

MATHS

BOOKS - MODERN PUBLICATION

CONTINUITY AND DIFFERENTIABILITY

Example

1. Prove that :

every constant function is continous in R

2. Prove that :

the identity function is continuous in R.

5. Prove that the greatest integer function [x] is continuous at all

points except at integral points.

6. Show that f(x) = 2x - |x| is continous at x = 0

Watch Video Solution
7. Test the continuity of the function f(x) at the origin:
f(x)= {:[(|x|/x,x not equals to 0),(0,x=0):}`
Watch Video Solution

8. Find all the points of discontinuity of the function f defined by

$$f(x) = \begin{cases} x + 2 & \text{if } x < 1 \\ 0 & \text{if } x = 1 \\ x - 2 & \text{if } x > 1 \end{cases}$$

9. Show that the function $f(x) = \begin{cases} |x| & x \le 2\\ [x] & x > 2 \end{cases}$ is continouous on

[0,2]

10. Find a for which the function f defined as
$$\left(f(x) = \left\{ \left[\left(a \sin\left(\frac{\pi}{2}\right)(x+1) \text{ if } x \le 0 \right], \left[\left(\frac{\tan x - \sin x}{x^3}\right) \text{ if } x > 0 \right] \right\} \right)$$
is continuous at $(x = 0)$.
10. 10.

11. For what value of k, function f(x) is continuous at x = 0 where

$$f(x) = \begin{cases} \frac{1 - \cos 4x}{8x^2}, & (x \neq 0) \\ k, & x = 0 \end{cases}$$

12. For what value of 'a' and 'b', the function 'f' defined as:

$$f(x) = \begin{cases} 3ax + b & \text{if } x < 1\\ 11 & \text{if } x = 1 \text{ is continuous at } x = 1\\ 5ax - 2b & \text{if } x > 1 \end{cases}$$

13. Find the value of 'k', for which:

$$f(x) = \left\{ \frac{\sqrt{1+kx} - \sqrt{1-kx}}{x}, \text{ if } -1 \le x < 0 \right\}, \left(\frac{2x+1}{x-1}, \text{ if } 0 \le x < 1 \right)$$

is continuous at x=0

14.

$$f(x) = \left\{ \left(\left(\frac{\sin(a+1)x + 2\sin x}{x} \right), x < 0 \right) 2, x = 0, \left(\frac{\sqrt{1+bx} - 1}{x}, x > 0 \right) \right\}$$

is continuous at x = 0, then find the values of a and b.

Watch Video Solution

15. Show that the following function is continuous at x = 0:

 $f(x) = x \sin 1. x$, when $x \neq 0$ f(0) = 0.

16. Show that the function f defined by f(x) = |1 - x + |x|| where x

is any real number, is a continuous function.

17. Is f(x) = |x-1|+|x-2| differentiable at x=2?

18. For what values of 'a' and 'b', the function:

$$f(x) = \begin{cases} x^2 & \text{if } x \le 2\\ ax + b & \text{if } x > 2 \end{cases} \text{ is derivable at x=2?}$$

Watch Video Solution

19. If 'f' is derivable at x =a, find $\lim_{x \to a} \frac{xf(a) - af(x)}{x - a}$

20. Examine the derivability of:

$$f(x) = \begin{cases} x^2 \sin\left(\frac{1}{x}\right) & x \neq 0\\ 0 & x = 0 \end{cases} \text{ at } x = 0$$

Watch Video Solution

21. Find
$$\frac{dy}{dx}$$
 if $ax + by^2 = \cos y$

Watch Video Solution

22. Use chain rule to find
$$\frac{dy}{dx}$$
 if $y = \left(\frac{2x-1}{2x+1}\right)^2$

23. Differentiate
$$\cos^2(\sqrt{x})$$
 w.r.t x.

24. Differentiate
$$\sin(\cos(x^2))$$
 with respect to x.

Watch Video Solution

25. if
$$y = \sqrt{\frac{1-x}{1+x}}$$
, prove that $(1-x)^2 \left(\frac{dy}{dx}\right) + y = 0$

Watch Video Solution

26. If
$$y = \left\{x + \sqrt{x^2 + a^2}\right)^n$$
, prove that $\frac{dy}{dx} = \frac{ny}{\sqrt{x^2 + a^2}}$

27. Find
$$\frac{dy}{dx}$$
 in the following: $2x + 3y = \sin x$

28. Find
$$\frac{dy}{dx}$$
, if $y + \sin y = \cos x$

Watch Video Solution

29. If x sin (a+y) + sin a cos (a+y) = 0, then prove that :

$$\frac{dy}{dx} = \frac{\sin^2(a+y)}{\sin a}$$

Watch Video Solution

30. If
$$x^2 + y^2 = 1$$
, then

31. Differentiate $\sin^{-1}(\sqrt{\cos x})$ w.r.t.x, using chain rule.

32. If
$$y = \sqrt{\cot^{-1}\sqrt{x}}$$
, find $\frac{dy}{dx}$

Watch Video Solution

33. If
$$y = \sin(2\sin^{-1}x)$$
, show that: $\frac{dy}{dx} = 2\sqrt{\frac{1-y^2}{1-x^2}}$

34. If
$$y = \sec^{-1}\left(\frac{1}{2x^2 - 1}\right)$$
, then find $\frac{dy}{dx}$, given $0 < x < \frac{1}{\sqrt{2}}$

35. If
$$y = \sin^{-1} \left[x \sqrt{1 - x} - \sqrt{x} \left(\sqrt{1 - x^2} \right) \right]$$
 find $\frac{dy}{dx}$

36. Find
$$\frac{dy}{dx}$$
 if $y = \sin^{-1} \left[\frac{6x - 4\sqrt{1 - 4x^2}}{5} \right]$

Watch Video Solution

37. Prove that :
$$\frac{d}{dx}\left[\frac{x}{2}\sqrt{a^2-x^2}+\frac{a^2}{2}\sin^{-1}\left(\frac{x}{a}\right)\right] = \sqrt{a^2-x^2}$$

38. Prove that:
$$\frac{d}{dx} \left[\sin^{-1} \sqrt{x} \right] = \frac{1}{2\sqrt{x - x^2}}$$

Watch Video Solution

39. Is it true that $x = e^{\log x}$ for all real x?

Watch Video Solution

40. Differentiate the following w.r.tx: 3^{x+2}

Watch Video Solution

41. Differentiate 10^x . x^{10} w.r.t.x

42. If
$$xy = e^{x-y}$$
, prove that $\frac{dy}{dx} = \frac{y(x-1)}{x(y+1)}$

43. Differentiate
$$\sin^{-1}\left(\frac{2^{x+1}}{1+4^x}\right)$$
 w.r.t x

Watch Video Solution

44. Differentiate the following with respect to x:

$$\sin^{-1}\left[\frac{2^{x+1} \cdot 3^x}{1+(36)^x}\right]$$

45. Find
$$\frac{dy}{dx}$$
, if:
 $y = \log\left((x+2) + \sqrt{x^2+2}\right)$

46. If $y = \log \tan(pi/4+x/2)$, *showt*: dy/dx-secx=0`

Watch Video Solution

47. If
$$y = \log_{10} x + \log_X 10 + \log_X x + \log_{10} 10$$
, $f \in d\frac{dy}{dx}$

Watch Video Solution

48. Find f'(x), where:
$$f(x) = (1 + x^2)I_n(2x)$$
.

Watch Video Solution

49. Find f'(x), where: $f(x) = \cos(Iogx)^2$ where x > 0

Watch Video Solution

50. If
$$e^{x} + e^{y} = e^{x+y}$$
, prove that $\frac{dy}{dx} = \frac{e^{x}(e^{y}-1)}{e^{y}(e^{x}-1)}$

Watch Video Solution

51. Find the derivative of sin (logx) (x>0) w.r.t.x by Chain Rule

52. Find the derivative of sin (logx) (x>0) w.r.t.x

53. Find
$$\frac{dy}{dx}$$
, when: $x = a \frac{1 - t^2}{1 + t^2}$, $y = b \frac{2t}{1 + t^2}$.

54. Find
$$\frac{dy}{dx}$$
, when: $x = a(1 - \cos\theta)$, $y = a(\theta + \sin\theta)$

55. Find
$$\frac{dy}{dx}$$
 if $x^{\frac{2}{3}} + y^{\frac{2}{3}} = a^{\frac{2}{3}}$

9

56. Find
$$\frac{dy}{dx}$$
, when: $x = e^{\theta} \left(\theta + \frac{1}{\theta} \right)$ and $y = e^{-\theta} \left(\theta - \frac{1}{\theta} \right)$

57. Find the value of $\frac{dy}{dx}$ at $\theta = \frac{\pi}{4}$, if: $x = a\cos(\theta)(\sin\theta - \cos\theta)$ and $y = ae^{\theta}(\sin\theta + \cos\theta)$

Watch Video Solution

58. If $x = a \sin 2 t(1+\cos 2t)$ and $y = b \cos 2t(1-\cos 2t)$, find: the value

of
$$\frac{dy}{dx}att = \frac{\pi}{4}$$
 and $t = \frac{\pi}{3}$

Watch Video Solution

59. Find $\frac{dy}{dx}$, if x and y are connected parametrically by the equations, given below without eliminating the parameter.

$$x = at^2, y = 2at$$

60. Differentiate log $(1 + \theta)w. r. t. \sin^{-1}\theta$.

61. Differentiate
$$\sin^{-1}\left(\frac{x}{\sqrt{1+x^2}}\right)$$
 w.r.t. $\tan^{-1}x$.

Watch Video Solution

62. Differentiate
$$\sin^{-1}\left(\frac{x}{\sqrt{1+x^2}}w.r.t.\cos^{-1}\left(\frac{1-x^2}{1+x^2}\right)\right)$$

Watch Video Solution

 x^2 w. r. t. x^3

Watch Video Solution

64. Differentiate the following w.r.t. as indicated:

 $\frac{ax+b}{cx+d}$ w. r. t. $\frac{a'x+b'}{c'x+d'}$

> Watch Video Solution

65. Differentiate the following w.r.t. as indicated:

 $e^2 xw. r. te^x$

$$\frac{x^2}{1+x^2}w. r. tx^2$$
Watch Video Solution

67. Differentiate the following w.r.t. as indicated:

$$(x^{-1})^{4/5}w. r. t|x|.$$
Watch Video Solution

68. Differentiate the following w.r.t. as indicated:

 $\cos^{-1}\theta$, w. r. t. $\log(1 + \theta)$

```
\sin^{-1}\theta, w. r. t. \log(1 + \theta)
```


secxw. r. t. cosecx

 $\sin^2 xw. r. t. e^{\cos x}$

Watch Video Solution

73. Differentiate
$$\cos^{-1}\left(\frac{1}{\sqrt{1+x^2}}\right)$$
 w.r.t. $\tan^{-1}x$.

Watch Video Solution

74. Differentiate the following w.r.t. as indicated:

$$\sin^{-1}\left(2\frac{x}{1+x^2}\right)w.\ r.\ t.\ \tan^{-1}x$$

$$\sin^{-1}\left(2\frac{x}{1+x^2}\right)w. r. t. \tan^{-1}\left(2\frac{x}{1-x^2}\right)$$

Watch Video Solution

76. Differentiate the following w.r.t. as indicated:

$$\frac{\tan^{-1}(3x - x^3)}{1 - 3x^2} w. r. t. \tan^{-1} - \left(2\frac{x}{1 + x^2}\right)$$

Watch Video Solution

77. Differentiate
$$\cos^{-1}\left(\frac{1-x^2}{1+x^2}\right)$$
 w.r.t. $\tan^{-1}\left(\frac{3x-x^3}{1-3x^2}\right)$

$$\tan^{-1}\left(\frac{3x-x^3}{1-3x^2}\right)w. r. t. \tan^{-1}\left(\frac{x}{\sqrt{1-x^2}}\right)$$

79. Differentiate the following w.r.t. as indicated:

$$\tan^{-1}\left(\frac{\sqrt{1+x^2}-1}{x}\right)w. r. t. \tan^{-1}x$$

Watch Video Solution

80. Differentiate the following w.r.t. as indicated:

$$\tan^{-1}\left(\frac{\sqrt{1+a^2x^2}-1}{ax}\right)w.\ r.\ t.\ \tan^{-1}ax$$

$$\tan^{-1}\left(\frac{\sqrt{1+x^2-1}}{x}\right)w. r. t. \sin^{-1}\left(\frac{2x}{1+x^2}\right)$$

Watch Video Solution

82. Differentiate the following w.r.t. as indicated:

$$\tan^{-1}\left(\frac{x}{\sqrt{1-x^2}}\right)$$
. r. t. $\sin^{-1}\left(2x\sqrt{1-x^2}\right)$

Watch Video Solution

83. Differentiate the following w.r.t. as indicated:

$$\tan^{-1}\left(\frac{x}{1+\sqrt{1-x^2}}\right)w.\ r.\ t.\ \sin\left(2\cot^{-1}\sqrt{\frac{1+x}{1-x}}\right)$$

 e^x w. r. t. \sqrt{x}

Watch Video Solution

85. Differentiate the following w.r.t. as indicated:

 $\log_{10} xw. r. t. x^2$

86. Differentiate the following w.r.t. as indicated:

 $\sin x^2 w. r. t. x^3$

87. Differentiate $\sqrt{1 + x^2}$ w.r.t. $\tan^{-1}x$.

Watch Video Solution

88. Prove that derivative of
$$\tan^{-1}\left(\frac{x}{1+\sqrt{1-x^2}}\right)$$
 w.r.t $\sin^{-1} x$ is

independent of x.

Watch Video Solution

89. Prove that derivative of
$$\tan^{-1}\left(\frac{\sqrt{1+x^2}-1}{x}\right)$$
 w.r.t. $\tan^{-1}x$ is

independent of x.

 $x^2))/(sqrt(1+x^2)+sqrt(1-x^2)))w. r. t. sin^{-1}((2x)/(1+x^2)))$

Watch Video Solution

91. Differentiate
$$\tan^{-1}\left\{\frac{\sqrt{1+x^2}+\sqrt{1-x^2}}{\sqrt{1+x^2}-\sqrt{1-x^2}}\right\}$$
 w.r.t.x

92. Find
$$\frac{dy}{dx}$$
 if $y = x^x$

93. Differentiate
$$x^{x^x}$$
 w.r.t. x.

94. Find f(x) if $f(x) = (\sin x)^{\sin x}$ for all '0

95. Differentiate
$$(x^{\tan x} + (\sin x)^{\cos x}) w. r. t. x$$

Watch Video Solution

96. If x^{y} . $y^{x} = 1$, then prove that :

 $\frac{dy}{dx} = \frac{-y(y + x\log x)}{x(y\log x + x)}$

97. If
$$x^{Y} = e^{X - Y}$$
, prove that $\frac{dy}{dx} = \frac{\log x}{(1 + \log x)^{2}}$.

98. If
$$x^{Y} = e^{X - Y}$$
, prove that $\frac{dy}{dx} = \frac{\log x}{(1 + \log x)^{2}}$.

99. Find
$$\frac{dy}{dx}$$
, if $y^x + x^y + x^x = a^b$

Watch Video Solution

100. Differentiate $3^{x}x^{5+x}\cos^{-1}xw$. r. t. x.

101. IF
$$f(x) = \left[\frac{3+x}{1+x}\right]^{2+3x}$$
 find'(0).

102. If
$$y = \sqrt{2^{x} + \sqrt{2^{x} + \sqrt{2^{x} + \dots + \infty}}}$$
, then prove that :

$$(2y-1)\frac{dy}{dx} = 2^x \log 2.$$

103. If
$$y = \sqrt{\log x + \sqrt{\log x + \sqrt{\log x + \dots \infty}}}$$
 then find $\frac{dy}{dx}$

104. Differentiate the following w.r.t.x.

$$y = e^{x^{+ex+ex^{-to\infty}}}$$
, prove that $\frac{dy}{dx} = \frac{y}{1-y}$

Watch Video Solution

105. Find the second derivative of $\sin^{-1}x$

Watch Video Solution

106. If
$$y = 500e^7x + 600e^{-7}x$$
 show that $\left(d^2\frac{y}{dx^2}\right) = 49y$

107. If
$$x = a(\cos t + t\sin t)$$
 and $y = a(\sin t - t\cos t), 0 < t < \frac{\pi}{2}$, find $\frac{d^2x}{dt^2}, \frac{d^2y}{dt^2}$

108. If
$$x = \tan\left(\frac{1}{2}\log y\right)$$
, then show that $\left(1 + x^2\right)\frac{d^2y}{dx^2} = (a - 2x)\frac{dy}{dx}$.

Watch Video Solution

109. If $x = a\cos\theta + b\sin\theta$ and $y = a\sin\theta - b\cos\theta$, then prove that

$$y^2 \frac{d^2 y}{dx^2} - \frac{dy}{dx} + y = 0$$

110. If $y = a\sin(\log x) + b\cos(\log x)$, then prove that :

$$x^2 d^2 \frac{y}{dx^2} + x \frac{dy}{dx} + y = 0.$$

Watch Video Solution

111. If x cos (a+y) = cos y, then prove that
$$\frac{dy}{dx} = \frac{\cos^2(a+y)}{\sin a}$$
 Hence,
show that $\sin a \frac{d^2y}{dx^2} + \sin^2(a+y) \frac{dy}{dx} = 0$

Watch Video Solution

112. If
$$x = a\left(\cos\theta + \log\tan\left(\frac{\theta}{2}\right)\right)$$
 and $y = a\sin\theta$, find the value of $\frac{d^2y}{dx^2}at\theta = \frac{\pi}{4}$

113. IF
$$y = x^x$$
, show that $\left[\left(d^2 \frac{y}{dx^2} \right) - \frac{1}{y} \left(\frac{dy}{dx} \right)^2 - \frac{y}{x} = 0 \right]$

114. If
$$y = \csc^{-1}x, x > 1$$
, then show that :
 $x(x^2 - 1)\frac{d^2y}{dx^2} + (2x^2 - 1)\frac{dy}{dx} = 0$
Watch Video Solution

115. Find the second order derivative of the following functions

If
$$y = e^{\tan x}$$
, prove that $\cos^2 x \frac{d^2 y}{dx^2} - (1 + \sin 2x) \frac{dy}{dx} = 0$

116. If
$$y = e^{x}(\sin x + \cos x)$$
, prove that $\frac{d^{2}y}{dx^{2}} - 2\frac{dy}{dx} + 2y = 0$
117. If
$$y = e^{2\tan^{-1}x}$$
, then show that
 $(1 + x^2)^2 \frac{d^2y}{dx^2} + 2x(1 + x^2)\frac{dy}{dx} = 4y$
Watch Video Solution
118. Verify Rolle's Theorem for the function :
 $f(x) = x^2 - x - 12 \in [-3, 4]$
Watch Video Solution

119. Discuss the applicability of Rolle's Theorem for the function

 $f(x) = (x - 1)^{2/5}$ in the interval [0,3]

120. Let $f(x) = x(x-1)(x-2), x \in [0,2]$. Prove that 'f' satisfies the conditions of Rolle's Theorem and there is more than one 'c' in (0,2) such that f'(C) = 0

121. Verify Rolle's theore for the following functions

$$f(x) = \cos 2\left(x - \frac{\pi}{4}\right)$$
 in the interval $\left[0, \frac{\pi}{2}\right]$.

Watch Video Solution

122. Discuss the applicability of Rolle's Theorem for the function :

$$f(x) \begin{cases} \left(x^2 + 1\right) & whe 0 \le x \le 1\\ 3 - x & whe n 1 \le x \le 2 \end{cases}$$

123. At what point on the curve $y = (\cos x - 1)$ in $[0, 2\pi]$, is the tangent parallel to x-axis?

124. It is given that for the function 'f' given by :

$$f(x) = x^3 + bx^2 + ax, x \in [1, 3]$$
 Rolle's Theorem holds with
 $c = 2 + \frac{1}{\sqrt{3}}$. Find the values of 'a' and 'b'.

Watch Video Solution

125. Discuss the applicability of Lagrange's Mean Value Theorem to

$$f(x) = x(x - 1)(x - 2)$$
in $\left[0, \frac{1}{2}\right]$

126. Disuss the applicability of Lagrange's Mean Value Theorem to

 $f(x) = \cos x \in [0, pi/2]$

127. Find 'c' of the Lagrange's Mean Value Theorem when f(x = x(x-2))

in [1,2]

Watch Video Solution

128. Find a point on the parabola $y = (x - 3)^2$, where the tangent s

parallel to the chord joining (3,0) and (4,1)

129. Lagrange's Theorem to determine a point P on the curve $f(x) = \sqrt{x-2}$ defined in the interval [2,3], where the tangent is parallel to the chord joining the end points on the curve.

 $f(x) = \frac{x^2 - 25}{x + 5}, x \neq -5$

Watch Video Solution

135. Examine the following function for continuity: f(x) = |x - 5|

136. Prove that the function $f(x) = x^n$, is continuous at x = n, where

n is a positive integer.

138. Find all the points of discontinuity of f, where f is defined by

$$f(x) = \begin{cases} 2x + 3, & \text{if } x \le 2\\ 2x - 3, & \text{if } x > 2 \end{cases}$$

139. Find all points of discontinuity of f, where f is defined by : f(x)=

 $\{(|x|+3,...,if x \le -3),(-2x,...,if -3=3):\}$

140. Find all points of discontinuity of f, where f is defined by :

$$f(x) = \begin{cases} \frac{|x|}{x} & \text{if } x \neq 0\\ 0 & \text{if } x = 0 \end{cases}$$

Watch Video Solution

141. Find all points of discontinuity of f, where f is defined by:

$$f(x) = \begin{cases} \frac{x}{|x|} & \text{if } x < 0\\ -1 & \text{if } x \ge 0 \end{cases}$$

142. Find all points of discontinuity of f, where f is defined by

$$f(x) = \begin{cases} x+1 & \text{if } x \ge 1 \\ x^2 + 1 & \text{if } x < 1 \end{cases}$$

Watch Video Solution

143. Find all points of discontinuity of f, where f is defined by :

$$f(x) = \begin{cases} x^3 - 3 & x \le 2\\ x^2 + 1 & x > 2 \end{cases}$$

Watch Video Solution

144. Find all points of discontinuity of f, where f is defined by

$$f(x) = \begin{cases} x^{10} - 1 & \text{if } x \le 1 \\ x - 5 & \text{if } x > 1 \end{cases}$$

145. Discuss the continuity of the function
$$f(x) = \begin{cases} 3, & \text{if } 0 \le x \le 1 \\ 4, & \text{if } 1 < x < 3 \\ 5, & \text{if } 3 \le x \le 10 \end{cases}$$
Watch Video Solution

146. Discuss the continuity of the function f, where f is defined by:

$$f(x) = \begin{cases} 2x & \text{if } x < 0\\ 0 & \text{if } 0 \le x \le 1\\ 4x & \text{if } x > 1 \end{cases}$$

Watch Video Solution

147. Find all points of discontinuity of f, where f is defined by f(x) =

$$(-2, \text{ if } x \le -1), (2x, \text{if} -1 < x < 1), (2, \text{if } x > 1) : \}$$

148. Find the relationship between a and b so that the function f

defined by: $f(x) = \begin{cases} ax + 1 & \text{if } x \le 3 \\ bx + 3 & \text{if } x > 3 \end{cases}$ is continuous at x = 3

Watch Video Solution

149. For what value of λ is the function defined by

$$f(x) = \begin{cases} \lambda \left(x^2 - 2x \right) & \text{if } x \le 0 \\ 4x + 1 & \text{if } x > 0 \end{cases}$$

 ≤ 0 continuous at x = 0? What > 0

about continuity at x = 1?

Watch Video Solution

150. Show that the function defined by g(x) = x - [x] is discontinuous at all integral points. Here [x] denotes the greatest

154. Discuss the continuity of the following function:

 $f(x) = \sin x \cdot \cos x$

Watch Video Solution

155. Discuss the continuity of the cosine, cosecant, secant and cotangent functions.

157. Determine if f defined by :
$$f(x) = \begin{cases} x^2 \sin\left(\frac{1}{x}\right) & \text{if } x \neq 0 \\ 0 & \text{if } x = 0 \end{cases}$$

a continuous function?

Watch Video Solution

158. Discuss the continuity of the following function: $f(x) = \sin x - \cos x$ **Vatch Video Solution**

159. Find the values of k so that the function f is continuous at the

indicated point :
$$f(x) = \begin{cases} k \frac{\cos x}{\pi - 2x} & \text{if } x \neq \frac{\pi}{2} \\ 3 & \text{if } x = \frac{\pi}{2} \end{cases}$$
 at $x = \frac{\pi}{2}$

indicated point :
$$f(x) = \begin{cases} kx^2 & \text{if } x \le 2\\ 3 & \text{if } x > 2 \end{cases}$$
 at $x = 2$

161. Find the values of k so that the function f is continuous at the

indicated point :
$$f(x) = \begin{cases} k \frac{\cos x}{\pi - 2x} & \text{if } x \neq \frac{\pi}{2} \\ 3 & \text{if } x = \frac{\pi}{2} \end{cases}$$
 at $x = \frac{\pi}{2}$

162. Find the values of k so that the function f is continuous at the

indicated point :
$$f(x) = \begin{cases} kx + 1 & \text{if } x \le 5 \\ 3x - 5 & \text{if } x > 5 \end{cases}$$
 at $x = 5$

163. Find the values of a and b such that the function defined by :

`f(x)={(5,,,, if x le2),(ax+b,,,, if 2

164. Show that the function defined by $f(x) = \cos(x^2)$ is a continuous function.

165. Show that the function defined by $f(x) = |\cos x|$ is a continuous

function.

168. Differentiate the functions with respect to x

cos(sinx)

 $\cos\left(\sqrt{x}\right)$

175. Prove that the function f given by : $f(x) = |x - 1|, x \in R$ is not

differentiale at x =1

176. Prove that f(x) = [x], 0 < x < 3 is not differentiable at x = 1 but

x = 2.

Watch Video Solution

177. Find
$$\frac{dy}{dx}$$
 in the following:

2x+3y = sinx

178. Find
$$\frac{dy}{dx}$$
 in the following: $2x + 3y = \sin x$

Watch Video Solution

179. Find
$$\frac{dy}{dx}$$
 in the following:
 $ax + by^2 = \cos y$

180. Find
$$\frac{dy}{dx}$$
 in the following:
 $xy + y^2 = \sin x + y$

181. Find
$$\frac{dy}{dx}$$
 in the following:
 $x^{2} + xy + y^{2} = 100$

Watch Video Solution

182. Find
$$\frac{dy}{dx}$$
 in the following:
 $x^3 + x^2y + xy^2 + y^3 = 81$

Watch Video Solution

183. Find
$$\frac{dy}{dx}$$
 in the following:

 $\sin^2 y + \cos xy = \pi$

184. Find $\frac{dy}{dx}$ in the following: $\sin^2 x + \cos^2 y = 9$

Watch Video Solution

185. Find
$$\frac{dy}{dx}$$
 in the following:
 $y = \sin^{-1}\left(2\frac{x}{1+x^2}\right)$

Watch Video Solution

186. Differentiate the following w.r.t. x:

$$\tan^{-1}\left(\frac{3x-x^3}{1-3x^2}\right), -\frac{1}{\sqrt{3}} < x < \frac{1}{\sqrt{3}}$$

187. Find $\frac{dy}{dx}$ in the following: $y = \cos^{-1}\left(\frac{1-x^2}{1+x^2}\right), 0 < x < 1$

Watch Video Solution

$$\sin^{-1}\left(\frac{1-x^2}{1+x^2}\right), \ 0 < x < 1$$

Watch Video Solution

189. Differentiate the following w.r.t. x:

$$\cos^{-1}\left(2\frac{x}{1+x^2}\right)$$
, $-1 < x < 1$

190. Find
$$\frac{dy}{dx}$$
 in the following: $y = \sin^{-1}\left(2x\sqrt{1-x^2}\right)$, $-\frac{1}{\sqrt{2}} < x < \frac{1}{\sqrt{2}}$

191. Find
$$\frac{dy}{dx}$$
 in the following: $y = \sec^{-1}\left(\frac{1}{2x^2 - 1}\right)$, $0 < x < \frac{1}{\sqrt{2}}$

Watch Video Solution

192. Differentiate the following w.r.t. x :

sin*x*

193. Differentiate the following w.r.t. x :

 $e^{\sin^{-1}x}$

Watch Video Solution
194. Differentiate the following w.r.t. x: $e^x \wedge 3$
Watch Video Solution
195. Differentiate the following w.r.t x
$\sin\left(\tan^{-1}\left(e^{-x}\right)\right)$
Watch Video Solution

196. Differentiate the following w.r.t x

199. Differentiate the following w.r.tx:

202. Differentiate the following w.r.t x

 $(\log x)^{\cos x}$

205. Differentiate the following w.r.t. x :

$$\left(x+\frac{1}{x}\right)^x+x^{x+\frac{1}{x}}$$

Watch Video Solution

206. Differentiate the following w.r.t. x:

 $(x)^{\log x} + (\log x)^x$

Watch Video Solution

207. Differentiate the following w.r.t. x:

 $(\sin x)^x + \sin^{-1}\sqrt{x}$

211. Find
$$\frac{dy}{dx}$$
 of the function : $x^y + y^x = 1$

212. Find
$$\frac{dy}{dx}$$
, if $y^x = x^y$

213. Find
$$\frac{dy}{dx}$$
 of the function $:(\cos x)^y = (\cos y)^x$

214. Find
$$\frac{dy}{dx}$$
 of the function $:xy = e^{x-y}$

215. Find the derivative of the function given by $f(x) = (1 + x)(1 + x^2)(1 + x^4)(1 + x^8)$ and hence find f(1)

Watch Video Solution

216. Differentiate
$$(x^2 - 5x + 8)(x^3 + 7x + 9)$$
 by using product rule.

Watch Video Solution

217. Differentiate
$$(x^2 - 5x + 8)(x^3 + 7x + 9)$$
 by expanding the

product to obtain a single polynomial.

218. Differentiate
$$(x^2 - 5x + 8)(x^3 + 7x + 9)$$
 by logarithmic

differentiation.

Watch Video Solution

219. If u, v and w are functions of x, then show that $d/dx(u \ cdot v \ cdot w) = du/dx (v \ cdotw + u \ cdot \ dv/dx \ cdotw + u \ cdot v \ dw/dx) in two ways - first by repeated application of product rule, second by logarithmic differentiation.$

Watch Video Solution

220. Find $\frac{dy}{dx}$, if x and y are connected parametrically by the equations, given below without eliminating the parameter. $x = 2at^2$, $y = at^4$

221. If x and y are connected parameterically by the equation ,

without eliminating the parameter , find $\frac{dy}{dx}$

 $x = a\cos(\theta), y = b\sin(\theta)$

Watch Video Solution

222. Find
$$\frac{dy}{dx}$$
 if $x = \sin t$ and $y = \cos 2t$.

Watch Video Solution

223. Find $\frac{dy}{dx}$, if x and y are connected parametrically by the equations, given below without eliminating the parameter.

$$x = 4t, y = \frac{4}{t}$$

224. Find $\frac{dy}{dx}$, if x and y are connected parametrically by the equations, given below without eliminating the parameter. $x\cos\theta - \cos 2\theta$, $y = \sin \theta - \sin 2\theta$

Watch Video Solution

225. Find $\frac{dy}{dx}$, if x and y are connected parametrically by the equations, given below without eliminating the parameter. x = $a(\theta - \sin\theta)$, y = $a(1 + \cos\theta)$

Watch Video Solution

226. If x and y are connected parametrically by the equations given

in Exercises 1 to 10, without eliminating the parameter, Find $\frac{dy}{dx}$:
$$x = a\left(\cos t + \frac{\log \tan t}{2}\right)y = a\sin t$$

227. If x and y are connected parametrically by the equation , dv

without eliminating parameter , find $\frac{dy}{dx}$

 $x = a \sec(\theta), y = b \tan(\theta)$

Watch Video Solution

228. If x and y are connected parametrically by the equations given

in Exercises 1 to 10, without eliminating the parameter, Find $\frac{dy}{dx}$:

$$x = a(\cos\theta + \theta\sin\theta), y = a(\sin\theta - \theta\cos\theta)$$

229. Find
$$\frac{dy}{dx} = -\frac{y}{x}$$
 if $x = \sqrt{a^{\sin^{-1}t}}$, $y = \sqrt{a^{\cos^{-1}t}}$
Watch Video Solution
230. Find the second order derivatives of the function : $x^2 + 3x + 2$
Watch Video Solution
231. Find the second order derivatives of the function: x^{20}
Watch Video Solution
232. Find the second order derivatives of the function : $x \cdot \cos x$

236. Find the second order derivatives of the function : $e^{6x}\cos 3x$

237. Find the second order derivatives of the function : $\tan^{-1}x$

Watch Video Solution			
238. Find the second order derivatives of the function : log(log <i>x</i>)			
Watch Video Solution			
239. Find the second order derivatives of the function : sin(log <i>x</i>)			
Watch Video Solution			

240.
$$y = 5\cos x - 3\sin x$$
, prove that $\frac{d^2y}{dx^2} + y = 0$

Watch Video Solution

241. If $y = \cos^{-1}x$ Find $\left(d^2 \frac{y}{dx^2}\right)$ in terms of y alone. Watch Video Solution 242. If $y = 3\cos(\log x) + 4\sin(\log x)$ show that $x^2y_2 + xy_1 + y = 0$ Watch Video Solution

243. If
$$y = Ae^{mx} + Be^{nx}$$
, Show that $\left(\frac{d^2}{dx^2}y\right) - (m+n)\frac{dy}{dx} + mny = 0$

244. If
$$y = 500e^{7x}$$
, show that $\frac{d^2y}{dx^2} = 49$ y

245. If
$$e^{y}(x+1) = 1$$
 show that $\left(d^{2}\frac{y}{dx^{2}}\right) = \left(\frac{dy}{dx}\right)^{2}$ ਹੈ।

246. If
$$y = [\tan^{-1}x]^2$$
, then prove that :
 $(x^2 + 1)^2 y_2 + 2x(x^2 + 1)y_1 = 2.$

Watch Video Solution

247. Verify Rolle's theorem for the function
$$f(x) = x^2 + 2x - 8, x \in [-4, 2]$$

248. Examine if Rolle's theorem is applicable to any of the following functions. Can you say some thing about the converse of Rolle's theorem from these example? f(x) = [x] for $x \in [5, 9]$

Watch Video Solution

249. Examine if Rolle's theorem is applicable to any of the following

functions. Can you say some thing about the converse of Rolle's

theorem from these example? f(x) = [x] for $x \in [-2, 2]$

250. Examine if Rolle's theorem is applicable to any of the following functions. Can you say some thing about the converse of Rolle's theorem from these example? $f(x) = x^2 - 1$ for $x \in [1, 2]$

251. If $f: [-5, 5] \rightarrow R$ is a differentiable function and if f(x) does

not vanish anywhere, then prove that $f(-5) \neq f(5)$

0	Watch	Video	Solution

252. Verify Mean Value Theorem, if $f(x) = x^2 - 4x - 3$, in the interval

[a, b], where a = 1 and b = 4.

Watch Video Solution

253. Examine the applicability of Mean Value Theorem for all three functions given in the above exercise 2. (i) f(x) = [x] for $x \in [5,9]$ (ii) f(x) = [x] for $x \in [-2,2]$ (iii) f(x) = [xsqrt -1] for $x \in [1,2]$

258. Differentiate w.r.t. x the function : $\frac{\cos^{-1}\left(\frac{x}{2}\right)}{\sqrt{2x+7}}$, x lies between -2

and 2

265. Find
$$\frac{dy}{dx}$$
 if $y = \sin^{-1}x + \sin^{-1}\sqrt{1 - x^2}$, $0 < x < 1$

266. If
$$x\sqrt{1+y+y}\sqrt{1+x} = 0$$
 then $\frac{dy}{dx}$ equals.

Watch Video Solution

267. If
$$\cos y = x\cos(a + y)$$
, with $\cos a \neq \pm 1$, prove that $\frac{dy}{dx} = \frac{\cos^2(a + y)}{\sin a}$

270. Using mathematical induction prove that $d\frac{x^n}{dx} = nx^{n-1}$ for all

positive integers n.

Watch Video Solution

271. Using the fact that sin(A + B) = sinAcosB + cosAsinB and the

differentiation, obtain the sum formula for cosines.

272. Does there exist a function which is continuous everywhere

but not differentiable at exactly two points? Justify your answer.

Watch Video Solution

273. If
$$y = \begin{vmatrix} f(x) & g(x) & h(x) \\ 1 & m & n \\ a & b & c \end{vmatrix}$$
, prove that $\frac{dy}{dx} = \begin{vmatrix} f'(x) & g'(x) & h'(x) \\ l & m & n \\ a & b & c \end{vmatrix}$

Watch Video Solution

274. If
$$y = e^{a\cos^{-1}x}$$
, $-1 \le x \le 1$, show that

$$\left(1 - x^2\right)\frac{d^2y}{dx^2} - x\left(\frac{dy}{dx}\right) - a^2y = 0$$

275. If
$$f(x) = \begin{cases} \frac{x^3 + x^2 - 16x + 20}{(x - 2)^2} & x \neq 2\\ k & x = 2 \end{cases}$$
 is continuous at x =2, find the

value of 'k'.

Watch Video Solution

276. The derivative of f(x) = |x| at x=0 is

O Watch Video Solution

277. If
$$y = \tan x + \sec x$$
, prove that $\frac{d^2y}{dx^2} = \frac{\cos x}{(1 - \sin x)^2}$

Watch Video Solution

278. If
$$f(x) = \frac{\sqrt{2}\cos x - 1}{\cot x - 1}$$
, $x \neq \frac{\pi}{4}$, find the value of $f\left(\frac{\pi}{4}\right)$ so that $f(x)$ becomes continuous at $x = \frac{\pi}{4}$

279. Examine the differentiability of the function 'f' defined by:

 $f(x) = \begin{cases} 2x+3 & \text{if } -3 \le x < -2\\ x+1 & \text{if } -2 \le x < 0\\ x+2 & \text{if } 0 \le x \le 1 \end{cases}$

Watch Video Solution

280. Differentiate
$$\left[\tan^{-1}\left\{\frac{\sqrt{1-x^2}}{x}\right\}\right]$$
 with respect to $\left[\cos^{-1}\left\{2x\sqrt{1-x^2}\right\}\right]$

281. If
$$f(x) = \begin{cases} x \sin\left(\frac{1}{x}\right) & x \neq 0 \\ 0 & x = 0 \end{cases}$$
 Show that 'f' is not differentiable at x

=0

Watch Video Solution

282. Show that
$$f(x) = \begin{cases} x \sin \frac{1}{x}, & \text{when } x \neq 0 \\ 0, & \text{when } x = 0 \end{cases}$$
 is continuous but not

differentiable at x = 0

283. If
$$f(x) = \begin{cases} x \sin\left(\frac{1}{x}\right) & x \neq 0 \\ 0 & x = 0 \end{cases}$$
 Show that 'f' is not differentiable at

x =0

Watch Video Solution

284. Show that
$$f(x) = \begin{cases} |2x - 3|[x] | x \ge 1 \\ \sin\left(\frac{\pi x}{2}\right) | x \le 1 \end{cases}$$
 is continuous but not

differentiable at x =1.

Watch Video Solution

285. Does there exist a function which is continuous everywhere

but not differentiable at exactly two points? Justify your answer.

286. Is |sinx| differetiable? What about cos|x|?

$$\sqrt{3x+2} + \frac{1}{\sqrt{2x^2+4}}$$

292. Differentiate the following w.r.t. x: $e^{\log x}$

293. Differentiate the following w.r.t. x: $e^{2\log x + 3}$

294. Prove that
$$\cot^{-1}x + \cot^{-1}\left(\frac{1}{x}\right)$$
 is a constant.

Watch Video Solution

295. If
$$y = f\left(\frac{2x-1}{x^2+1}\right)$$
 and $f(x) = \sin x^2$, then find $\frac{dy}{dx}$.

296. Find the derivative of the following w.r.t x,

$$\log\left(\frac{1}{\sqrt{x}}\right) + 5x^{a} - 3a^{x} + \sqrt[3]{x^{2}} + 6\sqrt[4]{x^{-3}}$$

297. If
$$y = \tan^{-1}\left(\frac{e^{2x}+1}{e^{2x}-1}\right)$$
, prove that : $\frac{dy}{dx} = -\frac{2e^{2x}}{1+e^4x}$

Watch Video Solution

298. If the derivative of $\tan^{-1}(a + bx)$ takes the value 1 at x =0, prove

that
$$1 + a^2 = b$$

299. Using the fact that sin(A + B) = sinAcosB + cosAsinB and the

differentiation, obtain the sum formula for cosines.

302. If x sin (a+y) + sin a cos (a+y) = 0, then prove that :

$$\frac{dy}{dx} = \frac{\sin^2(a+y)}{\sin a}$$

303. If
$$y = x\sin(a + y)$$
, prove that $\frac{dy}{dx} = \frac{\sin^2(a + y)}{\sin(a + y) - y\cos(a + y)}$

Watch Video Solution

304. Differentiate log [log(logx)] w.r.t. x.

305. If
$$y = e^{x^{e^2}}$$
 Find : $\frac{dy}{dx}$

306. Find
$$\frac{dy}{dx}$$
 when :
 $y = x^{\sin x - \cos x} + \frac{x^2 - 1}{x^2 + 1}$

Watch Video Solution

307. Find
$$\frac{dy}{dx}$$
 when :
 $y = x^{\cot x} + \frac{2x^2 - 3}{x^2 + x + 2}$

Watch Video Solution

308. If
$$y = x^{x^x}$$
 prove that $\frac{dy}{dx} = x^{x+x^x} \left[\frac{1}{x} + (1 + \log x) \log x \right]$

312. if $x = \sec\theta - \cos\theta$ and $y = \sec^n\theta - \cos^n\theta$, then show that

$$\left(x^2+4\right)\left(\frac{dy}{dx}\right)^2 = n^2\left(y^2+4\right)$$

Watch Video Solution

313. For what choices of a,b,c if any , does the function

$$f(x) = \begin{cases} ax^2 + bx + c & 0 \le x \le 1 \\ bx - c & 1 \le x \le 2 \\ c & x > 2 \end{cases}$$
 become differentiable at x =1

andx=2?

Watch Video Solution

314. Using mathematical induction prove that $d\frac{x^n}{dx} = nx^{n-1}$ for all

positive integers n.

315. If
$$(1 + x)^n = C_0 + C_1 x + C_2 x^2 + \dots + C_n x^n$$
, prove that

$$C_1 + 2C_2 + 3C_3 + \dots + nC_n = n \cdot 2^{n-1}$$

316. If
$$(1 + x)^n = C_0 + C_1 x + C_2 x^2 + \dots + C_n x^n$$
, then prove that :

$$C_1 - 2C_2 + \dots + (-1)^{n-1}nC_n = 0$$

317. Are the following functions continuous at each point of their

domains? e^x

318. Are the following functions continuous at each point of their

domains? Sinx

320. The greatest integer function [x] is continous everywhere?..

321. Find
$$\frac{dy}{dx}$$
 when 2x+3y = cos x.

322. The derivative of $\cos^{-1} x$ is.....

323. Differentiate
$$e^{\sin^{-1}x}$$
, w. r. t. x

Watch Video Solution

324. If
$$y = \log(\cos e^x)$$
, then $\frac{dy}{dx} = \dots$

325. Find
$$\frac{d^2y}{dx^2}$$
 when y = log x +x

1. If
$$f(x) = \begin{cases} kx^2 & x < 2\\ 3 & x \ge 2 \end{cases}$$
 is continuous at x = 2, then the value

of 'k' is :

- **2.** Check the continuity of the function f given by f(x) = 2x + 3 at
- x = 1

3. Check the continuity of the following functions: $f(x) = x^2 a t x = 0$

4. Examine the continuity of the function $f(x) = 2x^2 - 1$ at x = 3

6. Is the function defined by f(x) = |x|, a continuous function?

Watch Video Solution

7. Find the point at which the function f(x) = [x] is not continuous

in (-1,4). ([x] is the largest function).

8. Examine the following function for continuity: f(x) = x - 5

12. Examine the following function for continuity: f(x) = |x - 5|

13. Prove that the following functions are continuous at all points

of their domains: $f(x) = \cos x$

Watch Video Solution

Watch Video Solution

14. Prove that the following functions are continuous at all points

of their domains: $f(x) = e^{x} + e^{-x}$

15. Prove that the following functions are continuous at all points

of their domains: $f(x) = \tan x$

19. Discuss the continuity of the following functions:

$$f(x) = \frac{\sin x}{\cos x}$$
Watch Video Solution

20. Prove that $f(x) = |\sin x|$ is continous at all point of its domnin.

Watch Video Solution

21. Examine if sin |x| is a continuous function.

22. Is the function defined by $f(x) = x^2 - \sin x + 5$ continuous at

 $x = \pi$

23. Show that f_x = x - |x|, $x \in R$ is continuous at x=0

Watch Video Solution

24. Find all points of discontinuity of f, where f is defined by :

$$f(x) = \begin{cases} x+1 & x \ge 1 \\ x^2 + 1 & x < 1 \end{cases}$$

Watch Video Solution

25. Find all points of discontinuity of f, where f is defined by :

$$f(x) = \begin{cases} x^3 - 3 & x \le 2\\ x^2 + 1 & x > 2 \end{cases}$$

26. Find all points of discontinuity of f, where f is defined by :

$$f(x) = \begin{cases} x^{10} - 1 & x \le 1 \\ x^2 & x > 1 \end{cases}$$

Watch Video Solution

27. Find all the points of discontinuity of f, where f is defined by

$$f(x) = \begin{cases} 2x + 3, & \text{if } x \le 2\\ 2x - 3, & \text{if } x > 2 \end{cases}$$

Watch Video Solution

28. Find all points of discontinuity of f, where f is defined by :

$$f(x) = \begin{cases} \frac{|x|}{x} & \text{if } x \neq 0\\ 0 & \text{if } x = 0 \end{cases}$$

29. Find all points of discontinuity of f, where f is defined by:

$$f(x) = \begin{cases} \frac{x}{|x|} & \text{if } x < 0\\ -1 & \text{if } x \ge 0 \end{cases}$$

Watch Video Solution

30. Discuss the continuity of the function defined by:

 $\begin{cases} x+5 & \text{if } x \le 1 \\ x-5 & \text{if } x > 1 \end{cases}$

Watch Video Solution

31. Is the function f defined by $f(x) = \begin{cases} x & \text{if } x \le 1 \\ 5 & \text{if } x > 1 \end{cases}$

continuous at, x=0?At x=1? At x=2?

32. Show that the function:

$$\begin{cases} x^3 + 3 & \text{if } x \neq 0\\ 1 & \text{if } x = 0 \end{cases} \text{ is not continuous at } x = 0.$$

Watch Video Solution

33. Discuss the continuity of the function f defined by

$$f(x)=\frac{1}{x}, x\neq 0$$

Watch Video Solution

34. Discuss the continuity of the function f given by: $f(x) = \begin{cases} x & \text{if } x \ge 0\\ x^2 & \text{if } x < 0 \end{cases}$

35. Discuss the continuity of the function defined by: $f(x) = \begin{cases} x+2 & \text{if } x < 0 \\ -x+2 & \text{if } x > 0 \end{cases}$

36. Discuss the continuity of the function:

$$f(x) = \begin{cases} 1 + x^2 & 0 \le x \le 1\\ 2 - x & x > 1 \end{cases} \text{ at } x = 1$$

Watch Video Solution

Watch Video Solution

37. Examine the continuity of the function $f(x) = \begin{cases} x+1 & x \le 2\\ 2x-1 & x > 2 \end{cases}$ at x

= 2

38. Discuss the continuity of the function f(x) at x = 5, if

$$f(x) = \begin{cases} \frac{x^2 - 25}{x - 5}, & \text{if } x \neq 5\\ 10, & \text{if } x = 5 \end{cases}$$

Watch Video Solution

39. Discuss the continuity of the function

$$f(x) = \begin{cases} \frac{|x-2|}{2-x}, & x \neq 2\\ -1, & x = 2 \end{cases} \text{ at } x = 2.$$

Watch Video Solution

40. Discuss the continuity of the function

$$f(x) = \begin{cases} \frac{|x-2|}{2-x}, & x \neq 2\\ -1, & x = 2 \end{cases} \text{ at } x = 2.$$

41. Discuss the continuity of the function :

$$f(x) = \begin{cases} \frac{|x-a|}{x-a} & \text{when} x \neq a \\ 1 & \text{when} x = a \end{cases} \text{ at } x = a$$

Watch Video Solution

42. Discuss the continuity of the function :

$$f(x) = \begin{cases} -2 & \text{if } 0 \le x \le 1\\ 4 & \text{if } 1 \le x \le 3\\ 5 & \text{if } 3 \le x \le 10 \end{cases}$$

43. Differentiation of the function :

$$f(x) = 4x + 3$$

44. Show that the following function are continuous at x=0:

$$f(x) = |x| \cos\left(\frac{1}{x}\right) f \text{ or } x \neq 0 \text{ f(0)} = 0$$

Watch Video Solution

45. Show that the following function are continuous at x=0:

$$f(x) = \begin{cases} x \cos\left(\frac{1}{x}\right) & when x \neq 0\\ 0 & when x = 0 \end{cases}$$

46. Test the continuity of the following functions at indicated points :

$$f(x) = \begin{cases} x^2 \sin \frac{1}{x}, & x \neq 0\\ 0, & x = 0 \end{cases} \text{ at } x = 0$$

Watch Video Solution

47. Examine the continuity of the function 'f' at x = 0, if $f(x) = \{(x \in X) | x \in X\}$

sin(1/x)),(0):}, ((x ne 0),(x = 0))

Watch Video Solution

48. Examine the continuity of the function f(x) at x = 0,

$$f(x) = \begin{cases} \frac{|\sin x|}{x} & \text{when } x \neq 0\\ 1 & \text{when } x = 0 \end{cases}$$

49. Discuss the continuity of the function defined by

$$f(x) = \begin{cases} \frac{\tan 2x}{3x}, & x \neq 0\\ \frac{3}{2}, & x = 0 \end{cases}$$

50. Discuss the continuity of the cosine, cosecant, secant and cotangent functions.

51. Test the continuity of the following functions at indicated points :

$$f(x) = \begin{cases} (x-a)\cos\frac{1}{x-a}, & x \neq a\\ 0, & x = a \end{cases} \text{ at } x = a$$

52. Examine the function for continuity at x = 0:

$$f(x) = \begin{cases} \frac{\sin x}{x} & \text{when } x < 0\\ x + 1 & \text{when } x \ge 0 \end{cases}$$

Watch Video Solution

53. Discuss the continuity of f(x) at x = 0 if:

$$f(x) = \begin{cases} \frac{\sqrt{1+x} - \sqrt{1-x}}{\sin x} & \text{when } x \neq 0\\ 0 & \text{when } x = 0 \end{cases}$$

54. In the following, determine the constant so that given function

is continuous at indicated point:

$$f(x) = \begin{cases} kx^2 & \text{if } x \le 2\\ 2 & \text{if } x > 2 \end{cases} \text{ at } x = 2$$

Watch Video Solution

55. In the following, determine the constant so that given function

is continuous at indicated point:

$$f(x) = \begin{cases} kx + 1 & \text{if } x \le \pi \\ \cos x & \text{if } x > \pi \end{cases} \text{ at } x = \pi$$

56. In the following, determine the constant so that given function is continuous at indicated point:

$$f(x) = \{(kx + 5, when x \le 2), (x - 1), when x > 2\}$$
 at x = 2

Watch Video Solution

58. In the following, determine the constant so that given function

is continuous at indicated point:

`f(x) ={:{(3x-8,ifx≤5),(2k,ifx>5):} at x=5

59. In the following, determine the constant so that given function

is continuous at indicated point:

$$f(x) = \begin{cases} \frac{\sin 2x}{5x} & \text{when } x \neq 0\\ m & \text{when } x = 0 \end{cases} \text{ at } x = 0$$

Watch Video Solution

60. Find the values of k so that the function f is continuous at the

indicated point :
$$f(x) = \begin{cases} k \frac{\cos x}{\pi - 2x} & \text{if } x \neq \frac{\pi}{2} \\ 3 & \text{if } x = \frac{\pi}{2} \end{cases}$$
 at $x = \frac{\pi}{2}$

Watch Video Solution

61. In the following, determine the constant so that given function

is continuous at indicated point:

$$f(x) = \begin{cases} \frac{x^2 - 3x + 2}{x - 1} & \text{if } x \neq 1 \\ k & \text{if } x = 1 \end{cases} \text{ at } x = 1$$

62. In the following, determine the constant so that given function is continuous at indicated point:

$$f(x) = \begin{cases} \frac{x^2 - 1}{x - 1} & \text{if } x \neq 1\\ k & \text{if } x = 1 \end{cases} \text{ at } x = 1$$

Watch Video Solution

63. For what value of 'k' is the function defined by $f(x) = \begin{cases} k(x^2 + 2) & \text{if } x \le 0 \\ & \text{continuous at } x = 0? \text{ Also write} \end{cases}$

$$\int_{3x+1} \quad \text{if } x > 0$$

whether the function is continuous at x =1.

64. If the function defined by :

$$f(x) = \begin{cases} 2x - 1 & x < 2\\ a & x = 2 \\ x + 1 & x > 2 \end{cases}$$
 is continuous at x =2, find the value of 'a'. Also

discuss the continuity of f(x) at x = 3.

Watch Video Solution

65. If the following function f(x) is continuous at x = 0, find the value of 'a':

$$f(x) = \left\{ \left(\frac{1 - \cos 4x}{x} 2, x < 0 \right), (a, x = 0), \left(\left(\frac{\sqrt{x}}{\sqrt{16 + \sqrt{x}} - 4, x > 0} \right) \right) \right\}$$

Watch Video Solution

66. Determine the constants 'a' and 'b' so that the function 'f'

defined below is continuous everywhere:

 $f(x) = \{(5, \text{ if }, x \le 2)(ax + b, \text{ if }, 2 \le x \le 10)(21, \text{ if }, x \ge 10)\}$

Watch Video Solution

67. Determine the constants 'a' and 'b' so that the function 'f' defined below is continuous everywhere:

$$f(x) = \begin{cases} x+2 & x \le 2\\ ax+b & 2 < x < 5\\ 3x-2 & x \ge 5 \end{cases}$$

Watch Video Solution

68. If the function f(x) given by:

$$f(x) = \begin{cases} 2ax + b & \text{if } x > 1\\ 9 & \text{if } x = 1 \text{ is continuous at } x = 1, \text{ find the values 'a'}\\ 6ax - 2b & \text{if } x < 1 \end{cases}$$

and 'b'.

69. Find the values of a and b so that the following function is

continuous at x = 3 and x=5:

$$f(x) = \begin{cases} 1 & \text{if } x \le 3\\ ax + b & \text{if } 3 < x < 5\\ 7 & \text{if } 5 \le x \end{cases}$$

70. Find 'a' and 'b' if the function:

$$f(x) = \begin{cases} \frac{\sin x}{x} & -2 \le x < 0\\ a.2^x & 0 \le x \le 1\\ b+x & 1 < x \le 2 \end{cases}$$
 is a continuous function on [-2,2]

71. Find the values of 'p' and 'q' for which:

$$f(x) = \left\{ \left(\frac{1 - \sin^3 x}{3\cos^2 x}, \text{ if } x < \frac{\pi}{2} \right), \left(p, \text{ if } x = \frac{\pi}{2}, \left(\frac{q(1 - \sin x)}{(\pi - 2x)^2}, \text{ if } x > \frac{\pi}{2} \right) \right\}$$

is continuous at $x = \pi/2$

Watch Video Solution

72. The function f(x) is defined as follows:

$$f(x) = \begin{cases} x^2 + ax + b & 0 \le x < 2\\ 3x + 2 & 2 \le x \le 4 & \text{If } f(s) \text{ is continuous on } [0,8], \text{ find the}\\ 2ax + 5b & 4 < x \le 8 \end{cases}$$

values of 'a' and 'b'.

73. A man is driving a car on the dangerous path given by:

$$f(x) = \begin{cases} \frac{1-x^m}{1-x} & x \neq 1\\ m-1 & x = 1 \end{cases}, m \in N. \text{ Find the dangerous point (point of } m - 1 & x = 1 \end{cases}$$

discontinuity) on the path. Whether the driver should pass that point on not? Justify your answer?

74. Find all the points of discontinuity of the function f defined by

$$f(x) = \begin{cases} x + 2 & \text{if } x < 1 \\ 0 & \text{if } x = 1 \\ x - 2 & \text{if } x > 1 \end{cases}$$

75. Find all points of discontinuity of f, where f is defined by : f(x)=

 $\{(|x|+3,...,if x \le -3),(-2x,...,if -3=3):\}$

76. Find all the points of discontinuity of f, where f is defined by

$$f(x) = \begin{cases} 2x + 3, & \text{if } x \le 2\\ 2x - 3, & \text{if } x > 2 \end{cases}$$

Watch Video Solution

77. Show that the following functions are continuous:

$$f(x) = \sin\left(x^2\right)$$

78. Show that the following functions are continuous:

80. Show that the function 'f' given by:

 $f(x) = |x| + |x - 1|, x \in R$ is continuous both at x = 0 and x=1

81. Show that the function 'f' given by:

 $f(x) = |x - 1| + |x - 2|, x \in R$ is continuous both at x =1 and x=2

82. Locate the points of discontinuity of the function:

$$f(x) = \begin{cases} \frac{x^4 - 16}{x - 2} & \text{if } x \neq 2\\ 16 & \text{if } x = 2 \end{cases}$$

Watch Video Solution

83. Examine the derivability of the following functions at the specified points:

|x|at x=0

84. Examine the derivability of the following functions at the specified points:

[x] at x=1

Watch Video Solution

85. Examine the derivability of the following functions at the specified points:

 $|x|^2 a t x = 0$

Watch Video Solution

86. Examine the derivability of the following functions at the specified points:

$$x^3atx = 2$$

87. If 'f' is differentiable at x = a, find
$$\left(\lim_{x \to a} \frac{x^2 f(a) - a^2 f(x)}{x - a}\right)$$

Watch Video Solution

88. If F(x) = f(Ax) and f(ax) is differentiable , then prove that F'(x) =

af' (ax), $a \neq 0$

Watch Video Solution

89. If
$$f(x) = \begin{cases} x \sin\left(\frac{1}{x}\right) & x \neq 0 \\ 0 & x = 0 \end{cases}$$
 Show that 'f' is not differentiable at x

=0

90. Show that the function defined by:

$$f(x):\begin{cases} 3-2x & \text{if } x < 2\\ 3x-7 & \text{if } x \ge 2 \end{cases} \text{ is not derivable at x =2.}$$

Watch Video Solution

91. Discuss the continuity of fx) at x =0, when:

$$f(x) = \begin{cases} \frac{e^{1/x} - 1}{e^{1/x} + 1} & x \neq 0\\ 0 & x = 0 \end{cases}$$

Watch Video Solution

92. Show that the function:

$$f(x) = \begin{cases} 2+x & \text{if } x \ge 0\\ 2-x & \text{if } x < 0 \end{cases} \text{ is continuous but not derivable at x=0}$$

Match Midaa Calutia

93. Show that the function 'f' defined as follows, is continuous at x

= 2, but not differentiable there at:

$$f(x) = \begin{cases} 3x - 2 & 0 < x \le 1\\ 2x^2 - x & 1 < x \le 2\\ 5x - 4 & x > 2 \end{cases}$$

Watch Video Solution

94. The function 'f' defined as:

$$f(x) = \begin{cases} x^2 + 3x + a & \text{if } x \le 1 \\ bx + 2 & \text{if } x > 1 \end{cases}$$
 is derivable for every x, Find the

values of 'a' and 'b'.

95. For what values of 'a' and 'b' the function:

$$f(x) = \begin{cases} x^2 & x \le c \\ ax + b & x > c \end{cases}$$
 is differentiable at x =c.

Watch Video Solution

96. Let $f: R \rightarrow R(R \text{ is the set of real numbers})$ be defined as follows:

$$f(x) = \left\{ : (2 - x, \text{ if } 1 \le x \le 2), \left(x - \frac{1}{2}x^2, \text{ if } x \ge 2\right): \text{ Examine the} \right\}$$

continity and differentiability of f(x) at x=2.

Watch Video Solution

97. Show that f(x) = |x-3|, x in R` is continuous but not differentiable

at x =3.

98. Write an example of a function, which is continuous everywhere

but fails to be differentiable at exactly five points.

$$f(x)=\Big(x^2+3x+4\Big).$$

101. Use Chain Rule to find the derivatives of the following:

$$f(x) = \left(3x^2 + 2\right)^3 (5x - 1)^2$$

Watch Video Solution

102. Use Chain Rule to find the derivatives of the following:

$$f(x) = \left(2x^2 + 3\right)^{\frac{5}{3}}(x+5)^{-\frac{1}{3}}$$

Watch Video Solution

103. Use Chain Rule to find the derivatives of the following:

$$f(x)=\frac{3}{2-x}, x\neq 2$$

104. Find the derivatives of the following:

$$h(x) = (x + 1)(x + 2)(x + 3)$$

Watch Video Solution

105. Use Chain Rule to find
$$\frac{dy}{dx}$$
, if $y = \left(\frac{3x-1}{(3x+1)^2}\right)$

Watch Video Solution

106. Find
$$\frac{dy}{dx}$$
, if $y = (4x^3 - 5x^2 + 1)$

107. Find
$$\frac{dy}{dx}$$
, if $y = 1 - 2\left(\frac{5x}{3x+2}\right)^2 + \left(\frac{5x}{3x+2}\right)^3$

108. Differentiate the following w.r.t. x:

 $\sin(x^2)$

Watch Video Solution

109. Differentiate the following w.r.t. x:

$$\sin\left(x^2+5\right)$$

Watch Video Solution

110. Differentiate the following w.r.t. x:

tan(3x+5)

111. Differentiate the following w.r.t. x:

 $sinx^0$

112. Differentiate the following w.r.t. x:

 $\sin^4(ax+b)^2$

Watch Video Solution

113. Differentiate the following w.r.t. x:

sin(cotx)

117. Differentiate the following w.r.t. x:

$$2\sqrt{\cot(x^2)}$$

Watch Video Solution

118. Differentiate the following w.r.t. x:

$$\sqrt{3x+2} + \frac{1}{\sqrt{2x^2+4}}$$

119. Differentiate the following w.r.t. x:

$$\sqrt{10x^2 + x + 1}$$
sin(ax - b) $\cos(cx - d)$

Watch Video Solution	
121 Cos(a cos x + b sin x) for some constants 'a' and 'b'	

Watch Video Solution

122. If
$$y = \sin(ax^2 + bx + c)$$
, then find $\frac{dy}{dx}$

123. Find
$$\frac{dy}{dx}$$
 if :
 $y = 9u^2, u = 1 - \frac{3}{2}x^2$

124. Find
$$\frac{dy}{dx}$$
 if :
 $y = \frac{3 - v}{2 + v}, v = \frac{4x}{1 - x^2}$

Watch Video Solution

125. Find
$$\frac{dy}{dx}$$
 if :
 $y = at^2, t = \frac{x}{2a}$

Watch Video Solution

126. If
$$x^{16}$$
. $y^9 = (x^2 + y)^{17}$, prove that $\frac{dy}{dx} = \frac{2y}{x}$.

|2x-1|

 $x - y = \pi$

131. Find the derivative of y w.r.t x in each of the following:

 $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 2003$

Watch Video Solution

132. Find the derivative of y w.r.t x in each of the following:

 $x^3 + x^2y + xy^2 + y^3 = 81$

$$x^3 + 2x^2y + 3xy^2 + 4y^3 = 5$$

134. Find the derivative of y w.r.t x in each of the following:

2x+3y=sinx

Watch Video Solution

135. Find the derivative of y w.r.t x in each of the following:

2x+3y= siny.

$$ax + by^2 = \cos y$$

138. Find the derivative of y w.r.t x in each of the following:

 $\sin^2 y + \cos xy = \pi$

141. Find the derivative of y w.r.t x in each of the following:

y(y+1)=x(x+1)(x+2)

$$x^2 = \frac{x+3y}{x-3y}$$

144. Find the derivative of y w.r.t x in each of the following:

$$y^2 = 4ax$$

$$y = \frac{4}{3}x^{3/4}$$

Watch Video Solution

146. Find the derivative of f(x) w.r.t x in the following:

$$f(x) = \sqrt[3]{2x^4 + x^2 - x}$$

Watch Video Solution

147. Find the derivative of f(x) w.r.t x in the following:

$$f(x) = \sqrt[3]{ax + b}$$

148. Find the derivative of f(x) w.r.t x in the following:

$$f(x) = \left(x^2 + x + 5\right)^{1/3} \left(x^3 + 1\right)^{2/3}$$

Watch Video Solution

149. Find the derivative of f(x) w.r.t x in the following:

$$g(x) = \sqrt[3]{5x - 9} \sqrt[3]{3x - 4}$$

Watch Video Solution

150. Obtain
$$\frac{dy}{dx}$$
 when:
 $x^2 + y^2 + 2axy = 0$

151. Obtain
$$\frac{dy}{dx}$$
 when:
 $x^3 + y^3 + 3axy = 0$

D Watch Video Solution

152. Obtain
$$\frac{dy}{dx}$$
 when:
 $x^2 + y^2 + 2gx + 2fy + c =$

Watch Video Solution

0

153. Obtain
$$\frac{dy}{dx}$$
 when:
 $x^4 + y^4 + 4xy - 100 = 0$

154. If $x\sqrt{1+y} + y\sqrt{1+x} = 0$ for x lies between -1 and 1' prove that

 $dy/dx = -1/(1+x)^2$

Watch Video Solution

155. If
$$y = \sqrt{x} + \frac{1}{\sqrt{x}}$$
, then show that $2x\frac{dy}{dx} + y = 2\sqrt{x}$

Watch Video Solution

156. Find
$$\frac{dy}{dx}$$
 for each of the following:
 $y = (x^2 + 3x + 5)(x^2 - 2)^2$

157. Find $\frac{dy}{dx}$ for each of the following: $y = \left(\sqrt{x} + \frac{1}{\sqrt{x}}\right) \left(1 + x + x^2\right)$ Watch Video Solution

158. Find
$$\frac{dy}{dx}$$
 for each of the following:
$$y = \left(\frac{x - \sqrt{x}}{1 - 2x}\right)^2$$

Watch Video Solution

159. Find
$$\frac{dy}{dx}$$
 for each of the following:

$$y = \left(\frac{1}{1+x}\right) \left(x^{-2} + \frac{2}{x} - 1\right) + \sqrt[3]{x} - \frac{1}{\sqrt[3]{x}}$$

160. Find
$$\frac{dy}{dx}$$
 for each of the following:
 $y = \sqrt[3]{x^2(x^2 + 3)}$

Watch Video Solution

161. If
$$\cos y = x\cos(a + y)$$
, with $\cos a \neq \pm 1$, prove that
 $\frac{dy}{dx} = \frac{\cos^2(a + y)}{\sin a}$

162. If sin y = x sin (a+y), then show that:
$$\frac{dy}{dx} = \frac{\sin a}{1 - 2x\cos a + x^2}$$

Watch Video Solution

 $\tan^{-1}\sqrt{x}$

164. Differentiate the following w.r.t. *x*:

$$\cos^{-1}\left(\frac{x}{x+1}\right)$$

Watch Video Solution

165. Differentiate the following w.r.t. *x*:

$$\sin^{-1}\left(x\sqrt{x}\right), 0 \le x \le 1$$

$$\tan^{-1}\left(\frac{\cos x}{1+\sin x}\right)$$

Watch Video Solution

$$\cot^{-1}\left(\frac{1+\cos x}{\sin x}\right)$$

Watch Video Solution

177. Differentiate the following w.r.t. x:

$$\sin^{-1}\left(1-2x^2\right)$$

$$\sin^{-1}(3x - 4x^3), -\frac{1}{2} < x < \frac{1}{2}$$

Watch Video Solution

179. Differentiate the following w.r.t.x.

 $\cos^{-1}(4x^3 - 3x)$

Watch Video Solution

180. Differentiate the following w.r.t. *x*:

$$\sin^{-1}\left(\frac{2x}{1+x^2}\right)$$
, $-1 < x < 1$

$$\csc^{-1}\frac{1+x^2}{2x}$$

Watch Video Solution

182. Differentiate the following w.r.t. x:

$$\sin^{-1}\left(\frac{1-x^2}{1+x^2}\right), \ 0 < x < 1$$

Watch Video Solution

183. Differentiate the following w.r.t. *x*:

$$\cos^{-1}\left(\frac{1-x^2}{1+x^2}\right), 0 < x < 1$$

$$\cos^{-1}\left(2\frac{x}{1+x^2}\right), -1 < x < 1$$

Watch Video Solution

$$\tan^{-1}\left(2\frac{x}{1-x^2}\right), \ 0 < x < 1$$

Watch Video Solution

186. Differentiate the following w.r.t. x:

$$\tan^{-1}\left(\frac{3x-x^3}{1-3x^2}\right), -\frac{1}{\sqrt{3}} < x < \frac{1}{\sqrt{3}}$$

187. Differentiate the following w.r.t. x: $\tan^{-1}\left(\frac{x^{1/3} + A^{1/3}}{1 - x^{1/3}a^{1/3}}\right)$

188. Differentiate the following w.r.t.x.

$$\tan^{-1}\left(\frac{x}{\sqrt{a^2-x^2}}\right)$$

189. Differentiate the following w.r.t.
$$x$$
, tan⁻¹

$$\left(\frac{\sqrt{1+x^2}-1}{x}\right)$$

190. Differentiate the following w.r.t. x, tan⁻¹

$$\left(\frac{\sqrt{1+x^2}-1}{x}\right)$$

191. Differentiate the following w.r.t. *x*:

$$\cot^{-1}\left(\frac{1+x}{1-x}\right)$$

Watch Video Solution

192. Differentiate the following w.r.t. *x*:

$$\cot^{-1}\left(\sqrt{1+x^2}+x\right)$$

$$\tan^{-1}(\sec x + \tan x)$$

194. Differentiate the following w.r.t. *x*:

$$\tan^{-1}\sqrt{\frac{1-\cos x}{1+\cos x}}$$

Watch Video Solution

195. Differentiate the following w.r.t. x:
$$\tan^{-1}\sqrt{\frac{1+\sin x}{1-\sin x}}$$

196. Differentiate the following w.r.t. x: $\sin^{-1}x + \sin^{-1}\sqrt{1 - x^2}$, $-1 \le x \le 1$

Watch Video Solution

197. Differentiate the following w.r.t. *x*:

$$\sin^{-1}\left(\sqrt{\frac{1+x^2}{2}}\right)$$

Watch Video Solution

198. If
$$y = \cot^{-1}\left\{\frac{\sqrt{1 + \sin x} + \sqrt{1 - \sin x}}{\sqrt{1 + \sin x} - \sqrt{1 - \sin x}}\right\} 0 < x < \frac{\pi}{2}$$
, show that:
$$\frac{dy}{dx}$$
 is independent of x.

199. Differentiate w.r.t x : cot⁻¹
$$\left\{ \frac{\sqrt{1 + \sin x} + \sqrt{1 - \sin x}}{\sqrt{1 + \sin x} - \sqrt{1 - \sin x}} \right\}$$
, $0 < \theta < \frac{\pi}{2}$

Watch Video Solution

200. If
$$y = \tan^{-1}\left(\frac{5ax}{a^2 - 6x^2}\right)$$
. Prove that $\frac{dy}{dx} = \frac{3a}{a^2 + 9x^2} + \frac{2a}{a^2 + 4x^2}$

Watch Video Solution

201. If
$$y = \frac{\tan^{-1}(4x)}{1+5x^2} + \frac{\tan^{-1}(2+3x)}{3-2x}$$
, prove that $\frac{dy}{dx} = \frac{5}{1+25x^2}$

202. If
$$f(x) = \tan^{-1}x$$
, $g(x) = \tan^{-1}\left(\frac{1+x}{1-x}\right)$ fo $|x| < 1$, show that f' (x) = g'(x) and $g(x) - f(x) = pi/4$ `

203. If
$$\sqrt{1 - x^6} + \sqrt{1 - y^6} = a^3 (x^3 - y^3)$$
, prove that :
 $\frac{dy}{dx} = \frac{x^2}{y^2} \sqrt{\frac{1 - y^6}{1 - x^6}}$.

204. If
$$y = \tan^{-1}(\cot x) + \cot^{-1}(\tan x)$$
, then prove that $: \frac{dy}{dx} + 2 = 0$

Watch Video Solution

205. Differentiate : cos(2x + 3)

206. Differentiate: $\cos x^2$

209. Differentiate the following w.r.tx:

 $e^{m\log x}$

$$\sqrt{e^{\sqrt{x}}}, x > 0$$

> Watch Video Solution

211. Differentiate the following w.r.t x

log(logx), x > 1

212. Differentiate the following w.r.tx:

log (sinx)

 $\sqrt{\tan^0} \alpha^x$

217. Differentiate the following w.r.t. x: $e^{\cos x}$

0	Watch Video Soluti	on
---	--------------------	----

218. Differentiate the following w.r.tx:

 $e^x \sin x$

Watch Video Solution

219. Differentiate the following w.r.tx:

 $x^{-1/3}e^{x}$

*x*sin*xe^x*

222. Differentiate the following w.r.tx:

tan{log(sinx)}

 $e^{\sin\sqrt{x}}$

 $e^{\cos^{-1}x^2}$

$$\sqrt{1-x^2}$$
. e^{5x}

227. Differentiate the following w.r.tx:

 $e^{\sqrt{1-x^2}}$. tanx

Watch Video Solution

228. Differentiate the following w.r.tx:

logx

x

231. Differentiate the following w.r.tx:

log(cos5x)
$\frac{1}{\log \cos x}$

233. Differentiate the following w.r.tx:

$$\left(x^2+7x+2\right)\left(e^x-\sin x\right)$$

Watch Video Solution

234. Differentiate the following w.r.tx:

 $e^{-3x}\sin^2 3x$

 $e^{-x^2}\sin(\log x)$

236. Differentiate the following w.r.tx:

$$\tan^{-1}\left(\frac{e^{2x}+1}{e^{2x}-1}\right)$$

Watch Video Solution

237. Differentiate the following w.r.tx:

$$\log\left((x+3) + \sqrt{x^2 + 6x + 3}\right)$$

238. Differentiate the following w.r.t.x.
$$\log\left(x + \sqrt{a^2 + x^2}\right)$$

$$x\sqrt{x^2+1} + \log\left(x+\sqrt{x^2+1}\right)$$

Watch Video Solution

240. Differentiate the following w.r.tx:

$$\frac{e^{x}(x-1)}{\left(x^{2}+1\right)}$$

 $\frac{e^{ax}}{\sin(bx+c)}$

243. Differentiate the following w.r.tx:

 $e^{x} + 2\cos x$

247. Differentiate the follow	ving w.r.t. x: $sin(log x)$, $x > 0$
-------------------------------	---------------------------------------

Watch Video Solution	
248. Differentiate the following w.r.tx:	
log(cos5x)	
Watch Video Solution	
249. Differentiate the following w.r.tx:	
$\cot\left(\log x + e^{\sqrt{x}}\right)$	
Vatch Video Solution	

$$2l_n\left(\frac{x-1}{x+1}\right)$$

Watch Video Solution

$$x^{2}l_{n}\left(\left(\sqrt{\frac{x^{2}+9}{x^{2}+4}}\right)\right)$$

Watch Video Solution

252. Differentiate the following w.r.tx:

 $l_n(\sec x + \tan x)$

$$\log\left(\frac{1+x}{1-x}\right)$$

Watch Video Solution

254. Differentiate the following w.r.t.x.

$$\log \tan \left(\frac{\pi}{4} + \frac{x}{2} \right)$$

Watch Video Solution

255. Differentiate the following w.r.t.x.

$$\sin^{-1}\left(2x\sqrt{1-x^2}\right)$$

256. Find
$$\frac{dy}{dx}$$
 if $y = x^x$

Watch Video Solution

257. Find
$$\frac{dy}{dx}$$
 when:

 $xy + ce^{-y} + ye^x = x^2$

Watch Video Solution

258. If
$$\frac{1}{2} \left(e^y - e^{-y} \right) = x$$
, proved: $\frac{dy}{dx} = \frac{1}{\sqrt{1 + x^2}}$

Watch Video Solution

259. If
$$xy = e^{x-y}$$
, prove that $\frac{dy}{dx} = \frac{y(x-1)}{x(y+1)}$

260. If
$$y = \frac{\sin^{-1}x}{\sqrt{1-x^2}}$$
, prove that $(1-x^2)\left(\frac{dy}{dx}\right) - xy = 1$

D Watch Video Solution

261. If
$$x = \tan\left(\frac{1}{2}\log y\right)$$
, then show that $\left(1 + x^2\right)\frac{d^2y}{dx^2} = (a - 2x)\frac{dy}{dx}$.

Watch Video Solution

262. Differentiate
$$\tan^{-1}\left(\frac{2^{x+1}}{1-4^x}\right)$$
 with respect to x.

x:

 e^2x

266. Find, from first principle , the derivative of the following w.r.t.

$e^{\sqrt{x}}$	
Vatch Video Solution	
267. Differentiate the following w.r.t. x: e^{-x}	
Vatch Video Solution	
268. Find, from first principle , the derivative of the following w.r.t.	
x:	
e ^{sinx}	
Watch Video Solution	

X:

log (sinx)

> Watch Video Solution

271. Find, from first principle , the derivative of the following w.r.t. x:

log(cosx)

X:

 $\log x^2$

Watch Video Solution

273. Find, from first principle, the derivative of the following w.r.t.

Х:

 $\cos(\log x)$, where x > 0

Watch Video Solution

274. Find $\frac{dy}{dx}$, if x and y are connected parametrically by the equations, given below without eliminating the parameter.

$$x = 2at^2, y = at^4$$

275. Find $\frac{dy}{dx}$, if x and y are connected parametrically by the equations, given below without eliminating the parameter.

 $x = 4t, y = \frac{4}{t}$

Watch Video Solution

276. Find $\frac{dy}{dx}$, if x and y are connected parametrically by the equations, given below without eliminating the parameter.

$$x = -\frac{2t}{1+t^2}, y = \frac{1-t^2}{1+t^2}$$

Watch Video Solution

277. Find $\frac{dy}{dx}$, if x and y are connected parametrically by the equations, given below without eliminating the parameter.

$$x = \frac{1 - t^2}{1 + t^2}, y = \frac{2t}{1 + t^2}$$

Watch Video Solution

278. Find $\frac{dy}{dx}$, if x and y are connected parametrically by the

equations, given below without eliminating the parameter.

$$x = \frac{a(1+t^2)}{1-t^2}, y = \frac{2t}{1-t^2}$$

Watch Video Solution

279. If x and y are connected parametrically by the equations given

in Exercises 1 to 10, without eliminating the parameter, Find $\frac{dy}{dx}$:

$$x = \sin t, y = \cos 2t$$

280. Find $\frac{dy}{dx}$, if x and y are connected parametrically by the equations, given below without eliminating the parameter. x = log t, y = sin t

Watch Video Solution

281. Find $\frac{dy}{dx}$, if x and y are connected parametrically by the

equations, given below without eliminating the parameter.

$$x = e^t \text{cost}, y = e^t \text{sint.} att = \frac{\pi}{2}$$

Watch Video Solution

282. Find
$$\frac{dy}{dx}$$
 in the following

 $x = a\cos\theta, y = a\sin\theta.$

283. If x and y are connected parameterically by the equation ,

without eliminating the parameter , find $\frac{dy}{dx}$

 $x = a\cos(\theta), y = b\sin(\theta)$

Watch Video Solution

284. If x and y are connected parameterically by the equation ,


```
x = a\cos(\theta), y = b\sin(\theta)
```

Watch Video Solution

285. Find $\frac{dy}{dx}$, if x and y are connected parametrically by the equations, given below without eliminating the parameter. $x = a\cos^2\theta$, $y = b\sin^2\theta$

286. Find $\frac{dy}{dx}$, if x and y are connected parametrically by the equations, given below without eliminating the parameter.

 $x = 2\cos^2\theta, y = 2\sin^2\theta$

Watch Video Solution

287. Find $\frac{dy}{dx}$, if x and y are connected parametrically by the equations, given below without eliminating the parameter. $x = 2\cos^3\theta$, $y = 2\sin^3\theta$

288. Find $\frac{dy}{dx}$, if x and y are connected parametrically by the equations, given below without eliminating the parameter.

$$x = 3\cos^3\theta, y = 3\sin^3\theta$$

Watch Video Solution

289. Find $\frac{dy}{dx}$, if x and y are connected parametrically by the equations, given below without eliminating the parameter.

 $x = c \tan \theta, y = c \cot \theta$

Watch Video Solution

290. Find $\frac{dy}{dx}$, if x and y are connected parametrically by the equations, given below without eliminating the parameter. $x = a(\theta + \sin\theta), y = a(1 - \cos\theta)$

291. Find $\frac{dy}{dx}$, if x and y are connected parametrically by the equations, given below without eliminating the parameter.

 $x = a(\theta - \sin\theta), y = a(1 - \cos\theta)$

Watch Video Solution

292. Find $\frac{dy}{dx}$, if x and y are connected parametrically by the equations, given below without eliminating the parameter. x = $a(\theta - \sin\theta)$, y = $a(1 + \cos\theta)$

Watch Video Solution

Match Video Colution

293. Find $\frac{dy}{dx}$, if x and y are connected parametrically by the equations, given below without eliminating the parameter. $y = a(\theta + \sin\theta), x = a(1 + \cos\theta)$ **294.** Find $\frac{dy}{dx}$, if x and y are connected parametrically by the equations, given below without eliminating the parameter. $x = a(\theta - \sin\theta), y = a(1 + \cos\theta)$

Watch Video Solution

295. Find $\frac{dy}{dx}$, if x and y are connected parametrically by the equations, given below without eliminating the parameter. $x\cos\theta - \cos 2\theta$, $y = \sin \theta - \sin 2\theta$

Watch Video Solution

296. Find $\frac{dy}{dx}$, if x and y are connected parametrically by the equations, given below without eliminating the parameter.

 $x = a(\cos\theta + \theta\sin\theta), y = a(\sin\theta - \theta\cos\theta)$

Watch Video Solution

298. Find $\frac{dy}{dx}$, if x and y are connected parametrically by the equations, given below without eliminating the parameter. $x = \cos 2\theta + 2\cos \theta$, $y = \sin 2\theta - 2\sin \theta$

299. Find $\frac{dy}{dx}$, if x and y are connected parametrically by the

equations, given below without eliminating the parameter.

$$x = a\sin\theta, y = a\left(\cos\theta + \log\tan\left(\frac{\theta}{2}\right)\right)$$

Watch Video Solution

300. Find $\frac{dy}{dx}$, if x and y are connected parametrically by the equations, given below without eliminating the parameter. $y = 12(1 - \cos t), x = 10(t - \sin t), -\frac{\pi}{2} < t < \frac{\pi}{2}$

Watch Video Solution

301. If
$$x = 2\cos\theta - \cos2\theta$$
, $y = 2\sin\theta - \sin2\theta$, find $\frac{dy}{dx}at\theta = \frac{\pi}{2}$

302. If
$$x = a\left(\cos\theta + \log\tan\left(\frac{\theta}{2}\right)\right)$$
, $y = a\sin\theta$ find $\frac{dy}{dx}at\theta = \frac{\pi}{3}$

Watch Video Solution

303. If
$$x = ct$$
, $y = \frac{c}{t}$, find $\frac{dy}{dx}att = 2$

Watch Video Solution

304. Find
$$\frac{dy}{dx}$$
, where x=t^3 + 1/t and y = (t+t^2)^3`

Watch Video Solution

305. For a positive constant a find
$$\frac{dy}{dx}$$
, where $y = a^{t+}\left(\frac{1}{t}\right)$, and $x = \left(t + \frac{1}{t}\right)^a$

306. If $(x = a\sin(2t)(1 + \cos(2t)))$ and $(y = b\cos(2t)(1 - \cos(2t)))$, then

show that
$$\left(\left(\frac{dy}{dx}\right)_{t=\frac{\pi}{4}}=\frac{b}{a}\right)$$
.

307. If
$$x = \frac{1 + \log t}{t^2}$$
, $y = \frac{3 + 2\log t}{t}$, $t > 0$, prove that $y\left(\frac{dy}{dx}\right) - 2x\left(\frac{dy}{dx}\right)^2 = 1$

308. Find
$$\frac{dy}{dx}$$
 in the following
 $x = e^{\theta}(\sin\theta + \cos\theta), y = e^{\theta}(\sin\theta - \cos\theta)$

 $\left(\sqrt{x}\right)^{\sqrt{x}}$

Watch Video Solution

310. Differentiate the following w.r.t. x:

Watch Video Solution

311. Differentiate the following w.r.t. x:

 $(\sin x)^x$

(sinx)^{logx}, sinx > 0
 Watch Video Solution
319. Differentiate the following w.r.t. x:
(sinx)^{tanx}
 Watch Video Solution

320. Differentiate the following w.r.t. x:

 $(\sin x)^{\sin x}$

 $(\log x)^{x}$

 $(\sin x)^{\cos^{-1}x}$

Watch Video Solution

$$(\sin x - \cos x)^{\sin x - \cos x}, \frac{\pi}{4} < x < \frac{3\pi}{4}$$

 $x^{\tan x} + (\tan x)^x$.

 $x^{\cos x} + (\sin x)^{\tan x}$

 $(\sin x)^{\cos x} + (\cos x)^{\sin x}$

 $(x)^{\sin x} + (\cos x)^x$

353. Differentiate the following w.r.t. x:

 $(\sin x)^{\sec x} + (\tan x)^{\cos x}$

$$(\tan x)^{\cot x} + x(\tan x), 0 < x < \frac{\pi}{4}$$

355. Differentiate the following w.r.t. x:

 $x^{\sin x} + (\sin x)^{\cos x}$

Watch Video Solution

356. Differentiate the following w.r.t. x:

 $(\sin x)^{x} + \sin^{-1}\sqrt{x}$

 $(x)^{\log x} + (\log x)^x$

358. Differentiate the following w.r.t. x:

$$(\log x)^{\cos x} + \frac{x^2 + 1}{x^2 - 1}$$

Watch Video Solution

359. Differentiate the following w.r.t. x:

 $(x\cos x)^{x} + (x\sin x)^{1/x}$

361. Differentiate the following w.r.t. x:

 $e^{\sin x} + (\tan x)^x$

Watch Video Solution

362. Differentiate the following w.r.t. x:

 $x^x - 2^{\sin x}$

$$\left(x+\frac{1}{2}\right)^x+x^{1+\frac{1}{x}}$$

Watch Video Solution

$$x^{x^2-3} + (x-3)^{x^2}$$
, f or $x > 3$

Watch Video Solution

365. Differentiate the following w.r.t. x:

 $x^2 + (\sin x)^x$

$$\frac{(ax+b)(cx+d)}{(ax-b)(cx-d)}, x \neq \frac{b}{a}, \frac{d}{c}$$

Watch Video Solution

367. Differentiate the following w.r.t. x:

$$\frac{\frac{\cos^{-1}x}{2}}{\sqrt{2x+7}}, -2 < x < 2$$

368. Differentiate the following w.r.t.x .

$$\sqrt{(x-3)(x^2+4)}$$

 $3x^2 + 4x + 5$

 $x^2 e^x \sin x$

370. Differentiate the following w.r.t. x:

 $e^x \cos^3 x \sin^2 x$

Watch Video Solution

371. Differentiate the following w.r.t. x:

 $(x+6)^3(x+2)^4(x+5)^5$

 $\sqrt{(x-1)(x-2)(x-3)(x-4)}$

Watch Video Solution

373. If
$$xy = e^{x-y}$$
, find $\frac{dy}{dx}$

Watch Video Solution

374. If
$$(\sin x)^Y = (\sin y)^x$$
, find $\frac{dy}{dx}$:

Watch Video Solution

375. If
$$(\cos x)^y = (\cos y)^x$$
, find $\frac{dy}{dx}$

376. Differentiate
$$\log(x^x + \csc^2 x)w. r. t. x$$

377. If
$$x^p \cdot y^q = (x + y)^{p+q}$$
, show that $\frac{dy}{dx} = \frac{y}{x}$;

Watch Video Solution

378. If
$$y = x^y$$
, prove that $\frac{dy}{dx} = \frac{y^2}{x(1 - y\log x)}$

Watch Video Solution

379. Differentiate the following w.r.t.x.

If
$$y^x = e^{y-x}$$
, prove that $\frac{dy}{dx} = \frac{(1 + \log y)^2}{\log y}$

380. If
$$x^{x} + y^{x} = 1$$
, prove that : $\frac{dy}{dx} = -\left[\frac{x^{x}(1 + \log x) + y^{x} \cdot \log y}{x \cdot y^{(x-1)}}\right]$

381. If
$$x^{y} + y^{x} = 1$$
, find $\frac{dy}{dx}$

Watch Video Solution

382. If
$$x^y + y^x = \log a$$
, find $\frac{dy}{dx}$.

383. Show that if $x^y + y^x = m^n$, then:

$$\frac{dy}{dx} = -\frac{y^{x}\log y + yx^{y-1}}{x^{y}\log x + xy^{x-1}}$$

Watch Video Solution

384. Find the derivative of the function given by $f(x) = (1+x)\left(1+x^2\right)\left(1+x^4\right)\left(1+x^8\right)$ and hence find f'(1)

Watch Video Solution

385. Differentiate $(x^2 - 5x + 8)(x^3 + 7x + 9)$ by using product rule.

386. Differentiate
$$(x^2 - 5x + 8)(x^3 + 7x + 9)$$
 by expanding the

product to obtain a single polynomial.

Watch Video Solution

387. Differentiate
$$(x^2 - 5x + 8)(x^3 + 7x + 9)$$
 by logarithmic

differentiation.

Watch Video Solution

388. If
$$y = (\sqrt{x})^{\sqrt{x}\sqrt{x}}$$
..... $\rightarrow \infty$, prove that $\frac{dy}{dx} = \frac{y^2}{x(2 - y\log x)}$

389. If
$$y = \sqrt{x + \sqrt{x + \sqrt{x + \dots \infty}}}$$
, show that $(2y - 1)\frac{dy}{dx} = 1$

390. If
$$y = \sqrt{3^x + \sqrt{3^x + \sqrt{3^x + \dots + \infty}}}$$
, then prove that :

$$(2y-1)\frac{dy}{dx} = 3^x \log 3.$$

391. If
$$y = x^y$$
, prove that $\frac{dy}{dx} = \frac{y^2}{x(1 - y\log x)}$

Watch Video Solution

392. If
$$y = (\cos x)^{\cos x^{\cos x} \cdots \cdots \rightarrow \infty}$$
 prove that $\frac{dy}{dx} = \frac{-y^2 \tan x}{1 - y \log \cos x}$

Watch Video Solution

393. If
$$y = (\tan x)^{(\tan x)^{(\tan x)}}$$
, then prove that $\frac{dy}{dx} = 2$ at $x = \frac{\pi}{4}$.

394. If
$$y = \left(x^{x^x} \cdots \cdots \cdots \xrightarrow{\rightarrow} \infty\right)$$
, prove that $x \frac{dy}{dx} = \frac{y^2}{1 - y \log x}$.

395. Find (a)
$$\frac{dy}{dx}$$
 and (b) = $\frac{d^2y}{dx^2}$ when y is given by :

1+2x

396. Find (a)
$$\frac{dy}{dx}$$
 and (b) = $\frac{d^2y}{dx^2}$ when y is given by :
 $ax^3 + bx^2 + cx + d$

397. Find (a)
$$\frac{dy}{dx}$$
 and (b) = $\frac{d^2y}{dx^2}$ when y is given by :

1/(2x+3), x not equal to - 3/2 `

Watch Video Solution

398. Find (a)
$$\frac{dy}{dx}$$
 and (b) = $\frac{d^2y}{dx^2}$ when y is given by :

log x - x

Watch Video Solution

399. Find (a)
$$\frac{dy}{dx}$$
 and (b) = $\frac{d^2y}{dx^2}$ when y is given by :

 $e^{x} + \sin x$

400. Find (a)
$$\frac{dy}{dx}$$
 and (b) = $\frac{d^2y}{dx^2}$ when y is given by : $e^x + x^4$

401. Find the second derivative of the following functions:

x²⁰

Watch Video Solution

402. Find the second derivative of the following functions:

 $x^2 + 3x + 2$

403. Find the second order derivative of the function

x.cosx

Watch Video Solution **404.** Find the second derivative of the following functions: $x^3 + \tan x$ Watch Video Solution **405.** Find the second derivative of the following functions: $\tan^{-1}x$ Watch Video Solution

logx

sin(logx)

 $e^{-x}\cos x$

Watch Video Solution
413. Find the second derivative of the following functions:
Watch Video Solution
414. Find the second derivative of the following functions:
$\frac{\log x}{x}$
Watch Video Solution

418. If
$$y = 3e^{2x} + 2e^{3x}$$
, prove that $d^2 \frac{y}{dx^2} - 5\frac{dy}{dx} + 6y = 0$.

419. If
$$y = Ae^{mx} + Be^{nx}$$
, Show that $\left(\frac{d^2}{dx^2}y\right) - (m+n)\frac{dy}{dx} + mny = 0$

If
$$y = Pe^{ax} + Qe^{bx}$$
 show that $\frac{d^2y}{dx^2} - (a+b)\frac{dy}{dx} + aby = 0$

Watch Video Solution

421.
$$y = 5\cos x - 3\sin x$$
, prove that $\frac{d^2y}{dx^2} + y = 0$

Watch Video Solution

422. If
$$e^{y}(x+1) = 1$$
 show that $\left(d^{2}\frac{y}{dx^{2}}\right) = \left(\frac{dy}{dx}\right)^{2}$ ਹੈ।

423. If
$$y = A\sin x + B\cos x$$
 then prove that $d^2 \frac{y}{dx^2} + y = 0$

424. Find
$$\frac{d^2}{dx^2}$$
 in the following :
 $x = at^2$, $y = 2at$

425. Find $\frac{d^2}{dx^2}$ in the following :

 $x = a\cos\theta, y = b\sin\theta$

Watch Video Solution

426. Find
$$\frac{d^2}{dx^2}$$
 in the following :
 $x = a\cos^3\theta$, $y = a\sin^3\theta$

427. Find
$$\frac{d^2y}{dx^2}$$
 in the following $x = a\cos^3\theta$, $y = a\sin^3\theta$

428. Find $\frac{d^2}{dx^2}$ in the following :

If $x = a\cos^3\theta$ and $y = a\sin^3\theta$, then find the value of $d^2\frac{y}{dx^2}at\theta = \frac{\pi}{6}$

Watch Video Solution

429. Find
$$\frac{d^2}{dx^2}$$
 in the following :

x = a (cost + t sin t), y = a (sin t - t cos t)

Watch Video Solution

430. Find
$$\frac{dy^2}{dx^2}$$
 in the following :
 $x = a(\theta - \sin\theta), y = a(1 + \cos\theta)$

431. Find
$$\frac{d^2y}{dx^2}at\theta = \frac{\pi}{2}$$
 when:
 $x = a(\theta - \sin\theta), y = a(1 + \cos\theta)$

432. Find
$$\frac{d^2y}{dx^2}at\theta = \frac{\pi}{2}$$
 when:

 $x = a(1 - \cos\theta), y = a(\theta + \sin\theta)$

Watch Video Solution

433. Find
$$\frac{d^2y}{dx^2}at\theta = \frac{\pi}{2}$$
 when:

$$x = a(\theta - \sin\theta), y = a(1 - \cos\theta)$$

434. Find
$$\frac{d^2y}{dx^2}$$
 when : $x = 2\cos\theta - \cos2\theta$ and $y = 2\sin\theta - \sin2\theta$.

435. If
$$x = a \sin t$$
 and $y = a \left(\cos t + \log \tan \left(\frac{t}{2} \right) \right)$, find $\frac{d^2 y}{dx^2}$

436. If
$$y = (\sin^{-1}x)^2$$
, then prove that $(1 - x)^2 \frac{d^2y}{dx^2} - x \frac{dy}{dz} = 2$

Watch Video Solution

437. If
$$y = (\cos^{-1}x)^2$$
 show that $(1 - x^2)^2 y_2 - xy_1 = 2$

438. If
$$y = [\tan^{-1}x]^2$$
, then prove that :
 $(x^2 + 1)^2 y_2 + 2x(x^2 + 1)y_1 = 2.$

439. Verify the truth of Rolle's Theorem for the following functions:

 $f(x) = x^2 + 2$. a = -2, and b = 2

Watch Video Solution

440. Verify the truth of Rolle's Theorem for the following functions:

$$f(x) = \frac{x^3}{3} - \frac{5}{3}x^2 + 2x, x \in [0, 3]$$

441. Verify the truth of Rolle's Theorem for the following functions:

$$f(x) = \frac{x(x-2)}{x-1}$$
 on [0,2]

Watch Video Solution

442. Verify the truth of Rolle's Theorem for the following functions:

 $f(x) = x^2 + 2x - 8$ defined in the interval [-4,2]

Watch Video Solution

443. Verify the truth of Rolle's Theorem for the following functions:

 $f(x) = x^2 \in [-1, 1]$

444. Verify the truth of Rolle's Theorem for the following functions:

$$f(x) = x^{1/3} \in [-1, 1]$$

Watch Video Solution

445. Verify the truth of Rolle's Theorem for the following functions:

 $f(x) = |x| \in [-1, 1]$

Watch Video Solution

446. Verify the truth of Rolle's Theorem for the following functions:

f(X) = |x-1| in [1,2]

447. Verify the truth of Rolle's Theorem for the following functions: $f(x) = \sqrt{x - 2}$ in [1,2]

448. Verify the truth of Rolle's Theorem for the following functions:

f(X) = [x]in [-1,1]

> Watch Video Solution

449. Verify the conditions of Rolle's Theorem in the followin problems. In eah case, find a point in the interval where the derivative vanishes:

 $x^{20}on[-1,1]$

450. Verify the conditions of Rolle's Theorem in the followin problems. In eah case, find a point in the interval where the derivative vanishes:

(x + 1)(x - 2)on[-1, 2]

Watch Video Solution

451. Verify the conditions of Rolle's Theorem in the followin problems. In eah case, find a point in the interval where the derivative vanishes:

 $sinx - sin2xon[0, \pi]$

452. Verify the conditions of Rolle's Theorem in the followin problems. In eah case, find a point in the interval where the
derivative vanishes:

$$\log(x^2 + 2) - \log 3on[-1, 1]$$

Watch Video Solution

453. Verify the conditions of Rolle's Theorem in the followin problems. In eah case, find a point in the interval where the derivative vanishes:

 e^{1-x^2} on [-1,1]

Watch Video Solution

454. Verify the truth of Rolle's Theorem for the following function:

$$f(x) = x^2 - 5x + 4on[1, 4]$$

455. Verify the truth of Rolle's Theorem for the following function:

 $f(x) = 4x^2 - 12x + 9$ in the interval $0 \le x \le 3$

457. Verify the truth of Rolle's Theorem for the following function:

 $f(x) = x^2 - x - 12$ in the interval [-3,4]

458. Verify the truth of Rolle's Theorem for the following function:

f(x) = (x - 2)(x - 3)(x - 4) in the interval $2 \le x \le 4$

460. Verify the truth of Rolle's Theorem for the following function:

 $f(x) = x(x - 1)^2$ in the interval [0,1]

461. Verify Rolle's theorem for the following functions

 $f(x) = (x - 2)(x - 4)^2$ in the interval [2, 4]

Watch Video Solution

462. Verify Rolle's Theorem in the interval [a,b] for the fraction: $f(x) = (x - a)^m (x - b)^n$, m and n being positive integers. Find the value of 'c'.

Watch Video Solution

463. Examine the applicability of Rolle's Theorem fr the fraction:

 $f(x) = 2 + (x - 1)^{2/3}$ in the interval $0 \le x \le 2$

464. Verify Rolle's Theorem for the function:

 $f(x) = \sin^2 x$, defined in the interval $[0, \pi]$

466. Verify Rolle's Theorem for the function:

 $f(x) = \tan x$, define in the interval $[0, \pi]$

467. Verify Rolle's Theorem for the function:

$$f(x) = \sin x + \cos x \in \left[0, \frac{\pi}{2}\right]$$

Watch Video Solution

468. Verify Rolle's Theorem for the function:

$$f(x) = \sin x + \cos x - 1 \in \left[0, \frac{\pi}{2}\right]$$

Watch Video Solution

469. Verify Rolle's Theorem for the function:

$$f(x) = \sin x + \cos x \in \left[0, \frac{\pi}{2}\right]$$

470. Verify Rolle's Theorem for the function:

 $f(x) = \sin^4 x + \cos^4 x$ in the interval $\left[0, \frac{\pi}{2}\right]$

471. Find the value of f(x) when x=5:

$$f(x) = -4x + 5$$

> Watch Video Solution

472. At what points on the following curve, is the tangent parallel

to x-axis? $y = x^2 on[-2, 2]$

473. At what points on the following curve, is the tangent parallel

to x-axis? $y = \cos x - 1on[0, 2\pi]$

Watch Video Solution

474. For the function $f(x) = x^3 - 6x^2 + ax + b$, it is given that f(1) = f(3) = 0. Find the values of 'a' and 'b', and hence verify Rolle's Theorem on [1,3]

Watch Video Solution

475. Let f(x) = (x - 1)(x - 2)(x - 3) on the interval [1,3]. Prove that

there is more than one c in (1,3) such that $f \otimes = 0$

476. Discuss the applicability of Lagrange's Mean Value Theorem to

$$f(x) = x^2 - 1on[1, 2]$$

477. Discuss the applicability of Lagrange's Mean Value Theorem to

 $f(x) = x^2 on[2, 4]$

Watch Video Solution

478. Discuss the applicability of Lagrange's Mean Value Theorem to

 $f(x) = x^2 - 2x + 3 \in [0, 4]$

479. Discuss the applicability of Lagrange's Mean Value Theorem to

 $f(x) = 2x^2 - 10x + 29 \in [2, 7]$

480. Discuss the applicability of Lagrange's Mean Value Theorem to

 $f(x) = x^2 - 4x - 3 \in [1, 4]$

Watch Video Solution

481. Discuss the applicability of Lagrange's Mean Value Theorem to

 $f(x) = 2x - x^2 \in [0, 1]$

482. Discuss the applicability of Lagrange's Mean Value Theorem to $f(x) = 2x - x^2 \in [0, 1]$

functions

 $f(x) = x^3 - 2x^2 - x + 3$ in the interval [0, 1]

484. Discuss the applicability of Lagrange's Mean Value Theorem to

 $f(x) = x^3 - 5x^2 - 3x \in [1, 3]$

485. Verify Lagrange's Mean Value Theorem for the function : f(x) = x(x - 1)(x - 2)(x - 3) in the interval [0, 4]

486. Verify the conditions of Mean Value Theorem in the following. In each case. Find a point in the interval as stated by the Mean Value Theorem:

f(x) = x on [a,b]

Watch Video Solution

487. Verify the conditions of Mean Value Theorem in the following. In each case. Find a point in the interval as stated by the Mean Value Theorem:

$$f(x) = x + \frac{1}{x}on[1, 3]$$

488. Verify the conditions of Mean Value Theorem in the following. In each case. Find a point in the interval as stated by the Mean Value Theorem:

 $f(x) = ax^2 + bx + ex + don[0, 1]$

Watch Video Solution

489. Verify the conditions of Mean Value Theorem in the following.

In each case. Find a point in the interval as stated by the Mean

Value Theorem:

 $f(x) = ax^2 + ex + e$ on [0,1]

490. Verify the conditions of Mean Value Theorem in the following. In each case. Find a point in the interval as stated by the Mean Value Theorem:

 $f(x)\sin x - \sin 2x$ on $[0, 2\pi]$

Watch Video Solution

491. Verify the conditions of Mean Value Theorem in the following.

In each case. Find a point in the interval as stated by the Mean

Value Theorem:

 $f(x) = \sin x - \sin 2x on[0, \pi]$

492. Verify the Lagrange's Mean Value Theorem for the functions:

 $f(x) = x^{1/3}$ in the interval [-1,1]

493. Verify Lagrange's mean value theorem for the following functions

 $f(x) = (x - 1)^{2/3}$ in the interval [1, 2]

494. Verify the Lagrange's Mean Value Theorem for the functions:

$$f(x) = \frac{1}{x}$$
 in the interval [-1.2]

Watch Video Solution

495. Verify the Lagrange's Mean Value Theorem for the functions:

$$f(x) = \frac{1}{4x - 1}$$
, in the interval [-1,4]

496. Verify the Lagrange's Mean Value Theorem for the functions:

f(x) = |x| in the interval [-1,1]

Watch Video Solution

497. Verify the Lagrange's Mean Value Theorem for the functions:

 $f(x) = \sqrt{x^2 - 4}$ in the interval [2,4]

Watch Video Solution

498. Verify the Lagrange's Mean Value Theorem for the functions:

$$f(x) = \sqrt{25 - x^2}$$
 in the interval [-3,4]

499. Verify the Lagrange's Mean Value Theorem for the functions:

 $f(x) = \log_e x$ in the interval [1,2]

501. Find 'c' of Lagrange's Mean Value Theorem for the functions:

 $f(x) = 2x^2 - 1$ in the interval [1,2]

502. Find 'c' of Lagrange's Mean Value Theorem for the functions:

 $f(x) = \log x$ in the interval [1,e]

504. Verify Mean Value Theorem, if $f(x) = x^3 - 5x^2 - 3x$, in the interval [a, b], where a = 1 and b = 3. Find all $c \in (1, 3)$ for which f(c) = 0.

505. Verify Lagrange's Mean Value Theorem for the function : f(x) = x(x - 1)(x - 2)(x - 3) in the interval [0, 4]

506. Verify Lagrang'e Mean value Theorem for the function:

$$f(x) = \begin{cases} 2 + x^3 & \text{if } x \le 1\\ 3x & \text{if } x > 1 \end{cases} on[-1, 2]$$

Watch Video Solution

507. Find a point on the parabola $y = (x - 2)^2$, where the tangent is

parallel to the chord joining (2,4) and (4,4)

508. Find a point on the curve $y = x^3$, where the tangent to the curve is parallel to the chord joining the points (1, 1) and (3, 27).

509. Find a point on the curve $y = x^3 - 3x$, where the tangent is parallel to the chord joining (1,-2) and (2,2)

Watch Video Solution

510. Find the co-ordinates of the point at which the tangent to the curve given by $f(x) = x^2 - 6x + 1$ is parallel to the chord joining the points (1,-4) and (3,-8)

511. Use Lagrange's Mean value Theorem to determine a point P on the curve $y = \sqrt{x - 2}$, where the tangent is parallel to the chord joining (2,0) and (3,1)

512. Examine the continuity of the function:

 $f(x) = \frac{x-4}{2(x-4)} \quad \text{if } x \neq 4 \\ 0 \quad \text{if } x = 4$

Watch Video Solution

513. Find the value of 'k', such that the function :

$$f(x) = \left\{ \frac{2x^{x+2} - 16}{4^x - 16}, \text{ if } x \neq 2 \right\}, (k, \text{ if } x = 2) \text{ is continuous at } x = 2$$

514. Given $f(x) = \frac{1}{x-1}$. Find the points of discontinuity of the composite function f(f(x))

515. Find f' (x) when
$$f(x) = 2^{\cos^2 x}$$

Watch Video Solution

516. Find f' (x) when
$$f(x) = \sin^{-1}\left(\frac{1}{\sqrt{x+1}}\right)$$

Watch Video Solution

517. If
$$\sin x = \frac{2t}{1+t^2}$$
, $\tan y = \frac{2t}{1-t^2}$, find $\frac{dy}{dx}$

518. If
$$y = \sec^{-1}\left(\frac{1}{4x^3 - 3x}\right)$$
, find $\frac{dy}{dx}$

Watch Video Solution

519. Find
$$\frac{dy}{dx}$$
 when $\tan^{-1}\left(x^2 + y^2\right) = 0$

Watch Video Solution

520. Examine the differentiability of the function
$$f(x) = \begin{cases} x[x] & \text{if } 0 \le x < 2\\ (x-1)x & \text{if } 2 \le x < 3 \end{cases} \text{ at } x = 2$$

Watch Video Solution

521. Show that |x-5| is continuous but not differentiable at x =5.

Watch Video Solution

523. If
$$x = e^{x/y}$$
, prove that $\frac{dy}{dx} = \frac{x - y}{x \log x}$

524. Verify the Lagrange's Mean Value Theorem for the functions:

$$f(x) = \frac{1}{4x - 1}$$
, in the interval [-1,4]

Watch Video Solution

525. Verify LMV Theorem for the following:

 $f(x) = \sin x - \sin 2x in[0, \pi]$

Watch Video Solution

526. Verify LMV Theorem for the following:

 $f(x) = \sqrt{25 - x^2} in[1, 5]$

527. The function
$$f(x) = \begin{cases} \frac{\sin x}{x} + \cos x & \text{if } x \neq 0 \\ k & \text{if } x = 0 \end{cases}$$
 is continuous at

x = 0, then then value of ' k' is

Β.	2

A. 3

C. 1

D. 1.5

Answer:

Watch Video Solution

528. The function f(x) = [x], where [x] denotes the greatest integer

function, is continuous at

A. 4

B. -2

C. 1

D. 1.5

Answer:

Watch Video Solution

529. The value of 'k' which makes the function defined by :

$$f(x) = \begin{cases} \sin\left(\frac{1}{x}\right) & \text{if } x \neq 0\\ k & \text{if } x = 0 \end{cases}$$
 continuous at x =0 is

A. 8

B. 1

C. -1

D. None of these

Answer:

Watch Video Solution

530. If
$$u = \sin^{-1}\left(2\frac{x}{(1+x)^2}\right)$$
 and $v = \tan^{-1}\left(2\frac{x}{1-x^2}\right)$, the $d\frac{u}{d}v$ is
A. $\frac{1}{2}$
B. x
C. $\frac{1-x^2}{1+x^2}$
D. 1

Answer:

531. If
$$x = t^2$$
, $y = t^3$, then $\frac{d^2y}{dx^2}$ is

A.
$$\frac{3}{2}$$

B. $\frac{3}{4t}$
C. $\frac{3}{2t}$
D. $\frac{3t}{2}$

Answer:

532. The value of 'c' in Rolle's Theorem for the function $f(x) = x^3 - 3x$ in the interval $\left[0, \sqrt{3}\right]$ is

A. 1

B. -1

C. $\frac{3}{2}$ D. $\frac{1}{3}$

Answer:

O Watch Video Solution

533. The value of 'c' in mean Value Theorem for the function $f(x) = x(x - 2) \in [1, 2]$ is

534. The derivative of f(x) = |x| at x=0 is

A. 1

B. 0

C. -1

D. Does not exist.

Answer:

Watch Video Solution

535. The derivative of log(ax+b) is

A.
$$\frac{1}{ax+b}$$

B. $\frac{b}{ax+b}$

C.
$$\frac{a}{ax+b}$$

D. $\frac{A+b}{ax+b}$

Answer:

536. If
$$f(x) = \begin{cases} kx + 1 & x \le 5 \\ 3x - 5 & x > 5 \end{cases}$$
 s is a continuous function then the

value of k is

- A. $\frac{9}{5}$ B. 3
- C. $\frac{11}{5}$
- D. None of these

537. The derivative of $\sin^3(x^5)$ w.r.t. x is

A.
$$\cos^{3}(x^{5})$$

B. $3\sin^{2}(5x^{4})$
C. $15\sin^{2}(x^{5})x^{4}$

D. None of these

538. If
$$y = \log(\cos e^x)$$
, then $\frac{dy}{dx} = \dots$

A.
$$-\tan\left(e^{x}\right)$$
. e^{x}

D. None of these

Answer:

Watch Video Solution

539. If
$$y = e^{\sin(\log x)}$$
, then the value of $\frac{dy}{dx}$ is

A.
$$e^{\cos(\log x)}$$

B. $e^{\sin(\log x)}$. $\cos(\log x)$

$$\mathsf{C}.\left(\frac{e^{\sin(\log x) \cdot \cos(\log x)}}{x}\right)$$

D. None of these

540. If
$$x^3 + y^3 = 10$$
, then the vale of $\frac{dy}{dx}$ is

D. None of these

541. If
$$f(x) = \begin{cases} kx^2 & x < 2\\ 3 & x \ge 2 \end{cases}$$
 is continous at x =0, the value of 'k' is

A. $\frac{2}{3}$ B. $\frac{4}{3}$ C. $\frac{3}{2}$ D. $\frac{3}{4}$

Answer:

542. If
$$x = 2at$$
, $y = at^2$, then $\frac{dx}{dy}$ is equal to :
A. $\frac{1}{t}$
B. t

C. -
$$\frac{1}{t}$$

D. -*t*

543. If the function f is defined by $f(x) = \begin{cases} 3 & x \neq 0 \\ a+1 & x = 0 \end{cases}$ and f

is continuous at x = 0, then value of a is :

- A. 1
- B. 2
- C. 3
- D. 4

Answer:

544. The derivative of $\cos^{-1}(e^x)$ is

A.
$$\sin^{-1}(e^x)$$
. e^x
B. $\frac{-e^x}{\sqrt{1 - e^{2x}}}$
C. $\frac{e^x}{\sqrt{1 - e^{2x}}}$

D. None of these

Answer:

545. Find the derivative of sin (logx) (x>0) w.r.t.x

A.
$$\frac{\cos(\log x)}{x}$$

B. x cos (logx)

C. log x cos (logx)

D. None of these

Answer:

546. The derivative of log (cosec x) is

A. - cot*x*

B. - cosecx

C. - cosecxcotx

D. sin x tan x.

Answer:

547. The derivative of $\sin x^2 w. r. t. x^2$ is

A. $\cos x^2$

B. $2x\cos x^2$

C.
$$\frac{\sin 2x}{2x}$$

D. $\frac{\cos x^2}{2x}$

548. If
$$y = \log x - x^2$$
, then value of $\frac{d^2y}{dx^2}$ is

A.
$$-\frac{1}{x^2} + 1$$

B. $-\frac{1}{x^2}$
C. $\frac{1}{x} - 2x$

D.
$$-\frac{1}{x^2} - 2$$

550. The value of 'c' for which Lagrange's Mean value Theorem is applicable to $f(x) = x^{1/2}$ in `[0,4] is

A. 1

B.4

C. 2

551. At x = 0, the function
$$f(x) = |x|$$
 is

A. Continuous but not differentiable

- B. Differentiable but not continuous
- C. Both continuous and differentiable
- D. Neither continuous nor differentiable.

Answer:

552. How many of the function f(x) = |x|, $g(x) = |x^2|$ and $h(x) = [x]^3$ are not differentiable at x = 0?

A. 0

- B. 1
- C. 2
- D. 3

553.
$$f(x) = \begin{cases} \frac{x^2 - 4}{x - 2} & x \neq 2\\ 2k & x = 2 \end{cases}$$
 is continuous at x=2 then k=

B. 4

C. 6

D. None of these

Answer:

Watch Video Solution

554. If $f(x) = x^2 + 5x + 2$, then f'(3) is

A. 11

B. 12

C. 10

D. None of these

555. The derivative of cos 5x w.r.t x is

A. 5 sin 5x

B. sin 5x

C. - 5sin5*x*

D. None of these

Answer:

Watch Video Solution

556. If
$$x = at^2$$
, $y = 2at$, than $\frac{dy}{dx}$ is

A. t

B. $\frac{2}{t}$

 $\mathsf{C}.\,\frac{1}{t}$

D. None of these

Answer:

Watch Video Solution

557. If function defined by :
$$f(x) = \begin{cases} \frac{\sin 3x}{2x} & x \neq 0\\ k+1 & x = 0 \end{cases}$$
 is continuous

at x = 0, then value of k is :

B. $\frac{3}{2}$

 $C. \frac{1}{2}$

D. 1

558. If $f(x) = \log_x(\log x)$ then the value of f'(e) is

Answer:

Watch Video Solution

559. If $f(x) = \log_x \{\ln(x)\}$ then f'(x) at x = e, is

A. 0

B. 1

C.
$$\frac{1}{e}$$

D. $\frac{1}{2e}$

Answer:

560. If
$$x = ct$$
, $y = \frac{c}{t}$, find $\frac{dy}{dx}att = 2$
A. $\frac{1}{4}$
B. 4
C. $-\frac{1}{4}$

561. Let
$$f(x) = \begin{cases} ax + 3 & x \le 2 \\ a^2x - 1 & x > 2 \end{cases}$$
. Then the value of 'a' for which 'f' is

continuous for all x are

A. 1 and -2

B.1 and 2

C.-1 and 2

D. -1 and -2

Answer:

562. Let R be the set of all real numbers. Let $f: R \rightarrow R$ be a function

such that : $|f(x) - f(y)|^2 \le |x - y|^2$, $\forall x, y \in R$. Then f(x) =

B. 1

C. 0

D. *x*²

Answer:

563. Let
$$f(x) = x^2 + bx + 7$$
. If f'(5) = 2f' $\left(\frac{7}{2}\right)$, then the value of 'b' is

A. 4

B. 3

C. - 4

D. - 3

564. The function
$$f(x) = \begin{cases} 2x^2 - 1 & \text{if } 1 \le x \le 4\\ 151 - 30x & \text{if } 4 < x \le 5 \end{cases}$$
 is not suitable

to apply Rolle's theorem since

A. f(x) is not continuous on [1,5]

 $\mathsf{B}.\,f(x)\neq f(5)$

C. f(x) is continuous only x = 4

D. f(x) is not differentiable in (4,5)

Answer:

565. Let f(x) be a differentiable function and f'(4) = 5, then:

$$\lim x \to 2 \frac{f(4) - f(x^2)}{x - 2}$$
 equals:

B. 5

C. 20

D.-20

Answer:

Watch Video Solution

566. Determine if f defined by :
$$f(x) = \begin{cases} x^2 \sin\left(\frac{1}{x}\right) & \text{if } x \neq 0\\ 0 & \text{if } x = 0 \end{cases}$$

is a continuous function?

- A. f satisfies the conditions of Rolle's theorem on [-1,1]
- B. f satisfies the conditions of Lagrange's Mean value theorem

on [-1,1]

- C. f satifies the conditions of Rolle's theorem on [0,1]
- D.f satisfies the conditions of Lagrange's Mean value of

theorem on [0,1]

Answer:

Watch Video Solution

567. If
$$y = (1 + x)(1 + x^2)(1 + x^4)$$
, then $\frac{dy}{dx}$ at x = 1 is

A. 20

B. 28

C. 1

Watch Video Solution

568. The value of
$$\frac{d}{dx} \left\{ \tan^{-1}(\cos x) \right\}$$
 for x= 30 is equal to

A.
$$\frac{1}{2}$$

B. $\frac{1}{-2}$

C. 1

D.
$$\frac{\sin x}{(1 + \sin x)^2}$$

Answer:

569. If
$$f(x) = \begin{cases} \frac{x^2 - (a+2)x + a}{x-2} & x \neq 2\\ 2 & x = 2 \end{cases}$$
 is continuous at x =2, then the

value of a is

- **A. -**1
- **B.-**6
- C. 0
- D. 1

Answer:

Watch Video Solution

570. Let
$$g(x) = \frac{(x-1)^3}{\log(x-1)}$$
 Find g(5).

571. Let y be an implict function of x defined by $x^{2x} - 2x^x \cot y - 1 = 0$

Then y'(1) equals

A. - 2

B. 1

C. log2

D. - log2

Answer:

Watch Video Solution

572. Let $f: (-1, 1) \rightarrow R$ be a differentiable function with f(0) = -1

and $f'(0) = 1 \text{ let } g(x) = [f(2f(x)+2)]^2$, then g'(0) =

B.-4

C. log2

D. -log2

Answer:

573. If 'f' is differentiable at x = a, find
$$\left(\lim_{x \to a} \frac{x^2 f(a) - a^2 f(x)}{x - a}\right)$$

A. $a^2 f(a)$

- $\mathsf{B.}\,af(a) a^2f(a)$
- C. $2af(a) a^2 f$

D. $2af(a) + a^2f(a)$

574. If $f: R \to R$ is a function defined by: $f(x) = [x] \cos\left(\frac{2x-1}{2}\right)\pi$, where [x] denotes the greatest integer function, then 'f' is

A. continous for every real x

B. discontinuous only at x =0

C. discontinuous only at non-zero integral values of x

D. continuous only at x =0

575. Let $f(x) = \left\{ x^2 \left| (\cos) \frac{\pi}{x} \right|, x \neq 0 \text{ and } 0, x = 0, x \in \mathbb{R}, \text{ then } f \text{ is} \right.$ a. differentiable both at x = 0 and at x = 2 b. differentiable at x = 0 but not differentiable at x = 2

- c. not differentiable at x = 0 but differentiable at x = 2
- d. differentiable neither at x = 0 nor at x = 2

A. differentiable both at x = 0 and at x = 2

- B. differentiable at x = 0 but not differentiable at x=2
- C. not differentiable at x = 0 but differentiable at x = 2

D. differentiable neiter at x = 0 nor at x =2

Answer:

576. If
$$y = \sec(\tan^{-1}x)$$
, then $\frac{dy}{dx}$ at x =1 is equal to

A.
$$\frac{1}{2}$$

B. 1
C. $\sqrt{2}$

D. $\overline{\sqrt{2}}$

Answer:

577. If g is te inverse of a function f and $f'(x) = \frac{1}{1 + x^5}$ then g'(x) is

equal to

A.
$$5x^4$$

B. $\frac{1}{1 + g(x)^5}$
C. $1 + (g(x))^5$
D. $1 + x^5$

578. If the function
$$g(x) = \begin{cases} k\sqrt{x+1}, & 0 \le x \le 3 \\ mx+2, & 3 < x \le 5 \end{cases}$$
 is differentiable,

then the value of k + m is

A. 2

B.
$$\frac{16}{5}$$

C. $\frac{10}{3}$

D. 4

Answer:

579. For $x \in R$, $f(x) = |\log 2 - \sin x|$ and g(x) = f(f(x)), then

A. g is not differentiable at x = 0

B. $g'(0) = \cos(\log 2)$

C. g'(0) = -cos(log2)

D. g is differentiable at x = 0 and $g'(0) = -\sin(\log 2)$

Answer:

Watch Video Solution

580. A function $f: R \rightarrow R$ is defined as follows:

 $f(x) = \begin{cases} x & \text{if } x \le 1 \\ 5 & \text{if } x > 1 \end{cases}$ which one of the following is true?

A. f is continuous at 0 and 1

B. f is continuous at 1 and 2

C. f is continuous at 0 and 2

D. f is continuous at 0,1 and 2

Answer:

Watch Video Solution

581. If
$$\sqrt{x} + \sqrt{y} = 4$$
, then $\frac{dy}{dx}$ is

A.
$$-\sqrt{\left(\frac{x}{y}\right)^{2}}$$

B. $-\sqrt{\frac{y}{x}}$
C. $\sqrt{\frac{x}{y}}$
D. $\sqrt{\frac{y}{x}}$

Answer:

582. Find
$$\frac{dy}{dx}$$
 when x = 4t, y = $\frac{4}{t}$

Watch Video Solution

583. The function f(x) is defined as follows:

$$f(x) = \begin{cases} x^2 + ax + b & 0 \le x < 2\\ 3x + 2 & 2 \le x \le 4 & \text{If } f(s) \text{ is continuous on } [0,8], \text{ find the}\\ 2ax + 5b & 4 < x \le 8 \end{cases}$$

values of 'a' and 'b'.

584. If
$$y = \tan^{-1} \left(\frac{\sqrt{1 + x^2} - \sqrt{1 - x^2}}{\sqrt{1 + x^2} + \sqrt{1 - x^2}} \right)$$
, then show that $\frac{dy}{dx} = \frac{x}{\sqrt{1 - x^4}}$

585. If
$$x^{Y} = e^{X-Y}$$
, prove that $\frac{dy}{dx} = \frac{\log x}{(1 + \log x)^{2}}$.

Watch Video Solution

586. If
$$y = e^{ax} \sin bx$$
, prove that $d^2 \frac{y}{dx^2} - 2a \frac{dy}{dx} + (a^2 + b^2)y = 0$.

Watch Video Solution

587. Verify Rolle's theorem for function $f(x) = \sin x + \cos x$ in the interval $[0, 2\pi]$.

588. Find
$$\frac{dy}{dx}$$
, if $y^{x} + x^{y} + x^{x} = a^{b}$