©゙" doubtnut

India's Number 1 Education App

MATHS

BOOKS - MODERN PUBLICATION

APPLICATIONS OF THE INTEGRALS

Example

1. Find the area enclosed by the circle :
$x^{2}+y^{2}=a^{2}$.

- Watch Video Solution

2. Find the area of region bounded by

The parabola $y^{2}=4 a x$ and its latus rectum

- Watch Video Solution

3. Find the area of region bounded by $y^{2}=4 x, x=1, x=4$ and x axis in the first quadrant.
4. Find the area of the region founded by the curve $y=x^{2}$ and the line $\mathrm{y}=4$.

- Watch Video Solution

5. Area of ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1, a>b$ is :

D Watch Video Solution

6. Find the area bounded by the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ and the ordinates $x=0$ and $x=a e$, where $b^{2}=a^{2}\left(1-e^{2}\right)$ and $e<1$.

- Watch Video Solution

7. Find the area bounded by the region given by:

$$
A=\left\{(x, y):(x, y): \frac{x^{2}}{25}+\frac{y^{2}}{9} \leq 1 \leq \frac{x}{5}+\frac{y}{3}\right\} .
$$

(Watch Video Solution

8. Using integration, find the region bounded by
the line $2 y=-x+8, x$-axis, and the lines $x=2$ and $x=4$.

D Watch Video Solution
9. Find the area of the region in the first quadrant enclosed by the x-axis, the line $y=x$, and the circle $x^{2}+y^{2}=32$.

- Watch Video Solution

10. Using integration, find the area of the region bounded by : (-1,1), (0,5) and (3,2).

- Watch Video Solution

11. Using the method of integration, find the area of the triangular region whose vertices are (2,-2), $(4,3)$ and (1,2).

- Watch Video Solution

12. Using the method of integration, find the area of the region bounded by the lines : $3 x-2 y+1=0$,
$2 x+3 y-21=0$ and $x-5 y+9=0$.

- Watch Video Solution

13. Smaller area enclosed by the circle $x^{2}+y^{2}=4$ and the line $x+y=2$ is:

- Watch Video Solution

14. Calculate the area of the region enclosed between the circles : $x^{2}+y^{2}=4$ and $(x-2)^{2}+y^{2}=4$ (using integration)

- Watch Video Solution

15. Make a rough sketch of the region given below and find its area, using integration : $\left\{(x, y): y^{2} \leq 4 x, 4 x^{2}+4 y^{2} \leq 9\right\}$

- Watch Video Solution

16. Using integration, find the area of the region bounded by the parabola $y^{2}=4 x$ and the circle :
$4 x^{2}+4 y^{2}=9$.

- Watch Video Solution

17. Find the area lying above x-axis and included
between the circle $x^{2}+y^{2}=8 x$ and the parabola $y^{2}=4 x$.

- Watch Video Solution

18. Find the area included between the curves
$y^{2}=4 a x$ and $x^{2}=4 a y, a>0$.

- Watch Video Solution

19. Draw a rought sketch of $y^{2}=x+1$ and $y^{2}=-x+1$ and determine the are enclosed by the two curves.

- Watch Video Solution

20. Find the area of the region bounded by the
curves $y=6 x-x^{2}$ and $y=x^{2}-2 x$.

- Watch Video Solution

21. Find the area of the region $\left\{(x, y): 0 \leq y \leq x^{2}, 0 \leq y \leq x+2,0 \leq x \leq 3\right\}$.

D Watch Video Solution

22. Find the area of the region bounded by the curve $y=x^{2}+2, y=x, x=0$ and $x=3$

D Watch Video Solution

23. Using integration, find the area of the region:
$\left\{(x, y):|x-1| \leq y \leq \sqrt{5-x^{2}}\right\}$.

- Watch Video Solution

24. Sketch the region bounded by the curves:
$y=\sqrt{5-x^{2}}$ and $\mathrm{y}=|\mathrm{x}-1|$ and find its area, using integration.

- Watch Video Solution

25. Using integration, find the area of the triangle
formed by positive x-axis and tangent and normal to the circle $x^{2}+y^{2}=4$ at $(1, \sqrt{3})$.
26. Sketch the graph of:
$f(x)=\left\{\begin{array}{ll}|x-2|+2 & x \leq 2 \\ x^{2}-2 & x>2\end{array}\right.$.
Evaluate
$\int_{0}^{4} f(x) d x$. What does the value of this integral represent on the graph?

- Watch Video Solution

27. Find the area of the region bounded by the curve $a y^{2}=x^{3}$, the y -axis and the lines $\mathrm{y}=\mathrm{a}$ and $y=2 a$.
28. Find the area of the region bounded by the parabola $y^{2}=2 x$ and the straight line $x-y=4$.

- Watch Video Solution

Exercise

1. Using integration, find the area of the circle $x^{2}+y^{2}=4$
2. Using integration, find the area of the circle $x^{2}+y^{2}=4$

- Watch Video Solution

3. Find the area of the region bounded by the curve $y^{2}=4 x$ and the line $x=3$.

D Watch Video Solution

4. Using integration, find the area bounded between the parabola $x^{2}=4 y$ and the line $\mathrm{y}=4$.

(Watch Video Solution

5. Find the area bounded by the curve $y^{2}=2 y-x$ and the Y -axis.

- Watch Video Solution

6. (i) Find the area bounded by $y=2 x+3$, the x-axis and the ordinates $x=-2$ and $x=2$.

D Watch Video Solution
7. Find the area bounded by $y=x$, the x-axis and the lines $x=-1$ and $x=2$.

- Watch Video Solution

8. Find the area of the region bounded by
$y=x^{4}, \mathrm{x}=1, \mathrm{x}=5$ and x -axis.

- Watch Video Solution

9. Find the area of the region bounded by
$y=x^{2}, \mathrm{x}=0, \mathrm{x}=2$ and x -axis.
10. Find the area of the region bounded by (iii)
$y=x^{2}-4, \mathrm{x}=0, \mathrm{x}=3$ and x -axis.

- Watch Video Solution

11. Find the area of the region bounded by (iv)
$y=x^{3}, \mathrm{x}=2, \mathrm{x}=4$ and x -axis.

D Watch Video Solution
12. Find the area of the region bounded by
$y^{2}=9 x, x=2, x=4$ and the x-axis in the first quadrant.

- Watch Video Solution

13. Find the area of the region bounded by $y=4 x^{2}, \mathrm{x}=0, \mathrm{y}=1, \mathrm{y}=4$ in the first quadrant.
14. Calculate the area undder the curve : $y=2 \sqrt{x}$ between the ordinates $\mathrm{x}=0$ and $\mathrm{x}=1$.

- Watch Video Solution

15. Find the area under the curve
$y=\left(x^{2}+2\right)^{2}+2 x \quad$ between the ordinates $x=0$ and $x=2$.

D Watch Video Solution
16. Find the area of the region in the first quadrant enclosed by x-axis, line $x=(\sqrt{3}) y$ and the circle $x^{2}+y^{2}=4$.

- Watch Video Solution

17. Find the area of the smaller part of the circle $x^{2}+y^{2}=a^{2}$ cut off by the line $x=\frac{a}{\sqrt{2}}$
18. (i) Determine the area under the curve
$y=\sqrt{a^{2}-x^{2}}$ included between the lines $\mathrm{x}=0$ and
$\mathrm{x}=\mathrm{a}$.

- Watch Video Solution

19. (ii) Using definite integrals, find the area of the
circle $(x-1)^{2}+y^{2}=1$.

- Watch Video Solution

20. Determine the area enclosed between the curve
$\mathrm{y}=\cos 2 \mathrm{x}, 0 \leq x \leq \frac{\pi}{4}$ and the co-ordinate axes.

- Watch Video Solution

21. Calculate the area bounded by the curve:
$f(x)=\sin ^{2}\left(\frac{x}{2}\right)$, axis of x and the ordinates: $\mathrm{x}=0$,
$x=\frac{\pi}{2}$.

- Watch Video Solution

22. Draw a rough sketch of the curve $y=\cos ^{2} x$ in $[0, \pi]$ and find the area enclosed by the curve, the lines $\mathrm{x}=0, x=\pi$ and the x -axis.

- Watch Video Solution

23. (i) Make a rough sketch of the graph of the
function $\mathrm{y}=\sin \mathrm{x}, 0 \leq x \leq \frac{\pi}{2}$ and determine the area enlosed between the curve, the, the x-axis and
the line $x=\frac{\pi}{2}$.

- Watch Video Solution

24. (ii) Find the area bounded by the curve :
$\mathrm{y}=\sin \mathrm{x}$ between $\mathrm{x}=0$ and $x=2 \pi$.

- Watch Video Solution

25. Find the area bounded by the curve $y=\cos x$
between $x=0, x=2 \pi$.

- Watch Video Solution

26. Find the slopes of the tangent and normal to the curve given by : $x=a \sin 3 \theta, y=a \cos 3 \theta$.
27. (i) Make a rough sketch of the graph of the function $\mathrm{y}=\sin \mathrm{x}, 0 \leq x \leq \frac{\pi}{2}$ and determine the area enlosed between the curve, the, the x-axis and
the line $x=\frac{\pi}{2}$.

- Watch Video Solution

28. Draw a rough sketch of $y=\sin 2 x$ and determine the area enclosed by the curve. X -axis and the lines $x=\pi / 4$ and $x=3 \pi / 4$.
29. (ii) Draw the graph of $\mathrm{y}=\cos 3 \mathrm{x}, 0 \leq x \leq \frac{\pi}{6}$ and find the area between the curve and the axes.

D Watch Video Solution

30. Make a rough sketch of the graph of $y=\cos ^{2} x, 0 \leq x \leq \frac{\pi}{2}$ and find the area enclosed between the curve and the axes.

- Watch Video Solution

31. Using integration, find the area of the region bounded by the circle $x^{2}+y^{2}=16$ and line $y=x$ in the first quadrant.

- Watch Video Solution

32. Find the area of the smaller part of the circle
$x^{2}+y^{2}=a^{2}$ cut off by the line $x=\frac{a}{\sqrt{2}}$
D Watch Video Solution
33. Find the area under the given curves and given lines: $y=x^{2}, x=1, x=2$ and x-axis

- Watch Video Solution

34. Draw a rough sketch of the curve $y^{2}+1=x$,
$x \leq 2$. Find the area enclosed by the curve and the
line $x=2$.

- Watch Video Solution

35. Find the area of the region bounded by the elipse $\frac{x^{2}}{9}+\frac{y^{2}}{4}=1$

- Watch Video Solution

36. Find the area of the region bounded by the
elipse $\frac{x^{2}}{9}+\frac{y^{2}}{16}=1$

- Watch Video Solution

37. Find the area of the region bounded by the ellipse : $4 x^{2}+25 y^{2}=1$.

- Watch Video Solution

38. Find the area between the curve $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ and the x -axis between $\mathrm{x}=0$ and $\mathrm{x}=\mathrm{a}$. Draw a rough sketch of the curve also.

D Watch Video Solution

39. Sketch the region of the ellipse and find its area
using integration $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$

D Watch Video Solution
40. Sketch the region $\left\{(x, y): 4 x^{2}+9 y^{2}=36\right\}$ and find its area using integration.

- Watch Video Solution

41. Draw a rough sketch of the curves $y=\sin x$ and $y=\cos x$ as x varies from 0 to $\frac{\pi}{2}$ and find the area enclosed by them find x-axis.
42. Using integration, prove that the area bounded by : $|x|+|y|=1$ is 2 sq.units.

- Watch Video Solution

43. Using integration, find the area of the region bounded by: (i) (2,0),(4,5) and (6,3).

- Watch Video Solution

44. Using integration, find the area of the region bounded by: (ii) (1,0),(2,2) and (3,1).

- Watch Video Solution

45. Using integration find the area of region bounded by the triangle where vertices are : ($-1,2$), $(1,5)$ and (3,4)

- Watch Video Solution

46. Using integration, find the area of region of triangle whose vertices are
(3,0),(4,5) and (5,1)
47. Using integration find the area of regeion bounded by the triangle whose vertices are ($-1,0$), $(1,3)$ and (3,2)

- Watch Video Solution

48. Using integration find the area of region bounded by the triangle where vertices are : (1,3),
$(2,5)$ and (3,4)

- Watch Video Solution

49. Using integration find the area of region bounded by the triangle where vertices are : (4,1), $(6,6)$ and (8,4)

- Watch Video Solution

50. Using integration find the area of region bounded by the triangle where vertices are : $(2,5)$,
$(4,7)$ and $(6,2)$
51. (a) Using integration, find the area of the region bounded by the triangle whose sides are : (i) $3 x-y-$ $3=0,2 x+y-12=0, x-2 y-1=0$.

- Watch Video Solution

52. (a) Using integration, find the area of the region bounded by the triangle whose sides are :
(ii) $5 x-2 y-10=0, x+y-9=0,2 x-5 y=0$.

- Watch Video Solution

53. Using integration, find the area of the region bounded by the triangle whose sides are $y=2 x+1, y=3 x+1$ and $x=4$.

- Watch Video Solution

54. (a) Using integration, find the area of the region bounded by the triangle whose sides are :
(iv) $2 x+y=4,3 x-2 y=6$ and $x-3 y+5=0$.

- Watch Video Solution

55. (b) If a triangular field is bounded by the lines
$x+2 y=2, \quad y-x=1$ and $2 x+y=7$. Using integration, compute the area of the field.

- Watch Video Solution

56. (b) If a triangular field is bounded by the lines
$x+2 y=2, \quad y-x=1$ and $2 x+y=7$. Using integration, compute the area of the field.

- Watch Video Solution

57. Find the area of the region bounded by the line $y=3 x+2$,the $\quad x$-axis and the ordinates $x=-1, x=1$.

- Watch Video Solution

58. Find the area of the region:
$\left\{(x, y): x^{2} \leq y \leq x\right\}$.

- Watch Video Solution

59. Find the area of the region:
$\left\{(x, y): x^{2} \leq y \leq|x|\right\}$.

- Watch Video Solution

60. Consider the functions: $f(x)=|x|-1$ and $g(x)=1-|x|$.
(a) Sketch their graphs and shade the closed region between them
61. Consider the functions: $f(x)=|x|-1$ and $g(x)=1-|x|$.
(b) Find the area of their shaded region.

- Watch Video Solution

62. Using integration, find the area of the region bounded between : (i) the line $x=2$ and the parabola $y^{2}=8 x$.
63. Using integration, find the area of the region bounded between : (ii) the line $x=3$ and the parabola $y^{2}=4 x$.

(Watch Video Solution

64. Find the area of the region bounded between parabola $y^{2}=x$ and the line $y=x$ (Using integration).

- Watch Video Solution

65. Find the area of the region bounded by : (ii) the parabola $y^{2}=x$ and the line $\mathrm{x}+\mathrm{y}=2$.

- Watch Video Solution

66. Find the area of the region bounded by the curve $x^{2}=4 y$ and the straight line $y=4 y-2$.

- Watch Video Solution

67. Find the area of region bounded by

The parabola $y^{2}=4 a x$ and its chord $\mathrm{y}=\mathrm{mx}$

- Watch Video Solution

68. Find the area of region bounded by

The parabola $y^{2}=4 a x$ and its latus rectum

- Watch Video Solution

69. Find the area of the region bounded by the parabola $y^{2}=8 x$ and the latus-rectum.
70. Find the area of the region enclosed by the parabola $x^{2}=y$, the line $y=x+2$ and the x-axis.

- Watch Video Solution

71. The area between $x=y^{2}$ and $x=4$ is divided into two equal parts by the line $x=a$, find the value of a.
72. Area lying between the curve $y^{2}=4 x$ and the line $y=2 x$ is:

- Watch Video Solution

73. Find the area bounded between the curve $y^{2}=4 x$ and the lines $x=3$

D Watch Video Solution
74. Find the area of the region founded by the curve $y=x^{2}$ and the line $\mathrm{y}=4$.

Watch Video Solution

75. Find the area enclosed by the straight line $y=x+2$ and the curve $x^{2}=y$

(-) Watch Video Solution

76. Find the area bounded by the curve $x^{2}=4 y$ and the line $x=4 y-2$.

- Watch Video Solution

77. Find the area of the smaller region bounded by the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ and the straight line $\frac{x}{a}+\frac{y}{b}=1$ (using integration)

- Watch Video Solution

78. Find the area of the smaller region bounded by the (ii) $\frac{x^{2}}{16}+\frac{y^{2}}{9}=1$ and the straight line $3 x+4 y=12$.

- Watch Video Solution

79. Draw the rough sketch and find the area of the
region : $\left\{(x, y): 4 x^{2}+y^{2} \leq 4,2 x+y \geq 2\right\}$.

- Watch Video Solution

80. Draw the rough sketch and find the area of the
region : $\left\{(x, y): 16 x^{2}+y^{2} \leq 16,4 x+y \geq 4\right\}$.

D Watch Video Solution

81. Draw the rough sketch and find the area of region bounded between the parabolas, $y^{2}=4 x$
and $x^{2}=4 y$ by using integration.

- Watch Video Solution

82. Draw the rough sketch and find the area of
region bounded between the parabolas, $y^{2}=9 x$ and $x^{2}=9 y$ by using integration.

- Watch Video Solution

83. Draw the rough sketch and find the area of region bounded between the parabolas, $y^{2}=16 x$ and $x^{2}=16 y$ by using integration.

- Watch Video Solution

84. (b) Find the ratio in which the area bounded by
the curves $y^{2}=12 x$ and $x^{2}=12 y$ is divided by the line $\mathrm{x}=3$.

- Watch Video Solution

85. Find the area of the region bounded between parabolas $y^{2}=x$ and the line $x^{2}=y$.

- Watch Video Solution

86. Find the area of region founded by two parabolas:
$y^{2}=a x$ and $x^{2}=a y$

D Watch Video Solution

87. Find the area of region founded by two parabolas :

$$
y^{2}=\frac{9}{4} x \text { and } x^{2}=\frac{16}{3} y
$$

D Watch Video Solution
88. Calculate the area of the region enclosed between the circles : $x^{2}+y^{2}=1$ and $(x-1)^{2}+y^{2}=1$ (using integration)

- Watch Video Solution

89. Calculate the area of the region enclosed between the circles : $x^{2}+y^{2}=4$ and $(x-2)^{2}+y^{2}=4$ (using integration)
90. Calculate the area of the region enclosed between the circles: (iii) $x^{2}+y^{2}=9$, $(x-3)^{2}+y^{2}=9$

- Watch Video Solution

91. Calculate the area of the region enclosed
between the circles: (iv) $(x-6)^{2}+y^{2}=36$ and $x^{2}+y^{2}=36$
92. (i) Show that the areas under the curves
$f(x)=\cos ^{2} x$ and $f(x)=\sin ^{2} x$ between $\mathrm{x}=0$ and $x=\pi$ are 1:1.

- Watch Video Solution

93. (ii) Compare the areas under the curves $y=\cos ^{2} x$ and $y=\sin ^{2} x$ between $\mathrm{x}=0$ and $x=\pi$.
94. (a) (i)Find the area of the circle $x^{2}+y^{2}=16$, which is exterior to the parabola $y^{2}=6 x$.

- Watch Video Solution

95. Find the area of the circle $4 x^{2}+4 y^{2}=9$ which is interior to the parabola $x^{2}=4 y$.

- Watch Video Solution

96. (b) Find the area of the region bounded by the
circle $x^{2}+y^{2}=16$ and the parabola $x^{2}=6 y$.

- Watch Video Solution

97.

find the area of region founded by the circle $x^{2}+y^{2}=1$ and line $x+y=1$

- Watch Video Solution

98. Make a rough sketch of the region given below and find its area, using integration $\left\{(x, y): y^{2} \leq 4 x, 4 x^{2}+4 y^{2} \leq 9\right\}$
99. Calculate the area enclosed in the region: (iii)
$\left\{(x, y): x^{2}+y^{2} \leq 16, x^{2} \leq 6 y\right\}$

D Watch Video Solution

100. Calculate the area enclosed in the region: (iv)
$\left\{(x, y): y^{2} \leq 6 a x, x^{2}+y^{2} \leq 16 a^{2}\right\}$.

- Watch Video Solution

101. Draw the rough sketch and find the area of the
region: (i) $\left\{(x, y): x^{2}<y<x+2\right\}$

(Watch Video Solution

102. Draw the rough sketch and find the area of the
region : $\left\{(x, y): 4 x^{2}+y^{2} \leq 4,2 x+y \geq 2\right\}$.

- Watch Video Solution

103. Find the area of the region $\left\{(x, y): 0 \leq y \leq x^{2}+1,0 \leq y \leq x+1,0 \leq x \leq 2\right\}$

D Watch Video Solution

104. Draw the rough sketch and find the area of the

 region:$\left\{(x, y): x^{2}+y^{2} \leq 2 a x, y^{2} \geq a x, x, y \geq 0\right\}$

- Watch Video Solution

105. (i) Find the area of the region given by:
$\left\{(x, y): x^{2} \leq y \leq|x|\right\}$.

D Watch Video Solution
106. Find the area bounded by curves
$\left\{(x, y): y \geq x^{2}\right.$ and $\left.y=|x|\right\}$

D Watch Video Solution

107. (iii) Find the area of the region bounded by the parabola $y=x^{2}$ and $\mathrm{y}=|\mathrm{x}|$.

- Watch Video Solution

108. Using integration, find the area of the region
bounded by the following curves, after making a
rough sketch: (i) $y=1+|x+1|, x=-3, x=3, y=0$.

- Watch Video Solution

109. Using integration, find the area of the region bounded by the following curves, after making a rough sketch:(ii) $y=1+|x+1|, x=-2, x=3, y=0$.

- Watch Video Solution

110. Find the area of region bounded by the curve
$y^{2}=x$ and the lines $x=1, x=4$ and the x -axis.
111. Find the area of the region bounded by $y^{2}=9 x, x=2, x=4$ and the x-axis in the first quadrant.

- Watch Video Solution

112. Find the area of the region bounded by $x^{2}=4 y, y=2, y=4$ and the y-axis in the first quadrant.

- Watch Video Solution

113. Using integration find the area of region bounded by the ellipse $\frac{x^{2}}{16}+\frac{y^{2}}{9}=1$

- Watch Video Solution

114. Find the area of region bounded by the ellipse $\frac{x^{2}}{4}+\frac{y^{2}}{9}=1$

- Watch Video Solution

115. Find the area of the region in the first quadrant enclosed by x-axis, line $x=(\sqrt{3}) y$ and
the circle $x^{2}+y^{2}=4$.

- Watch Video Solution

116. Find the area of the smaller part of the circle $x^{2}+y^{2}=a^{2}$ cut off by the line $x=\frac{a}{\sqrt{2}}$

- Watch Video Solution

117. The area between $x=y^{2}$ and $x=4$ is divided into two equal parts by the line $x=a$, find the value of a.
118. Find the area of the region bounded by the parabola $y=x^{2}$ and $y=|x|$.

- Watch Video Solution

119. Find the area bounded by the curve $x^{2}=4 y$ and the line $x=4 y-2$.
120. Find the area of the region bounded by the
curve $y^{2}=4 x$ and the line $x=3$.

- Watch Video Solution

121. Area lying in the first quadrant and bounded by the circle $x^{2}+y^{2}=4$ and the lines $x=0$ and $x=2$ is :
А. π
B. $\frac{\pi}{2}$
C. $\frac{\pi}{3}$
D. $\frac{\pi}{4}$

Answer:

- Watch Video Solution

122. Area of the region bounded by the curve
$y^{2}=4 x, y$-axis and the line $y=3$ is
A. 2
B. $\frac{9}{4}$
C. $\frac{9}{3}$
D. $\frac{9}{2}$.

- Watch Video Solution

123. Find the area of the circle $4 x^{2}+4 y^{2}=9$ which is interior to the parabola $x^{2}=4 y$.

D Watch Video Solution

124. Find the area bounded by curves
$(x-1)^{2}+y^{2}=1$ and $x^{2}+y^{2}=1$.

- Watch Video Solution

125. Find the area of the region bounded by the
curve $y=x^{2}+2, y=x, x=0$ and $x=3$

- Watch Video Solution

126. Using integration find the area of regeion bounded by the triangle whose vertices are ($-1,0$),
$(1,3)$ and (3,2)

D Watch Video Solution
127. Using integration find the area of triangle whose sides are given by the equations

$$
y=2 x+1, y=3 x+1, x=4
$$

- Watch Video Solution

128. Smaller area enclosed by the circle $x^{2}+y^{2}=4$ and the line $x+y=2$ is:
A. $2(\pi-2)$
B. $\pi-2$
C. $2 \pi-1$
D. $2(\pi+2)$

Answer:

- Watch Video Solution

129. Area lying between the curve $y^{2}=4 x$ and the line $y=2 x$ is:
A. $\frac{2}{3}$
B. $\frac{1}{3}$
C. $\frac{1}{4}$
D. $\frac{3}{4}$

- Watch Video Solution

130. Find the area under the given curves and given
lines: $y=x^{2}, x=1, x=2$ and x -axis

- Watch Video Solution

131. Find the area under the given curves and given
lines: $y=x^{4}, x=1, x=5$ and x-axis.
132. Find the area between the curves $y=x$ and $y=x^{2}$

- Watch Video Solution

133. Find the area of the region lying in the first quadrant \quad and \quad bounded \quad by
$y=4 x^{2}, x=0, y=1, y=4$
134. Sketch the graph of $y=|x+3|$ and evaluate $\int_{-6}^{0}|x+3| d x$

- Watch Video Solution

135. Find the area bounded by the curve $y=\sin x$
between $x=0$, and $x=2 \pi$

- Watch Video Solution

136. Find the area enclosed between the parabola
$y^{2}=4 a x$ and the line $y=m x$

- Watch Video Solution

137. Find the area enclosed by the parabola $4 y=3 x^{2}$ and the line $2 y=3 x+12$

- Watch Video Solution

138. Find the area of smaller region bounded by the ellipse $\frac{x^{2}}{9}+\frac{y^{2}}{4}=1$ and straight line $\frac{x}{3}+\frac{y}{2}=1$.

- Watch Video Solution

139. Find the area of the smaller region bounded by the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ and the line $\frac{x}{a}+\frac{y}{b}=1$
(Watch Video Solution
140. Find the area of the region enclosed by the parabola $x^{2}=y$, the line $y=x+2$ and the x-axis.
141. Using the method of integration find the area bounded by the curve $|x|+|y|=1$

- Watch Video Solution

142. Find the area bounded by curves $\left\{(x, y): y \geq x^{2}\right.$ and $\left.y=|x|\right\}$

- Watch Video Solution

143. Using integration, find the area of the triangle
$A B C$, co ordinate of whose vertics are $A(2,0), B(4,5)$
and $C(6,3)$.

- Watch Video Solution

144. Using the method of integration find the area of the region bounded by lines:
$2 x+y=4,3 x-2 y=6, x-3 y+5=0$

- Watch Video Solution

145. Make a rough sketch of the region given below and find its area, using integration

$$
\left\{(x, y): y^{2} \leq 4 x, 4 x^{2}+4 y^{2} \leq 9\right\}
$$

- Watch Video Solution

146. Area bounded by the curve $y=x^{3}$, the x -axis and the ordinates $x=-2, x=1$ is:
A. -9
B. $-\frac{15}{4}$
C. $\frac{15}{4}$
D. $\frac{17}{4}$

Answer:

147. The area bounded by the curve $y=x|x|, \mathrm{x}$-axis and the ordinates $x=-1, x=1$ is given by:
A. 0
B. $\frac{1}{3}$
C. $\frac{2}{3}$
D. $\frac{4}{3}$

Answer:
148. (a) (i)Find the area of the circle $x^{2}+y^{2}=16$, which is exterior to the parabola $y^{2}=6 x$.

$$
\begin{aligned}
& \text { A. } \frac{4}{3}(4 \pi-\sqrt{3}) \\
& \text { B. } \frac{4}{3}(4 \pi+\sqrt{3}) \\
& \text { C. } \frac{4}{3}(8 \pi-\sqrt{3}) \\
& \text { D. } \frac{4}{3}(8 \pi+\sqrt{3})
\end{aligned}
$$

Answer:
149. The area bounded by the y-axis, $y=\cos x$, and $y=\sin x$ when 0
A. $2(\sqrt{2}-1)$
B. $\sqrt{2}-1$
C. $\sqrt{2}+1$
D. $\sqrt{2}$

Answer:
150. Find the area of the region bounded by the parabolas $y^{2}=6 x$ and $x^{2}=6 y$.

- Watch Video Solution

151. Find the area of the region bounded by the curves $x=a t^{2}$ and $\mathrm{y}=2$ at between the ordinates corresponding to $\mathrm{t}=1$ and $\mathrm{t}=2$.
152. Find the area enclosed by the curve : $x=3 \cos t$, $y=2 \sin t$.

- Watch Video Solution

153. Find the area enclosed by the parabola
$4 y=3 x^{2}$ and the line $2 y=3 x+12$

D Watch Video Solution

154. Find the area of the region bounded by the curve $y^{2}=4 x$ and the line $x=3$.
155. Prove that the curves $y^{2}=4 x, x^{2}=4 y$, divide the area of the square bounded by $x=0, x=4, y=4, y=0$ into three equal parts.

- Watch Video Solution

156. Draw the diagram to show the area enclosed by the curves: $y^{2}=16 x$ and $x^{2}=16 y$. The straight line $\mathrm{x}=4$ divides the area of the larger portion by integration.
157. AOBA is the part of the ellipse $9 x^{2}+y^{2}=36$ in the first quadrant such that $O A=2$ and $O B=6$. Find the area between the $\operatorname{arc} A B$ and the chord $A B$.

- Watch Video Solution

158. Calculate the area of the region enclosed between the circles : $x^{2}+y^{2}=1$ and $(x-1)^{2}+y^{2}=1$ (using integration)
159. Draw a rough sketch of the following region and find the area enclosed by the region, using method of integration:
$\left\{(x, y): y^{2} \leq 5 x, 5 x^{2}+5 y^{2} \leq 36\right\}$.

D Watch Video Solution

> 160. Find the area bounded by $y=1+2 \sin ^{2} x, \mathrm{X}$-axis, $X=0$ and $x=\pi$.
161. Is the parabola $y^{2}=4 x$ symmetrical about x axis?

- Watch Video Solution

162. Is the circle $x^{2}+y^{2}=r^{2}$ symmetrical about the line $y=x$?

- Watch Video Solution

163. Find the area enclosed by the circle $x^{2}+y^{2}=9$.

(Watch Video Solution

164. Find the area of the semi-portion of the circle $x^{2}+y^{2}=4$

- Watch Video Solution

165. Find the area of the region bounded by (i)
$y=x^{4}, \mathrm{x}=1, \mathrm{x}=5$ and x -axis.

- Watch Video Solution

166. Area lying in the first quadrant and bounded
by the circle $x^{2}+y^{2}=4$ and the lines $x=0$ and

$$
x=2 \text { is : }
$$

A. π
B. $\frac{\pi}{2}$
C. $\frac{\pi}{3}$
D. $\frac{\pi}{4}$

Answer:

167. Area of the region bounded by the curve $y^{2}=4 x, y$-axis and the line $y=3$ is
A. 2
B. $\frac{9}{4}$
C. $\frac{9}{3}$
D. $\frac{9}{2}$

Answer:

D Watch Video Solution
168. Smaller area enclosed by the circle $x^{2}+y^{2}=4$ and the line $x+y=2$ is:
A. $2(\pi-2)$
B. $\frac{\pi}{2}$
C. $2 \pi-1$
D. $2(\pi+2)$

Answer:

- Watch Video Solution

169. Area lying between the curve $y^{2}=4 x$ and the line $y=2 x$ is :

$$
\begin{aligned}
& \text { A. } \frac{2}{3} \\
& \text { B. } \frac{1}{3} \\
& \text { C. } \frac{1}{4} \\
& \text { D. } \frac{3}{4}
\end{aligned}
$$

Answer:
170. Area bounded by the curve $y=x^{3}$, the x -axis and the ordinates $x=-2, x=1$ is:
A. -9
B. $-\frac{15}{4}$
C. $\frac{15}{4}$
D. $\frac{17}{4}$

Answer:

171. The area bounded by the curve $y=x|x|, \mathrm{x}$-axis

 and the ordinates $x=-1, x=1$ is given by:A. 0
B. $\frac{1}{3}$
C. $\frac{2}{3}$
D. $\frac{4}{3}$

Answer:
172. (a) (i)Find the area of the circle $x^{2}+y^{2}=16$, which is exterior to the parabola $y^{2}=6 x$.

$$
\begin{aligned}
& \text { A. } \frac{4}{3}(4 \pi-\sqrt{3}) \\
& \text { B. } \frac{4}{3}(4 \pi+\sqrt{3}) \\
& \text { C. } \frac{4}{3}(8 \pi-\sqrt{3}) \\
& \text { D. } \frac{4}{3}(8 \pi+\sqrt{3})
\end{aligned}
$$

Answer:
173. Find the area enclosed by the circle $x^{2}+y^{2}=2$
A. 4π sq.units
B. $2 \sqrt{2} \pi$ sq.units
C. $4 \pi^{2}$ sq.units
D. 2π sq.units

Answer:

- Watch Video Solution

174. Area of ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1, a>b$ is:
A. $\pi^{2} a b$
B. $\pi a b$
C. $\pi a^{2} b$
D. $\pi a b^{2}$

Answer:

- Watch Video Solution

175. The area of the region bounded by the curve $y=x^{2}$ and the line $\mathrm{y}=16$ is:

$$
\begin{aligned}
& \text { A. 1) } \frac{32}{3} \\
& \text { B. 2) } \frac{256}{3} \\
& \text { C. 3) } \frac{64}{3} \\
& \text { D. 4) } \frac{128}{3}
\end{aligned}
$$

Answer:
176. The area bounded by the y-axis, $y=\cos x$, and $y=\sin x$ when 0
A. $\sqrt{2}$ sq.units
B. $(\sqrt{2}+1)$ sq. units
C. $(\sqrt{2}-1)$ sq.units
D. ${ }^{`}(2 s q r t 2-1)$ sq.units

Answer:
177. The area of the region bounded by the curve $x^{2}=4 y$ and the straight line $\mathrm{x}=4 \mathrm{y}-2^{`}$ is
A. $\frac{3}{8}$ sq.units
B. $\frac{5}{8}$ sq.units
C. $\frac{7}{8}$ sq.units
D. $\frac{9}{8}$ sq.units

Answer:

- Watch Video Solution

178. The area bounded by the curve $y=f(x)$, above the x-axis, between $x=a$ and $x=b$ is:

$$
\begin{aligned}
& \text { A. } \int_{f(a)}^{b} y d y \\
& \text { B. } \int_{a}^{f(b)} x d x \\
& \text { C. } \int_{a}^{b} x d y \\
& \text { D. } \int_{a}^{b} y d x
\end{aligned}
$$

Answer:
179. The area of the circle $x^{2}+y^{2}=a^{2}$ is:
A. πa^{2}
B. $2 \pi a$
C. $2 \pi a^{2}$
D. None of these

Answer:

- Watch Video Solution

180. The area between the curve $y=x^{2}, x$-axis and the lines $x=0$ and $x=2$ is :
A. $\frac{2}{3}$ sq.units
B. 4 sq.units
C. $\frac{8}{3}$ sq.units
D. $\frac{4}{3}$ sq.units

Answer:

- Watch Video Solution

181. Find the area of the region enclosed by the parabola $y^{2}=9 x$ and the line $y=3 x$.
A. $\frac{1}{2}$ sq.units
B. $\frac{1}{3}$ sq.units
C. $\frac{1}{4}$ sq.units
D. $\frac{2}{3}$ sq.units

Answer:

- Watch Video Solution

182. The area bounded by the curve $y=4 \sin x, x$-axis
from $\mathrm{x}=0$ to $x=\pi$ is equal to :
A. 1 sq.units
B. 2 sq.units
C. 4 sq.units
D. 8 sq.units

Answer:
183. The area bounded by
$y=2-|2-x|$ and $y=\frac{3}{|x|}$ is:
A. 2 sq.units
B. 4 sq.units
C. 12 sq.units
D. 6 sq.units

Answer:

- Watch Video Solution

184. The area in square units of the region bounded by $y^{2}=9 x$ and $\mathrm{y}=3 \mathrm{x}$ is:
A. 2
B. $\frac{1}{4}$
C. $\frac{1}{2}$
D. 1

Answer:
185. The area of the figure bounded by the curves
$y=e^{x}, y=e^{-x}$ and the straight line $x=1$ is

$$
\begin{aligned}
& \text { A. } e+\frac{1}{e} \\
& \text { B. } e+\frac{1}{e}+2 \\
& \text { C. } e+\frac{1}{e}-2 \\
& \text { D. } e-\frac{1}{e}+2
\end{aligned}
$$

Answer:

- Watch Video Solution

186. The area of the region bounded by the curves:
$y=x^{2}$ and $x=y^{2}$ is:

(D) Watch Video Solution

187. The area of the region bounded by the curves:

$$
y=x^{2} \text { and } x=y^{2} \text { is: }
$$

A. $\frac{1}{4}$
B. $\frac{1}{3}$
C. 4
D. 3

Answer:

- Watch Video Solution

188. The area of the region bounded by the curves:
$y=x^{3}, y=\frac{1}{x}, \mathrm{x}=2$ is
A. $4-\log _{e} 2$
B. $\frac{1}{4}+\log _{e} 2$
C. $3-\log _{e} 2$
D. $\frac{15}{4}-\log _{e} 2$
189. The area of the plane region bounded by the curves $x+2 y^{2}=$ and $x+3 y^{2}=1$ is equal to

> A. $\frac{4}{3}$ B. $\frac{5}{3}$ C. $\frac{1}{3}$ D. $\frac{2}{3}$

Answer:
190. The area of the region bounded by the parabola $(y-2)^{2}=x-1$, the tangent to the parabola at the point $(2,3)$ and the X -axis is
A. 6
B. 9
C. 12
D. 3

Answer:

191. The area bounded by the curves $y=\cos x$ and $\mathrm{y}=\sin \mathrm{x}$ between the ordinates $\mathrm{x}=0$ and $x=\frac{3}{2} \pi$ is:
A. 1) $4 \sqrt{2}-2$
B. 2) $4 \sqrt{2}+2$
C. 3) $4 \sqrt{2}-1$
D. 4) $4 \sqrt{2}+1$

Answer:

D Watch Video Solution
192. The area of the region enclosed by the curve
$y=x, x=e, y=\frac{1}{x}$ and the positive X -axis is
A. $\frac{1}{2}$ square units
B. 1 square units
C. $\frac{3}{2}$ square units
D. $\frac{5}{2}$ square units

Answer:

- Watch Video Solution

193. If the straight line $x=b$ divide the area enclosed
by $y=(1-x)^{2}, y=0$ and $x=0$ into two parts
$R_{1}(0 \leq x \leq b)$ and $R_{2}(b \leq x \leq 1)$ such that
$R_{1}-R_{2}=\frac{1}{4}$. Then, b equals to
A. $\frac{3}{4}$
B. $\frac{1}{2}$
C. $\frac{1}{3}$
D. $\frac{1}{4}$

Answer:
194. Let $f:[-1,2] \rightarrow[0, \infty]$ be a continuous function such that
$f(x)=f(1-x), \forall x \in[-1,2]$.
$R_{1}=\int_{-1}^{2} x f(x) d x$ and R_{2} are the area of the
region bounded by $y=f(x), x=-1, x=2$ and the X-axis . Then,
A. $R_{1}=2 R_{2}$
B. ${ }^{\prime} R_{-} 1=3 R_{-} 2$
C. $2 \mathrm{R}_{-} 1=\mathrm{R}$ _ 2
D. $3 R_{-} 1=R_{-} 2$
195. The area bounded by the curves $y^{2}=4 x$ and $x^{2}=4 y$ is :

> A. $\frac{32}{3}$
> B. $\frac{16}{3}$
> C. $\frac{8}{3}$
> D. 0

Answer:

196. The area bounded between the parabola $x^{2}=\frac{y}{4}$ and $x^{2}=9 y$ and the straight line $y=2$ is
A. $20 \sqrt{2}$
B. $\frac{10 \sqrt{2}}{3}$
C. $\frac{20 \sqrt{2}}{3}$
D. $10 \sqrt{2}$

Answer:

- Watch Video Solution

197. The area (in sqaure units) bounded by the
curves: $y=\sqrt{x}, 2 y-x+3=0, x$-axis, and lying in the
first quadrant is:
A. 36
B. 18
C. $\frac{27}{4}$
D. 9

Answer:
198. The area enclosed by the curves: $y=\sin x+\cos x$ and $\mathrm{y}=\cos \mathrm{x}-\sin \mathrm{x} \mid$ over the interval $\left[0, \frac{\pi}{2}\right]$ is:
A. $4(\sqrt{2}-1)$
B. $2 \sqrt{2}(\sqrt{2}-1)$
C. $2(\sqrt{2}+1)$
D. $2 \sqrt{2}(\sqrt{2}+1)$

Answer:

D Watch Video Solution
199. The area of the region described by

$$
A=\left\{(x, y): x^{2}+y^{2} \leq 1 \text { and } y^{2} \leq 1-x\right\} \text { is }
$$

A. $\frac{\pi}{2}-\frac{4}{3}$
B. $\frac{\pi}{2}-\frac{2}{3}$
C. $\frac{\pi}{2}+\frac{2}{3}$
D. $\frac{\pi}{2}+\frac{4}{3}$

Answer:
200. The area (in sq. units) of the region described

$$
\text { by } \left.\{x, y): y^{2} \leq 2 x \text { and } y \geq 4 x-1\right\} \text { is }
$$

A. $\frac{4}{32}$
B. $\frac{5}{64}$
C. $\frac{15}{64}$
D. $\frac{9}{32}$

Answer:
201. The area (in sq. units) of the region

$$
\begin{aligned}
& \left\{(x, y): y^{2} \geq 2 x\right. \\
& \left.x^{2}+y^{2} \leq 4 x, x \geq 0, y \geq 0\right\} \text { is }
\end{aligned}
$$

A. $\pi-\frac{8}{3}$
B. $\pi-\frac{4 \sqrt{2}}{3}$
C. $\frac{\pi}{2}-\frac{2 \sqrt{2}}{3}$
D. $\pi-\frac{4}{3}$

Answer:

202. Using integration, find the area of the circle $x^{2}+y^{2}=4$

- Watch Video Solution

203. Find the area bounded by $y=x$, the x-axis and the lines $x=-1$ and $x=2$.

- Watch Video Solution

204. Calculate the area undder the curve :
$y=2 \sqrt{x}$ between the ordinates $\mathrm{x}=0$ and $\mathrm{x}=1$.
205. Area of ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1, a>b$ is :

- Watch Video Solution

206. Find the area of the region bounded by
$y^{2}=9 x, x=2, x=4$ and the x-axis in the first quadrant.
207. Using integration find the area of triangle whose vertices are
$(-1,1),(0,5)$ and (3,2)

- Watch Video Solution

208. Find the area lying above x-axis and included between the circle $x^{2}+y^{2}=8 x$ and the parabola $y^{2}=4 x$.

- Watch Video Solution

209. Calculate the area of the region enclosed between the circles : $x^{2}+y^{2}=1$ and $(x-1)^{2}+y^{2}=1$ (using integration)

- Watch Video Solution

210. Find the area of the region in the first quadrant enclosed by the x -axis, the line $y=x$, and the circle $x^{2}+y^{2}=32$.

D Watch Video Solution

211. Find the area of the smaller part of the circle

$$
x^{2}+y^{2}=a^{2} \text { cut off by the line } x=\frac{a}{\sqrt{2}}
$$

