

MATHS

BOOKS - MODERN PUBLICATION

EXCLUSIVELY FOR JEE(ADVANCED)

Exercise

- 1. vector ^ i 3 ^ j + 4 ^ k .Find the magnitude of the vector
 - A. There is exactly one choice for such \overrightarrow{v}
 - B. There are infinitely many choices for such \overrightarrow{v}
 - C. If \widehat{u} lies in the xy-plane, then $|u_1|=|u_2|$
 - D. If \widehat{u} lies in xz-plane, the $2|u_1|=|u_3|$

Watch Video Solution

2. Let P be the image of the point (3, 1, 7) with respect to the plane x - y + z = 3. Then, the equation of the plane passing through P and containing the straight line $\frac{x}{1} = \frac{y}{2} = \frac{z}{1}$ is

- A. x + y 3z = 0
- B. 3x + z = 0
- C. x 4y + 7z = 0
- D. 2x y = 0

Answer:

3. Given L, = {1,2, 3,4},M= {3,4, 5, 6} and N= {1,3,5} Find L-(MUN).

Watch Video Solution

4. Given that N= {1,2,3, ..., 100}. Then write (i) the subset of N whose elements are even numbers. (ii) the subset of N whose element are perfect square numbers.

Watch Video Solution

5. In R^3 , consider the planes: $P_1: y = 0$ and $P_2: x + z = 1$. Let P_3 be a plane, different from P_1 and P_2 , which passes through the intersection of P_1 and P_2 . If the distance of the point (0,1,0) from P_3 is 1 and the distance of a point (α, β, γ) from P_3 is 2, then which of the following relations is (are) true?

A.
$$2lpha+eta+2\gamma+2=0$$

B. $2lpha-eta+2\gamma+4=0$

C.
$$2lpha+eta-2\gamma-10=0$$

D.
$$2lpha-eta+2\gamma-8=0$$

Answer:

Watch Video Solution

6. In R^3 , let L be a straight line passing through the origin. Suppose that all points on L are at a constant distance from the two planes: $P_1: x + 2y - z + 1 = 0$ and $P_2: 2x - y - z + 1 = 0$. Let M be the locus of the feet of the perpendiculars drawn from the points on L t the plane P_1 . Which of the following point(s) lie(s) on M?

A.
$$\left(0, -\frac{5}{6}, -\frac{2}{3}\right)$$

B. $\left(-\frac{1}{6}, -\frac{1}{3}, \frac{1}{6}\right)$
C. $\left(-\frac{5}{6}, 0, \frac{1}{6}\right)$
D. $\left(-\frac{1}{3}, 0, \frac{2}{3}\right)$

Watch Video Solution

7. Let \overrightarrow{x} , \overrightarrow{y} and \overrightarrow{z} be three vectors, each of magnitude $\sqrt{2}$ and the angle between each pair of them is $\frac{\pi}{3}$. If \overrightarrow{a} is a nonzero vector perpendicular to \overrightarrow{x} and $\overrightarrow{y} \times \overrightarrow{z}$ and \overrightarrow{b} is non-zero vector perpendicular to \overrightarrow{y} and $\overrightarrow{z} \times \overrightarrow{x}$, then :

$$\begin{array}{l} \mathsf{A}.\overrightarrow{b} = \left(\overrightarrow{b}\cdot\overrightarrow{z}\right)\left(\overrightarrow{z}-\overrightarrow{x}\right)\\ \mathsf{B}.\overrightarrow{a} = \left(\overrightarrow{a}\cdot\overrightarrow{y}\right)\left(\overrightarrow{y}-\overrightarrow{z}\right)\end{array}$$

$$\begin{array}{l} \mathsf{C.} \overrightarrow{a} \cdot \overrightarrow{b} = -\left(\overrightarrow{a} \cdot \overrightarrow{y}\right) \left(\overrightarrow{b} \cdot \overrightarrow{z}\right) \\ \mathsf{D.} \overrightarrow{a} = \left(\overrightarrow{a} \cdot \overrightarrow{y}\right) \left(\overrightarrow{z} - \overrightarrow{y}\right) \end{array}$$

Watch Video Solution

8. From a point $P(\lambda, \lambda, \lambda)$, perpendicular PQ and PR are drawn respectively on the lines y = x, z = 1 and y = -x, z = -1. If P is such tthat $\angle QPR$ is a right angle , then the possible value(s) of λ is (are)

A. $\sqrt{2}$

B. 1

C. -1

 $\mathsf{D.}-\sqrt{2}$

Watch Video Solution

9. Let \overrightarrow{A} be vector parallel to line of intersection of planes P_1 and P_2 through origin. P_1 is parallel to the vector $2\hat{j} + 3\hat{k}$ and $4\hat{j} - 3\hat{k}$ and P_2 is parallel to $\hat{j} - \hat{k}$ and $3\hat{i} - 3\hat{j}$, then the angle between the vectors \overrightarrow{A} and $2\hat{i} + \hat{j} - 3\hat{k}$ is :

A.
$$\frac{\pi}{2}$$

B. $\frac{\pi}{4}$
C. $\frac{\pi}{6}$
D. $\frac{3\pi}{4}$

Answer:

10. Let $\alpha = a\hat{i} + b\hat{j} + c\hat{k}, \beta = b\hat{i} + c\hat{j} + a\hat{k}$ and $\gamma = c\hat{i} + a\hat{j} + b\hat{k}$ be three coplanar vectos with $a \neq b$ and $v = \hat{i} + \hat{j} + \hat{k}$. Then v is perpendicular to

A.
$$\alpha$$

B. $\overrightarrow{\beta}$
C. $\overrightarrow{\gamma}$
D. $\overrightarrow{\alpha} + \overrightarrow{\beta} + \overrightarrow{\gamma}$

 \rightarrow

Answer:

$$\overrightarrow{a} = x\hat{i} + y\hat{j} + z\hat{k}, \ \overrightarrow{b} = y\hat{i} + z\hat{j} + x\hat{k}, \ \overrightarrow{c} = z\hat{i} + x\hat{j} + y\hat{k},$$

then $\overrightarrow{a} \times \left(\overrightarrow{b} \times \overrightarrow{c}\right)$ is :

A. parallel to $(y-z) \hat{i} + (z-x) \hat{j} + (x-y) \hat{k}$

B. orthogonal to $\hat{i}+\hat{j}+\hat{k}$

C. orthogonal to $(y+z)\hat{i}+(z+x)\hat{j}+(x+y)\hat{k}$

D. parallel to $\hat{i}+\hat{j}+\hat{k}$

Answer:

Watch Video Solution

12. Let \overrightarrow{a} and \overrightarrow{b} be two non-zero perpendicular vectors. A vector \overrightarrow{r} satisfying the equation $\overrightarrow{r} \times \overrightarrow{b} = \overrightarrow{a}$ can be a $.b - \frac{a \times b}{|b|^2}$ b. $2b - \frac{a \times b}{|b|^2}$

c.
$$|a|b - \frac{a \times b}{|b|^2}$$

d. $|b|b - \frac{a \times b}{|b|^2}$
A. $\overrightarrow{b} = \frac{\overrightarrow{a} \times \overrightarrow{b}}{|\overrightarrow{b}|^2}$
B. $2\overrightarrow{b} = \frac{\overrightarrow{a} \times \overrightarrow{b}}{|\overrightarrow{b}|^2}$
C. $|\overrightarrow{a}|\overrightarrow{b} = \frac{\overrightarrow{a} \times \overrightarrow{b}}{|\overrightarrow{b}|^2}$
D. $|\overrightarrow{b}|\overrightarrow{b} = \frac{\overrightarrow{a} \times \overrightarrow{b}}{|\overrightarrow{b}|^2}$

Watch Video Solution

13. Let a plane pass through orogin and is parallel to the line: $\frac{x-1}{2} = \frac{y+3}{-1} = \frac{z+1}{-2}$ such that distance between plane and the line is $\frac{5}{3}$. Then equation of the plane is :

A.
$$x - 2y + 2z = 0$$

B.
$$x - 2y - 2z = 0$$

$$\mathsf{C.}\, 2x+2y+z=0$$

D.
$$x + y + z = 0$$

Answer:

14. A non-zero vectors a is parallel to the line of intersection of the plane determined by the vectors \hat{i} , $\hat{i} + \hat{j}$ and the plane determined by the vectors $\hat{i} - \hat{j}$ and $\hat{i} + \hat{k}$. Find the angle between a and $\hat{i} - 2\hat{j} + 2\hat{k}$.

A.
$$\frac{\pi}{3}$$

B.
$$\frac{\pi}{4}$$

C. $\frac{2\pi}{3}$
D. $\frac{3\pi}{4}$

15. For two events A and B, let $P(A) = \frac{3}{5}$, $P(B) = \frac{2}{3}$, then which of the following statements is correct?

A.
$$P(A \cap \overline{B}) \leq rac{1}{3}$$

B. $P(A \cup B) \geq rac{2}{3}$
C. $rac{4}{15} \leq P(A \cap B) \leq rac{3}{5}$
D. $rac{2}{5} \leq P\left(rac{A}{B}
ight) \leq rac{9}{10}$

16. If A and B are two events such that $P(B) \neq 1$, B^c denotes the event complementary to B, then :

A.
$$Pigg(rac{A}{B^c}igg) = rac{P(A) - P(A \cap B)}{1 - P(B)}$$

B. $P(A \cap B) \geq P(A) + P(B) - 1$

C.

D.

Answer:

17. Suppose that \overrightarrow{p} , \overrightarrow{q} and \overrightarrow{r} are three non-coplanar vectors in R^3 . Let the components of a vector \overrightarrow{s} along \overrightarrow{p} , \overrightarrow{q} and \overrightarrow{r} be 4,3 and 5 respectively. If the componenets of ths vector \overrightarrow{s} along

$$\Big(-\overrightarrow{p}+\overrightarrow{q}+\overrightarrow{r}\Big),\Big(\overrightarrow{p}-\overrightarrow{q}+\overrightarrow{r}\Big) ext{ and } \Big(-\overrightarrow{p}-\overrightarrow{q}+\overrightarrow{r}\Big)$$

are x, y and z respectively, then the value of 2x + y + z is.

Watch Video Solution

18. Let \overrightarrow{a} , \overrightarrow{b} and \overrightarrow{c} be three non-coplanar unit vectors such that the angle bet ween every pair of them is $\frac{\pi}{3}$. If $\overrightarrow{a} \times \overrightarrow{b} + \overrightarrow{b} \times \overrightarrow{c} = p\overrightarrow{a} + q\overrightarrow{b} + r\overrightarrow{c}$, where p,q and r are scalars, then the value of $\frac{p^2 + 2q^2 + r^2}{q^2}$ is :

19. The square of the shortest distance between the lines :

$$\overrightarrow{r} = s ig(\hat{i} - \hat{j} - \hat{k} ig) \, ext{ and } \, \overrightarrow{r} = 3 \hat{j} + t ig(\hat{i} - \hat{k} ig) \, ext{is :}$$

Watch Video Solution

20. Write the set $A=\{x:x \text{ is an integer}, -1 \le x \le 4\}$ in roster form.

21. If
$$|\overrightarrow{a}| = 3$$
, $|\overrightarrow{b}| = 1$ and $|\overrightarrow{a} + \overrightarrow{b}| = |\overrightarrow{a} - \overrightarrow{b}|$, then $|\overrightarrow{a} \times \overrightarrow{b}|$ is:

22. If
$$\left| \overrightarrow{a} \right| = \left| \overrightarrow{b} \right| = \left| \overrightarrow{c} \right| = 1$$
 and $\overrightarrow{a} \cdot \overrightarrow{b} = \overrightarrow{b} \cdot \overrightarrow{c} = \overrightarrow{c} \cdot \overrightarrow{a} = \frac{1}{2}$,

then the value of $4\left[\overrightarrow{a}\overrightarrow{b}\overrightarrow{c}\right]^2$ is:

Watch Video Solution

Watch Video Solution

23. Consider the lines :

$$L_1: \frac{x-7}{3} = \frac{y-7}{2} = \frac{z-3}{1}$$
 and $L_2: \frac{x-1}{2} = \frac{y+1}{4} = \frac{z+1}{3}$
. If a line 'L' whose direction ratios are $< 2, 2, 1 >$ intersects
the lines L_1 and L_2 at A and B respectively, then the distance of
 $\frac{AB}{2}$ is:

24. Value of λ so that the planes: $x - y + z + 1 = 0, \lambda x + 3y + 2z - 3 = 0, 3x + \lambda y + z - 2 = 0$ form a triangular prism is : **Value** Video Solution **25.** If A and B are two events of an experiment with $P(A) = \frac{1}{4}, P(A \cup B) = \frac{1}{2}$, then $3P\left(\frac{B}{A}\right)$ is : **Vatch Video Solution**

26. One function is selected at random from all functions of the

set $S = \{1, 2, 3, ..., n\}$ to itself. If, probability that it is oneone is $\frac{3}{32}$, then n is :

Watch Video Solution

27. Football teams T_1 and T_2 have to play two games against each other. It is assumed that the outcomes of the two games are independent. The probabilities of T_1 winning. Drawing and losing a game against T_2 are $\frac{1}{2}$, $\frac{1}{6}$ and $\frac{1}{3}$ respectively. Each team gets 3 points for a win. 1 point for a draw and 10 pont for a loss in a game. Let X and Y denote the total points scored by teams T_1 and T_2 respectively. after two games.

P(X=Y) is

A.
$$\frac{1}{4}$$

B. $\frac{5}{12}$
C. $\frac{1}{2}$
D. $\frac{7}{12}$

Answer:

28. Football teams T_1 and T_2 have to play two games against each other. It is assumed that the outcomes of the two games

are independent. The probabilities of T_1 winning. Drawing and losing a game against T_2 are $\frac{1}{2}$, $\frac{1}{6}$ and $\frac{1}{3}$ respectively. Each team gets 3 points for a win. 1 point for a draw and 10 pont for a loss in a game. Let X and Y denote the total points scored by teams T_1 and T_2 respectively. after two games.

P(X = Y) is

A.
$$\frac{11}{36}$$

B. $\frac{1}{3}$
C. $\frac{13}{36}$
D. $\frac{1}{2}$

Answer:

29.	Find	the	S.D.	between	the	lines
$\frac{x-3}{3}$	$\frac{y}{-1} = \frac{y}{-1}$	$\frac{8}{2} = \frac{z}{2}$	$\frac{-3}{1}$ and	$rac{x+3}{-3} =$	$rac{y+7}{2} =$	$rac{z-6}{4}$
A. -	$\sqrt{30}$					
В. ($6\sqrt{10}$					
С. 3	$3\sqrt{30}$					
D. 9	$9\sqrt{10}$					

:

Answer:

Watch Video Solution

A. (1,8,2)

B. (3,8,3)

C. (-3,8,3)

D. none of these

Answer:

31. Box 1 contains three cards bearing number 1,2,3 , box 2 contains five cards bearing numbers 1,2,3,4,5 and box 3 contains seven cards bearing numbers 1,2,3,4,5,6,7. A card is drawn from each of the boxes. Let x_i be the number on the card drawn from the ith box , i = 1, 2, 3.

The probability that x_1, x_2 and x_3 are in arithmetic progression, is

A.
$$\frac{29}{105}$$

B.
$$\frac{53}{105}$$

C. $\frac{57}{105}$
D. $\frac{1}{2}$

32. Box 1 contains three cards bearing number 1,2,3 , box 2 contains five cards bearing numbers 1,2,3,4,5 and box 3 contains seven cards bearing numbers 1,2,3,4,5,6,7. A card is drawn from each of the boxes. Let x_i be the number on the card drawn from the ith box , i = 1, 2, 3.

The probability that x_1, x_2 and x_3 are in arithmetic progression, is

A.
$$\frac{9}{105}$$

B.
$$\frac{10}{105}$$

C. $\frac{11}{105}$
D. $\frac{7}{105}$

33. A fair die is tossed repeated until a six is obtained. Let X denote the number of tosses required.

The probability that X=3 is

A.
$$\frac{25}{216}$$

B. $\frac{25}{36}$
C. $\frac{5}{36}$
D. $\frac{125}{216}$

Watch Video Solution

34. A fair die is tossed repeatedly until a 6 is obtained. Let X

denote the number of tosses rerquired.

The probability that X ≥ 3 equals

A.
$$\frac{125}{216}$$

B. $\frac{25}{36}$
C. $\frac{5}{36}$
D. $\frac{25}{216}$

Answer:

35. Let n_1 and n_2 be the number of red and black balls respectively, in box I. Let n_3 and n_4 be the number of red and black ball respectively, in box II.: One of the two boxes , box I andbox II, was selected at random and a ball was drawn randomly out of this box. The ball was found to be red. If the probability that this red ball was drawn from box II is $\frac{1}{3}$, then the correct option(s) with the possible values of

 n_1, n_2, n_3 and n_4 is (are):

A.
$$n_1=3, n_2=3, n_3=5, n_4=15$$

B.
$$n_1=3, n_2=6, n_3=10, n_4=50$$

C.
$$n_1=8, n_2=6, n_3=5, n_4=20$$

D.
$$n_1=6, n_2=12, n_3=5, n_4=20$$

Answer:

36. Let n_1 and n_2 be the number of red and black balls respectively, in box I. Let n_3 and n_4 be the number of red and black ball respectively, in box II.: One of the two boxes , box I andbox II, was selected at random and a ball was drawn randomly out of this box. The ball was found to be red. If the probability that this red ball was drawn from box II is $\frac{1}{3}$, then the correct option(s) with the possible values of n_1, n_2, n_3 and n_4 is (are):

A.
$$n_1 = 4$$
 and $n_2 = 6$

B. $n_1 = 2$ and $n_2 = 3$

C.
$$n_1 = 10$$
 and $n_2 = 20$

D.
$$n_1 = 3 \, ext{ and } n_2 = 6$$

Answer:

37. For all sets A and B, $(A - B) \cup (A \cap B) = A$. Is this statement

true?

Watch Video Solution

38. For all sets A, B and C, if $A \subset C$ and $B \subset C$, then $A \cup B \subset C$.