximum of :

(b) 18 electrons

510. Assertion : The enthalpy of reaction remains constant in the presence of a catalyst. Reason : A catalyst participating in the reaction, forms different activated complex and lowers down the activation energy but the difference in energy of reactant and product remains the same.

- A. Both assertion and reason are true and reason is thhe correct explanation of assertion.
- B. Both assertion and reason are true but reason is not the correct explanation of assertion.
- C. Assertion is true but reason is false.
- D. Assertion is false but reason is true.

511. An element has an atomic number 12. How many electrons will be present in the K, L and M energy shells of its atom ?

Watch Video Solution			

512. An element has atomic number 13 and an atomic mass of 27. (a) How

many electrons are there in atom of the element?

Watch Video Solution

513. Define activation energy of a reaction.

514. Write the distribution of electrons in an atom of element whose atomic number is 18. What is special about the outermost electron shell (or valence shell) of the atom of this element ?

515. For a chemical reaction $X \to Y$, the rate. increases by a factor 2.25 when the concentration of X is increased by 1.5. What is the order of reaction ?

Watch Video Solution

516. Can order of a reaction be fractional ? Give an example.

Watch Video Solution

517. Manganese steel is made up of mixture of______.

Watch Video Solution

518. The decomposition of NH3 on platinum surface is zero order reaction. What are the rates of production of N_2 and H_2 if $k = 2.5 \times 10^{-4} mol L^{-1} s^{-1}$?

519. Show that half life period of a first order reaction does not depend upon the initial concentration of reactants.

Watch Video Solution

520. A first order reaction is 15% complete in 20 minutes. How long will it

take to complete 60%?

521. What is the difference between instantaneous rate of a reaction and

rate constant?

Watch Video Solution

522. A reaction is second order with respect to a reactant. How is the rate of reaction affected if the concentration of the reactant is: reduced to half ?

Watch Video Solution

523. An element has atomic number 10 and an atomic mass of 22. Write

the symbol of element. Find the number of neutron in it.

528. During nuclear explosion, one of the products is ${}^{90}Sr$ with half-life of 28.1 years. If $1\mu g$ of ${}^{90}Sr$ was absorbed in the bones of a newly born baby instead of calcium, how much of it will remain after 10 years and 60 years if it is not lost metabolically.

Watch Video Solution

529. What is meant by order and molecularity of a reaction? How do these differ?

Watch Video Solution

530. An element has atomic number 10 and an atomic mass of 22. Write the symbol of element. Find the number of electron and proton in it.

Watch Video Solution

531. A reaction rate 18 first order in A and second order in B. How is its rate affected on increasing concentrations of A and B two and three times respectively?

