



# MATHS

# **BOOKS - MODERN PUBLICATION**

# **APPLICATIONS OF THE INTEGRALS**



1. Find the area enclosed by the circle : 
$$x^2 + y^2 = a^2.$$

2. Find the area of region bounded by

The parabola  $y^2=4ax$  and its latus rectum





quadrant.



4. Find the area of the region founded by the curve

$$y = x^2$$
 and the line y=4.

5. Area of ellipse 
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1, a > b$$
 is :

6. Find the area bounded by the ellipse 
$$rac{x^2}{a^2}+rac{y^2}{b^2}=1$$
 and the ordinates  $x=0$  and  $x=ae$ , where  $b^2=a^2ig(1-e^2ig)$  and  $e<1$  .



8. Using integration, find the region bounded by

the line 2y=-x+8, x-axis, and the lines x=2 and x=4.

**9.** Find the area of the region in the first quadrant enclosed by the x-axis, the line y = x, and the circle  $x^2 + y^2 = 32$ .

Watch Video Solution

**10.** Using integration, find the area of the region bounded by : (-1,1), (0,5) and (3,2).



**11.** Using the method of integration, find the area of the triangular region whose vertices are (2,-2), (4,3) and (1,2).



12. Using the method of integration, find the areaof the region bounded by the lines : 3x-2y+1=0,2x+3y-21=0 and x-5y+9=0.

**13.** Smaller area enclosed by the circle  $x^2 + y^2 = 4$ 

and the line x + y = 2 is:

# Watch Video Solution

14. Calculate the area of the region enclosed between the circles :  $x^2 + y^2 = 4$  and  $(x-2)^2 + y^2 = 4$  (using integration)

15. Make a rough sketch of the region given below and find its area, using integration :  $\{(x,y): y^2 \le 4x, 4x^2 + 4y^2 \le 9\}$ 

Watch Video Solution

16. Using integration, find the area of the region bounded by the parabola  $y^2 = 4x$  and the circle :

 $4x^2 + 4y^2 = 9.$ 

17. Find the area lying above x-axis and included between the circle  $x^2 + y^2 = 8x$  and the parabola  $y^2 = 4x$ .

Watch Video Solution

**18.** Find the area included between the curves  $y^2 = 4ax$  and  $x^2 = 4ay, a > 0.$ 

19. Draw a rought sketch of  $y^2 = x + 1$  and  $y^2 = -x + 1$  and determine the are enclosed by the two curves.



20. Find the area of the region bounded by the curves  $y = 6x - x^2$  and  $y = x^2 - 2x$ .



21. Find the area of the region :  $\{(x, y): 0 \le y \le x^2, 0 \le y \le x + 2, 0 \le x \le 3\}.$ 

22. Find the area of the region bounded by the

curve 
$$y=x^2+2, y=x, x=0$$
 and  $x=3$ 

#### Watch Video Solution

**23.** Using integration, find the area of the region:

$$\Big\{(x,y)\!:\!|x-1|\leq y\leq \sqrt{5-x^2}\Big\}.$$

24. Sketch the region bounded by the curves:  $y = \sqrt{5 - x^2}$  and y=|x-1| and find its area, using integration.

Watch Video Solution

**25.** Using integration, find the area of the triangle formed by positive x-axis and tangent and normal to the circle  $x^2 + y^2 = 4$  at  $(1, \sqrt{3})$ .

26. Sketch the graph of:  

$$f(x) = \begin{cases} |x-2|+2 & x \leq 2 \\ x^2-2 & x > 2 \end{cases}$$
 Evaluate  
 $\int_0^4 f(x) dx$ . What does the value of this integral

represent on the graph?



27. Find the area of the region bounded by the curve  $ay^2 = x^3$ , the y-axis and the lines y=a and

**28.** Find the area of the region bounded by the parabola  $y^2 = 2x$  and the straight line x-y=4. Watch Video Solution





$$x^2 + y^2 = 4$$

2. Using integration, find the area of the circle  $x^2 + y^2 = 4$ 

**3.** Find the area of the region bounded by the

curve  $y^2 = 4x$  and the line x = 3.

## Watch Video Solution

4. Using integration, find the area bounded between the parabola  $x^2 = 4y$  and the line y=4.





6. (i) Find the area bounded by y=2x+3, the x-axis

and the ordinates x=-2 and x=2.



7. Find the area bounded by y=x, the x-axis and the

lines x=-1 and x=2.



8. Find the area of the region bounded by (i)  $y = x^4$ , x=1,x=5 and x-axis.

Watch Video Solution

**9.** Find the area of the region bounded by (ii)  $y = x^2$ ,x=0,x=2 and x-axis.





10. Find the area of the region bounded by (iii)

 $y = x^2 - 4$ , x=0,x=3 and x-axis.

Watch Video Solution

11. Find the area of the region bounded by (iv)

$$y = x^3$$
,x=2,x=4 and x-axis.

12. Find the area of the region bounded by  $y^2 = 9x, x = 2, x = 4$  and the x-axis in the first quadrant.



13. Find the area of the region bounded by  $y = 4x^2$ ,x=0,y=1,y=4 in the first quadrant.



**14.** Calculate the area undder the curve :  $y=2\sqrt{x}$ 

between the ordinates x=0 and x=1.



15. Find the area under the curve 
$$y = \left(x^2 + 2
ight)^2 + 2x$$
 between the ordinates  $x = 0$  and  $x = 2$ .

16. Find the area of the region in the first quadrant enclosed by x-axis, line  $x = (\sqrt{3})y$  and the circle  $x^2 + y^2 = 4$ .

Watch Video Solution

17. Find the area of the smaller part of the circle

$$x^2+y^2=a^2$$
 cut off by the line  $x=rac{a}{\sqrt{2}}$ 



18. (i) Determine the area under the curve  $y = \sqrt{a^2 - x^2}$  included between the lines x=0 and x=a.



19. (ii) Using definite integrals, find the area of the circle  $(x-1)^2 + y^2 = 1$ .

20. Determine the area enclosed between the curve

y=cos 2x,  $0 \le x \le rac{\pi}{4}$  and the co-ordinate axes.

## Watch Video Solution

21. Calculate the area bounded by the curve:  $f(x)=\sin^2\Bigl(rac{x}{2}\Bigr)$ , axis of x and the ordinates: x=0,  $x=rac{\pi}{2}.$ 



22. Draw a rough sketch of the curve  $y = \cos^2 x$  in  $[0, \pi]$  and find the area enclosed by the curve, the lines x=0,  $x = \pi$  and the x-axis.

Watch Video Solution

23. (i) Make a rough sketch of the graph of the function y=sin x, $0 \le x \le \frac{\pi}{2}$  and determine the area enlosed between the curve, the, the x-axis and the line  $x = \frac{\pi}{2}$ .

24. (ii) Find the area bounded by the curve : (I)

y=sin x between x=0 and  $x = 2\pi$ .



**25.** Find the area bounded by the curve  $y = \cos x$ 

between  $x = 0, x = 2\pi$ .

Watch Video Solution

26. Find the slopes of the tangent and normal to

the curve given by :  $x=asin3\theta$ ,  $y = a cos3\theta$ .

27. (i) Make a rough sketch of the graph of the function y=sin x, $0 \le x \le \frac{\pi}{2}$  and determine the area enlosed between the curve, the, the x-axis and the line  $x = \frac{\pi}{2}$ .

28. Draw a rough sketch of  $y=\sin 2x$  and determine the area enclosed by the curve. X-axis and the lines  $x=\pi/4$  and  $x=3\pi/4$ .

Watch Video Solution

**29.** (ii) Draw the graph of y=cos 3x,  $0 \le x \le rac{\pi}{6}$  and

find the area between the curve and the axes.



**30.** Make a rough sketch of the graph of  $y = \cos^2 x, 0 \le x \le rac{\pi}{2}$  and find the area enclosed

between the curve and the axes.

**31.** Using integration, find the area of the region bounded by the circle  $x^2 + y^2 = 16$  and line y = x in the first quadrant.

**32.** Find the area of the smaller part of the circle  $x^2 + y^2 = a^2$  cut off by the line  $x = \frac{a}{\sqrt{2}}$ 



33. Find the area under the given curves and given

lines:  $y = x^2$ , x = 1, x = 2 and x-axis

## Watch Video Solution

**34.** Draw a rough sketch of the curve  $y^2 + 1 = x$ ,

 $x \leq 2$ . Find the area enclosed by the curve and the

line x=2.



35. Find the area of the region bounded by the

elipse 
$$rac{x^2}{9}+rac{y^2}{4}=1$$

#### Watch Video Solution

36. Find the area of the region bounded by the

elipse 
$$\displaystyle rac{x^2}{9} + \displaystyle rac{y^2}{16} = 1$$

Watch Video Solution

**37.** Find the area of the region bounded by the ellipse :  $4x^2 + 25y^2 = 1$ .



**38.** Find the area between the curve  $rac{x^2}{a^2}+rac{y^2}{b^2}=1$ 

and the x-axis between x=0 and x=a. Draw a rough

sketch of the curve also.

Watch Video Solution

39. Sketch the region of the ellipse and find its area

using integration
$$\displaystyle rac{x^2}{a^2} + \displaystyle rac{y^2}{b^2} = 1$$

**40.** Sketch the region  $\{(x,y): 4x^2 + 9y^2 = 36\}$ 

and find its area using integration.



**41.** Draw a rough sketch of the curves  $y = \sin x$ and  $y = \cos x$  as x varies from 0 to  $\frac{\pi}{2}$  and find the area enclosed by them find x-axis.



42. Using integration, prove that the area bounded

by : |x|+|y|=1 is 2 sq.units.



43. Using integration, find the area of the region

bounded by: (i) (2,0),(4,5) and (6,3).

Watch Video Solution

**44.** Using integration, find the area of the region

bounded by: (ii) (1,0),(2,2) and (3,1).



**45.** Using integration find the area of region bounded by the triangle where vertices are : (-1,2), (1,5) and (3,4)

Watch Video Solution

46. Using integration, find the area of region of

triangle whose vertices are

(3,0),(4,5) and (5,1)

**47.** Using integration find the area of regeion bounded by the triangle whose vertices are (-1,0), (1,3) and (3,2)

**Watch Video Solution** 

**48.** Using integration find the area of region bounded by the triangle where vertices are : (1,3), (2,5) and (3,4)

**49.** Using integration find the area of region bounded by the triangle where vertices are : (4,1), (6,6) and (8,4)

Watch Video Solution

**50.** Using integration find the area of region bounded by the triangle where vertices are : (2,5), (4,7) and (6,2)
**51.** (a) Using integration, find the area of the region bounded by the triangle whose sides are : (i) 3x-y-3=0, 2x+y-12=0, x-2y-1=0.

Watch Video Solution

**52.** (a) Using integration, find the area of the region bounded by the triangle whose sides are : (ii) 5x-2y-10=0, x+y-9=0, 2x-5y=0.



53. Using integration, find the area of the region bounded by the triangle whose sides are y = 2x + 1, y = 3x + 1 and x = 4.

Watch Video Solution

**54.** (a) Using integration, find the area of the region bounded by the triangle whose sides are : (iv) 2x+y=4, 3x-2y=6 and x-3y+5=0.



**55.** (b) If a triangular field is bounded by the lines x+2y=2, y-x=1 and 2x+y=7. Using integration, compute the area of the field.

Watch Video Solution

**56.** (b) If a triangular field is bounded by the lines x+2y=2, y-x=1 and 2x+y=7. Using integration,

compute the area of the field.

**57.** Find the area of the region bounded by the line y = 3x + 2, the x-axis and the ordinates x = -1, x = 1.

58. Find the area of the region: (i)  $ig\{(x,y): x^2 \leq y \leq xig\}.$ 



**60.** Consider the functions: f(x)=|x|-1 and g(x)=1-|x|.

(a) Sketch their graphs and shade the closed

region between them



**61.** Consider the functions: f(x)=|x|-1 and g(x)=1-|x|.

(b) Find the area of their shaded region.



**62.** Using integration, find the area of the region bounded between : (i) the line x=2 and the parabola  $y^2 = 8x$ .

**63.** Using integration, find the area of the region bounded between : (ii) the line x=3 and the parabola  $y^2 = 4x$ .

Watch Video Solution

**64.** Find the area of the region bounded between parabola  $y^2 = x$  and the line y = x (Using integration).

65. Find the area of the region bounded by : (ii) the

parabola  $y^2 = x$  and the line x+y=2.

## **Watch Video Solution**

66. Find the area of the region bounded by the

curve  $x^2 = 4y$  and the straight line y = 4y - 2.

#### Watch Video Solution

67. Find the area of region bounded by

The parabola  $y^2 = 4ax$  and its chord y=mx





**69.** Find the area of the region bounded by the parabola  $y^2 = 8x$  and the latus-rectum.

70. Find the area of the region enclosed by the parabola  $x^2 = y$ , the liney = x + 2 and the x-axis.

## Watch Video Solution

71. The area between  $x = y^2$  and x = 4 is divided into two equal parts by the line x = a , find the value of a.



72. Area lying between the curve  $y^2 = 4x$  and the

line y = 2x is :

- 73. Find the area bounded between the curve
- $y^2=4x$  and the lines x=3

Watch Video Solution

**74.** Find the area of the region founded by the curve  $y = x^2$  and the line y=4.





and the line x = 4y - 2.

77. Find the area of the smaller region bounded by

the ellipse  $rac{x^2}{a^2}+rac{y^2}{b^2}=1$  and the straight line  $rac{x}{a}+rac{y}{b}=1$  (using integration)



**78.** Find the area of the smaller region bounded by the (ii)  $\frac{x^2}{16} + \frac{y^2}{9} = 1$  and the straight line 3x+4y=12.

79. Draw the rough sketch and find the area of the

 $\mathsf{region}: \big\{ (x,y) \colon \! 4x^2 + y^2 \leq 4, 2x + y \geq 2 \big\}.$ 

## Watch Video Solution

80. Draw the rough sketch and find the area of the

 $\mathsf{region}: \big\{ (x,y)\!:\! 16x^2+y^2 \le 16, 4x+y \ge 4 \big\}.$ 

#### Watch Video Solution

**81.** Draw the rough sketch and find the area of region bounded between the parabolas,  $y^2 = 4x$ 

and  $x^2=4y$  by using integration.



82. Draw the rough sketch and find the area of region bounded between the parabolas,  $y^2 = 9x$ and  $x^2 = 9y$  by using integration.

## Watch Video Solution

83. Draw the rough sketch and find the area of region bounded between the parabolas,  $y^2 = 16x$  and  $x^2 = 16y$  by using integration.

**Watch Video Solution** 

**84.** (b) Find the ratio in which the area bounded by the curves  $y^2 = 12x$  and  $x^2 = 12y$  is divided by the line x=3.

Watch Video Solution

**85.** Find the area of the region bounded between parabolas  $y^2 = x$  and the line  $x^2 = y$ .

**86.** Find the area of region founded by two parabolas :

$$y^2=ax$$
 and  $x^2=ay$ 

Watch Video Solution

**87.** Find the area of region founded by two parabolas :

$$y^2=rac{9}{4}x$$
 and  $x^2=rac{16}{3}y$ 

88. Calculate the area of the region enclosed between the circles :  $x^2 + y^2 = 1$  and  $(x-1)^2 + y^2 = 1$  (using integration)

Watch Video Solution

**89.** Calculate the area of the region enclosed between the circles :  $x^2 + y^2 = 4$  and  $(x-2)^2 + y^2 = 4$  (using integration)

90. Calculate the area of the region enclosed between the circles: (iii)  $x^2 + y^2 = 9$ ,  $(x-3)^2 + y^2 = 9$ 

Watch Video Solution

**91.** Calculate the area of the region enclosed between the circles: (iv)  $(x-6)^2+y^2=36$ and  $x^2+y^2=36$ 

92. (i) Show that the areas under the curves  $f(x) = \cos^2 x$  and  $f(x) = \sin^2 x$  between x=0 and  $x = \pi$  are 1:1.

Watch Video Solution

**93.** (ii) Compare the areas under the curves  $y = \cos^2 x$  and  $y = \sin^2 x$  between x=0 and  $x = \pi$ .

**94.** (a) (i)Find the area of the circle  $x^2 + y^2 = 16$ , which is exterior to the parabola  $y^2 = 6x$ .

## Watch Video Solution

**95.** Find the area of the circle  $4x^2 + 4y^2 = 9$  which

is interior to the parabola  $x^2=4y$ .

## Watch Video Solution

**96.** (b) Find the area of the region bounded by the circle  $x^2 + y^2 = 16$  and the parabola  $x^2 = 6y$ .



## 97.

find the area of region founded by the circle

$$x^2 + y^2 = 1$$
 and line  $x + y = 1$ 

Watch Video Solution

98. Make a rough sketch of the region given below and find its area, using integration :  $ig\{(x,y): y^2\leq 4x, 4x^2+4y^2\leq 9ig\}$ 

99. Calculate the area enclosed in the region: (iii)

$$ig\{(x,y)\!:\!x^2+y^2\leq 16, x^2\leq 6yig\}$$

## Watch Video Solution

**100.** Calculate the area enclosed in the region: (iv)

$$ig\{(x,y)\!:\!y^2\leq 6ax, x^2+y^2\leq 16a^2ig\}.$$

Watch Video Solution

101. Draw the rough sketch and find the area of the

region: (i) 
$$ig\{(x,y)\!:\!x^2 < y < x+2ig\}$$



## **102.** Draw the rough sketch and find the area of the

$$\mathsf{region}: \big\{ (x,y) \colon \! 4x^2 + y^2 \leq 4, 2x + y \geq 2 \big\}.$$



# 103. Find the area of the region $igl(x,y)\!:\!0\leq y\leq x^2+1, 0\leq y\leq x+1, 0\leq x\leq 2igr\}$

104. Draw the rough sketch and find the area of the

$$ig\{(x,y)\!:\!x^2+y^2\leq 2ax,y^2\geq ax,x,y\geq 0ig\}$$

Watch Video Solution

105. (i) Find the area of the region given by: $ig\{(x,y): x^2 \leq y \leq |x|ig\}.$ 



106. Find the area bounded by curves  $\{(x, y): y \ge x^2 \text{ and } y = |x|\}$ 

107. (iii) Find the area of the region bounded by the

parabola  $y=x^2$  and y=|x|.

Watch Video Solution

**108.** Using integration, find the area of the region bounded by the following curves, after making a

rough sketch: (i) y=1+|x+1|,x=-3,x=3,y=0. Watch Video Solution
109. Using integration, find the area of the region

bounded by the following curves, after making a rough sketch:(ii) y=1+|x+1|,x=-2,x=3,y=0.

Watch Video Solution

110. Find the area of region bounded by the curve

 $y^2 = x$  and the lines x = 1, x = 4 and the x-axis.

111. Find the area of the region bounded by  $y^2 = 9x, x = 2, x = 4$  and the x-axis in the first quadrant.

Watch Video Solution

112. Find the area of the region bounded by

 $x^2=4y, y=2, y=4$  and the y-axis in the first

quadrant.

113. Using integration find the area of region bounded by the ellipse  $rac{x^2}{16}+rac{y^2}{9}=1$ 

Watch Video Solution

114. Find the area of region bounded by the ellipse

$$rac{x^2}{4} + rac{y^2}{9} = 1$$

Watch Video Solution

115. Find the area of the region in the first quadrant enclosed by x-axis, line  $x=\left(\sqrt{3}
ight)y$  and

the circle 
$$x^2 + y^2 = 4$$
.  
Watch Video Solution  
116. Find the area of the smaller part of the circle  
 $x^2 + y^2 = a^2$  cut off by the line  $x = \frac{a}{\sqrt{2}}$   
Watch Video Solution  
117. The area between  $x = y^2$  and  $x = 4$  is divided  
into two equal parts by the line  $x = a$ , find the

value of a.

**118.** Find the area of the region bounded by the parabola  $y = x^2$  and y = |x|.



**119.** Find the area bounded by the curve  $x^2 = 4y$ 

and the line x = 4y - 2.



**120.** Find the area of the region bounded by the curve  $y^2 = 4x$  and the line x = 3.

## Watch Video Solution

121. Area lying in the first quadrant and bounded by the circle  $x^2 + y^2 = 4$  and the lines x = 0 and x = 2 is :

A.  $\pi$ 

B. 
$$\frac{\pi}{2}$$
  
C.  $\frac{\pi}{3}$ 

#### Answer:



122. Area of the region bounded by the curve  $y^2=4x, \ {
m y}$ -axis and the line y=3 is

O

B. 
$$\frac{9}{4}$$
  
C.  $\frac{9}{3}$   
D.  $\frac{9}{2}$ 



**123.** Find the area of the circle  $4x^2 + 4y^2 = 9$  which is interior to the parabola  $x^2 = 4y$ .

Watch Video Solution

124. Find the area bounded by curves
$$\left(x-1
ight)^2+y^2=1$$
 and  $x^2+y^2=1.$ 

125. Find the area of the region bounded by the

curve  $y=x^2+2, y=x, x=0$  and x=3

## Watch Video Solution

**126.** Using integration find the area of regeion bounded by the triangle whose vertices are (-1,0), (1,3) and (3,2)



127. Using integration find the area of triangle whose sides are given by the equations y = 2x + 1, y = 3x + 1, x = 4.

Watch Video Solution

**128.** Smaller area enclosed by the circle  $x^2 + y^2 = 4$  and the line x + y = 2 is:

A.  $2(\pi-2)$ 

 $\mathsf{B.}\,\pi-2$ 

C.  $2\pi - 1$
D. 
$$2(\pi+2)$$

## **Answer:**

# **Watch Video Solution**

**129.** Area lying between the curve  $y^2 = 4x$  and the line y = 2x is :

A. 
$$\frac{2}{3}$$
  
B.  $\frac{1}{3}$   
C.  $\frac{1}{4}$   
D.  $\frac{3}{4}$ 



lines:  $y = x^2$ , x = 1, x = 2 and x-axis



131. Find the area under the given curves and given

lines:  $y = x^4$ , x = 1, x = 5 and x-axis.

**132.** Find the area between the curves y = x and

$$y = x^2$$

133. Find the area of the region lying in the first

quadrant and bounded by

$$y=4x^2, x=0, y=1, y=4$$

**134.** Sketch the graph of 
$$y = |x + 3|$$
 and evaluate  $\int_{-6}^{0} |x + 3| dx$   
**Vatch Video Solution**

**135.** Find the area bounded by the curve  $y = \sin x$ 

between x = 0, and  $x = 2\pi$ 

# Watch Video Solution

136. Find the area enclosed between the parabola

$$y^2=4ax$$
 and the line  $y=mx$ 



```
4y=3x^2 and the line 2y=3x+12
```

Watch Video Solution

# 138. Find the area of smaller region bounded by

the ellipse  $rac{x^2}{9}+rac{y^2}{4}=1$  and straight line  $rac{x}{3}+rac{y}{2}=1.$ 

139. Find the area of the smaller region bounded

by the ellipse  $rac{x^2}{a^2}+rac{y^2}{b^2}=1$  and the line  $rac{x}{a}+rac{y}{b}=1$ 

Watch Video Solution

**140.** Find the area of the region enclosed by the parabola  $x^2 = y$ , the line y = x + 2 and the x-axis.



141. Using the method of integration find the area

bounded by the curve |x|+|y|=1



**143.** Using integration, find the area of the triangle ABC, co ordinate of whose vertics are A(2,0),B(4,5)



145. Make a rough sketch of the region given below and find its area, using integration :  $ig\{(x,y): y^2 \leq 4x, 4x^2 + 4y^2 \leq 9ig\}$ 



**146.** Area bounded by the curve  $y = x^3$ , the x-axis and the ordinates x = -2, x = 1 is:

B. 
$$-\frac{15}{4}$$
  
C.  $\frac{15}{4}$   
D.  $\frac{17}{4}$ 

## **Answer:**

**147.** The area bounded by the curve y = x |x|,x-axis

and the ordinates x = -1, x = 1 is given by:

A. 0

B. 
$$\frac{1}{3}$$
  
C.  $\frac{2}{3}$   
D.  $\frac{4}{3}$ 

## **Answer:**

148. (a) (i)Find the area of the circle  $x^2 + y^2 = 16$ , which is exterior to the parabola  $y^2 = 6x$ .

A. 
$$rac{4}{3} (4\pi - \sqrt{3})$$
  
B.  $rac{4}{3} (4\pi + \sqrt{3})$   
C.  $rac{4}{3} (8\pi - \sqrt{3})$   
D.  $rac{4}{3} (8\pi + \sqrt{3})$ 

### **Answer:**

**149.** The area bounded by the y-axis,  $y = \cos x$ , and

 $y = \sin x$  when 0

A. 
$$2ig(\sqrt{2}-1ig)$$

- $\mathrm{B.}\,\sqrt{2}-1$
- $\mathsf{C}.\,\sqrt{2}+1$
- D.  $\sqrt{2}$



**150.** Find the area of the region bounded by the parabolas  $y^2 = 6x$  and  $x^2 = 6y$ .

**151.** Find the area of the region bounded by the curves  $x = at^2$  and y=2at between the ordinates corresponding to t=1 and t=2.



152. Find the area enclosed by the curve : x=3 cos t,

y=2 sin t.



153. Find the area enclosed by the parabola  $4y = 3x^2$  and the line 2y = 3x + 12

# Watch Video Solution

**154.** Find the area of the region bounded by the curve  $y^2 = 4x$  and the line x = 3.



**155.** Prove that the curves  $y^2 = 4x$ ,  $x^2 = 4y$ , divide the area of the square bounded by x = 0, x = 4, y = 4, y = 0 into three equal parts. Watch Video Solution

**156.** Draw the diagram to show the area enclosed by the curves:  $y^2 = 16x$  and  $x^2 = 16y$ . The straight line x=4 divides the area of the larger portion by integration.



**157.** AOBA is the part of the ellipse  $9x^2 + y^2 = 36$  in the first quadrant such that OA=2 and OB=6. Find

the area between the arc AB and the chord AB.



158. Calculate the area of the region enclosed between the circles :  $x^2 + y^2 = 1$  and  $(x-1)^2 + y^2 = 1$  (using integration)

**159.** Draw a rough sketch of the following region and find the area enclosed by the region, using method of integration:

 $ig\{(x,y)\!:\!y^2\leq 5x, 5x^2+5y^2\leq 36ig\}.$ 

Watch Video Solution



161. Is the parabola  $y^2 = 4x$  symmetrical about x-

axis?



162. Is the circle  $x^2 + y^2 = r^2$  symmetrical about the line y=x?

Watch Video Solution

163. Find the area enclosed by the circle  $x^2+y^2=9.$ 



164. Find the area of the semi-portion of the circle

$$x^2 + y^2 = 4$$

Watch Video Solution

165. Find the area of the region bounded by (i)

$$y = x^4$$
, x=1,x=5 and x-axis.

166. Area lying in the first quadrant and bounded by the circle  $x^2 + y^2 = 4$  and the lines x = 0 and x = 2 is :



C. 
$$\frac{\pi}{3}$$
  
D.  $\frac{\pi}{4}$ 

## Answer:

167. Area of the region bounded by the curve  $y^2 = 4x$ , y-axis and the line y = 3 is

A. 2 B.  $\frac{9}{4}$ C.  $\frac{9}{3}$ D.  $\frac{9}{2}$ 







**169.** Area lying between the curve  $y^2 = 4x$  and the

line y = 2x is :

A. 
$$\frac{2}{3}$$
  
B.  $\frac{1}{3}$   
C.  $\frac{1}{4}$   
D.  $\frac{3}{4}$ 

## **Answer:**

170. Area bounded by the curve  $y = x^3$ , the x-axis

and the ordinates x = -2, x = 1 is:

A. -9

B. 
$$-\frac{15}{4}$$
  
C.  $\frac{15}{4}$   
D.  $\frac{17}{4}$ 

## **Answer:**

171. The area bounded by the curve y = x |x|,x-axis

and the ordinates x = -1, x = 1 is given by:

A. 0

B. 
$$\frac{1}{3}$$
  
C.  $\frac{2}{3}$   
D.  $\frac{4}{3}$ 

## **Answer:**

172. (a) (i)Find the area of the circle  $x^2 + y^2 = 16$ , which is exterior to the parabola  $y^2 = 6x$ .

A. 
$$rac{4}{3} (4\pi - \sqrt{3})$$
  
B.  $rac{4}{3} (4\pi + \sqrt{3})$   
C.  $rac{4}{3} (8\pi - \sqrt{3})$   
D.  $rac{4}{3} (8\pi + \sqrt{3})$ 

## **Answer:**

173. Find the area enclosed by the circle  $x^2+y^2=2$ 

A.  $4\pi$  sq.units

- B.  $2\sqrt{2}\pi$  sq.units
- C.  $4\pi^2$  sq.units
- D.  $2\pi$  sq.units



174. Area of ellipse  $\displaystyle rac{x^2}{a^2} + \displaystyle rac{y^2}{b^2} = 1, a > b$  is :

A. 
$$\pi^2 ab$$

B.  $\pi ab$ 

 $\mathsf{C.}\,\pi a^2 b$ 

D.  $\pi a b^2$ 



175. The area of the region bounded by the curve  $y = x^2$  and the line y=16 is:

A. 1) 
$$\frac{32}{3}$$
  
B. 2)  $\frac{256}{3}$   
C. 3)  $\frac{64}{3}$   
D. 4)  $\frac{128}{3}$ 

# Answer:

176. The area bounded by the y-axis,  $y = \cos x$ , and

 $y = \sin x$  when 0

A. 
$$\sqrt{2}$$
 sq.units

- B.  $\left(\sqrt{2}+1
  ight)$  sq. units
- C.  $\left(\sqrt{2}-1
  ight)$  sq.units
- D. `(2sqrt2-1) sq.units



177. The area of the region bounded by the curve  $x^2 = 4y$  and the straight line x=4y-2` is

A. 
$$\frac{3}{8}$$
 sq.units  
B.  $\frac{5}{8}$  sq.units  
C.  $\frac{7}{8}$  sq.units  
D.  $\frac{9}{8}$  sq.units



**178.** The area bounded by the curve y=f(x), above the x-axis, between x=a and x=b is:

A.  $\int_{f(a)}^{b} y dy$  $\mathsf{B.}\int_{-\infty}^{f(b)} x dx$  $\mathsf{C}.\int_a^b x dy$ D.  $\int_{a}^{b} y dx$ 

### **Answer:**

179. The area of the circle  $x^2 + y^2 = a^2$  is :

A.  $\pi a^2$ 

B.  $2\pi a$ 

 $\mathsf{C.}\,2\pi a^2$ 

D. None of these



**180.** The area between the curve  $y=x^2$ , x-axis and

the lines x=0 and x=2 is :

A. 
$$\frac{2}{3}$$
 sq.units

B. 4 sq.units

C. 
$$\frac{8}{3}$$
 sq.units  
D.  $\frac{4}{3}$  sq.units



**181.** Find the area of the region enclosed by the parabola  $y^2 = 9x$  and the line y = 3x.

A. 
$$\frac{1}{2}$$
 sq.units  
B.  $\frac{1}{3}$  sq.units  
C.  $\frac{1}{4}$  sq.units  
D.  $\frac{2}{3}$  sq.units

# Answer:

**182.** The area bounded by the curve y=4 sin x, x-axis

from x=0 to  $x = \pi$  is equal to :

A. 1 sq.units

B. 2 sq.units

C. 4 sq.units

D. 8 sq.units

**Answer:**
183. The area bounded by 
$$y = 2 - |2 - x|$$
 and  $y = rac{3}{|x|}$  is:

A. 2 sq.units

B. 4 sq.units

C. 12 sq.units

D. 6 sq.units

**Answer:** 

**184.** The area in square units of the region bounded by  $y^2 = 9x$  and y=3x is:

A. 2

B. 
$$\frac{1}{4}$$
  
C.  $\frac{1}{2}$ 



185. The area of the figure bounded by the curves

 $y=e^x, y=e^{-x}$  and the straight line x=1 is

A. 
$$e + rac{1}{e}$$
  
B.  $e + rac{1}{e} + 2$   
C.  $e + rac{1}{e} - 2$   
D.  $e - rac{1}{e} + 2$ 

## Answer:

**186.** The area of the region bounded by the curves:

$$y=x^2$$
 and  $x=y^2$  is:

# Watch Video Solution

**187.** The area of the region bounded by the curves:

$$y=x^2$$
 and  $x=y^2$  is:

A. 
$$\frac{1}{4}$$
  
B.  $\frac{1}{3}$ 

C. 4

# Answer:



188. The area of the region bounded by the curves:  $y = x^3, y = \frac{1}{x}, x=2$  is A.  $4 - \log_e 2$ B.  $\frac{1}{4} + \log_e 2$ C.  $3 - \log_e 2$ D.  $\frac{15}{4} - \log_e 2$ 



**189.** The area of the plane region bounded by the curves  $x + 2y^2 = and x + 3y^2 = 1$  is equal to

A. 
$$\frac{4}{3}$$
  
B.  $\frac{5}{3}$   
C.  $\frac{1}{3}$   
D.  $\frac{2}{3}$ 



190. The area of the region bounded by the parabola  $\left(y-2
ight)^2=x-1$ , the tangent to the parabola at the point (2,3) and the X-axis is

A. 6

B. 9

C. 12

D. 3



**191.** The area bounded by the curves y=cos x and y=sin x between the ordinates x=0 and  $x = \frac{3}{2}\pi$  is:

A. 1) 
$$4\sqrt{2}-2$$

B. 2) 
$$4\sqrt{2} + 2$$

C. 3) 
$$4\sqrt{2}-1$$

D. 4) 
$$4\sqrt{2}+1$$



192. The area of the region enclosed by the curve

$$y=x, x=e, y=rac{1}{x}$$
 and the positive X-axis is

- A.  $\frac{1}{2}$  square units
- B.1 square units

C. 
$$\frac{3}{2}$$
 square units  
D.  $\frac{5}{2}$  square units



193. If the straight line x=b divide the area enclosed

by  $y=(1-x)^2, y=0 ext{ and } x=0$  into two parts  $R_1(0\leq x\leq b) ext{ and } R_2(b\leq x\leq 1) ext{ such that }$   $R_1-R_2=rac{1}{4}.$  Then, b equals to



## **Answer:**

194. Let  $f:[-1,2] 
ightarrow [0,\infty]$  be a continuous function such that  $f(x)=f(1-x), \ orall x\in [-1,2].$  If  $R_1=\int_{-1}^2 xf(x)dx$  and  $R_2$  are the area of the region bounded by y=f(x), x=-1, x=2

and the X-axis . Then,

A.  $R_1 = 2R_2$ B. `R\_1=3R\_2 C. 2R\_1=R\_2 D. 3R 1=R 2



**195.** The area bounded by the curves  $y^2 = 4x$  and  $x^2 = 4y$  is :

A. 
$$\frac{32}{3}$$
  
B.  $\frac{16}{3}$   
C.  $\frac{8}{3}$ 

D. 0

# **Answer:**



**196.** The area bounded between the parabola  

$$x^2 = \frac{y}{4}$$
 and  $x^2 = 9y$  and the straight line  $y = 2$  is  
A.  $20\sqrt{2}$   
B.  $\frac{10\sqrt{2}}{3}$   
C.  $\frac{20\sqrt{2}}{3}$   
D.  $10\sqrt{2}$ 



**197.** The area (in sqaure units) bounded by the curves:  $y = \sqrt{x}$ , 2y-x+3=0, x-axis, and lying in the first quadrant is:

A. 36

B. 18

C. 
$$\frac{27}{4}$$

D. 9



**198.** The area enclosed by the curves: y=sin x+ cos x

and y=cos x- sin x| over the interval  $\left[0, \frac{\pi}{2}\right]$  is:

A. 
$$4(\sqrt{2}-1)$$
  
B.  $2\sqrt{2}(\sqrt{2}-1)$   
C.  $2(\sqrt{2}+1)$   
D.  $2\sqrt{2}(\sqrt{2}+1)$ 



**199.** The area of the region described by  

$$A = \{(x, y): x^2 + y^2 \le 1 \text{ and } y^2 \le 1 - x\}$$
 is  
A.  $\frac{\pi}{2} - \frac{4}{3}$   
B.  $\frac{\pi}{2} - \frac{2}{3}$   
C.  $\frac{\pi}{2} + \frac{2}{3}$   
D.  $\frac{\pi}{2} + \frac{4}{3}$ 

# **Answer:**

200. The area (in sq. units) of the region described by  $\{x, y): y^2 \le 2x ext{ and } y \ge 4x - 1 \}$  is

A. 
$$\frac{4}{32}$$
  
B.  $\frac{5}{64}$   
C.  $\frac{15}{64}$   
D.  $\frac{9}{32}$ 

## Answer:

201. The area (in sq. units) of the region 
$$\{(x,y):y^2\geq 2x$$
 and  $x^2+y^2\leq 4x,x\geq 0,y\geq 0\}$  is   
A.  $\pi-rac{8}{3}$ 

A. 
$$\pi = \frac{1}{3}$$
  
B.  $\pi = \frac{4\sqrt{2}}{3}$   
C.  $\frac{\pi}{2} = \frac{2\sqrt{2}}{3}$   
D.  $\pi = \frac{4}{3}$ 





204. Calculate the area undder the curve :

 $y = 2\sqrt{x}$  between the ordinates x=0 and x=1.

205. Area of ellipse 
$$\displaystyle rac{x^2}{a^2} + \displaystyle rac{y^2}{b^2} = 1, a > b$$
 is :

Watch Video Solution

206. Find the area of the region bounded by  $y^2 = 9x, x = 2, x = 4$  and the x-axis in the first quadrant.

**207.** Using integration find the area of triangle whose vertices are (-1,1),(0,5) and (3,2)

Watch Video Solution

208. Find the area lying above x-axis and included between the circle  $x^2 + y^2 = 8x$  and the parabola

$$y^2 = 4x.$$

209. Calculate the area of the region enclosed between the circles :  $x^2 + y^2 = 1$  and  $(x-1)^2 + y^2 = 1$  (using integration)

Watch Video Solution

**210.** Find the area of the region in the first quadrant enclosed by the x-axis, the line y = x, and the circle  $x^2 + y^2 = 32$ .

211. Find the area of the smaller part of the circle

$$x^2+y^2=a^2$$
 cut off by the line  $x=rac{a}{\sqrt{2}}$