©゙" doubtnut

MATHS

BOOKS - MODERN PUBLICATION

EXCLUSIVELY FOR JEE(ADVANCED)

Exercise

1. vector ${ }^{\wedge} \mathrm{i}-3^{\wedge} \mathrm{j}+4^{\wedge} \mathrm{k}$. Find the magnitude of the vector
A. There is exactly one choice for such \vec{v}
B. There are infinitely many choices for such \vec{v}
C. If \widehat{u} lies in the xy-plane, then $\left|u_{1}\right|=\left|u_{2}\right|$
D. If \widehat{u} lies in xz-plane, the $2\left|u_{1}\right|=\left|u_{3}\right|$

- Watch Video Solution

2. Let P be the image of the point $(3,1,7)$ with respect to the plane $x-y+z=3$. Then, the equation of the plane passing through P and containing the straight line $\frac{x}{1}=\frac{y}{2}=\frac{z}{1}$ is
A. $x+y-3 z=0$
B. $3 x+z=0$
C. $x-4 y+7 z=0$
D. $2 x-y=0$

Answer:

3. Given L, $=\{1,2,3,4\}, M=\{3,4,5,6\}$ and $N=\{1,3,5\}$ Find $L-(M U N)$.

- Watch Video Solution

4. Given that $N=\{1,2,3, \ldots, 100\}$. Then write (i) the subset of N whose elements are even numbers. (ii) the subset of N whose element are perfect square numbers.

- Watch Video Solution

5. In R^{3}, consider the planes: $P_{1}: y=0$ and $P_{2}: x+z=1$. Let
P_{3} be a plane, different from P_{1} and P_{2}, which passes through the intersection of P_{1} and P_{2}. If the distance of the point $(0,1,0)$ from P_{3} is 1 and the distance of a point (α, β, γ) from P_{3} is 2 , then which of the following relations is (are) true?
A. $2 \alpha+\beta+2 \gamma+2=0$
B. $2 \alpha-\beta+2 \gamma+4=0$
C. $2 \alpha+\beta-2 \gamma-10=0$
D. $2 \alpha-\beta+2 \gamma-8=0$

Answer:

- Watch Video Solution

6. In R^{3}, let L be a straight line passing throughthe origin. Suppose that all points on L are at a constant distance from the two planes:
$P_{1}: x+2 y-z+1=0$ and $P_{2}: 2 x-y-z+1=0$. Let M be the locus of the feet of the perpendiculars drawn from the points on $\mathrm{L} t$ the plane P_{1}. Which of the following point(s) lie(s) on M ?
A. $\left(0,-\frac{5}{6},-\frac{2}{3}\right)$
B. $\left(-\frac{1}{6},-\frac{1}{3}, \frac{1}{6}\right)$
C. $\left(-\frac{5}{6}, 0, \frac{1}{6}\right)$
D. $\left(-\frac{1}{3}, 0, \frac{2}{3}\right)$

Answer:

- Watch Video Solution

7. Let \vec{x}, \vec{y} and \vec{z} be three vectors, each of magnitude $\sqrt{2}$ and the angle between each pair of them is $\frac{\pi}{3}$. If \vec{a} is a nonzero vector perpendicular to \vec{x} and $\vec{y} \times \vec{z}$ and \vec{b} is non-zero vector perpendicular to \vec{y} and $\vec{z} \times \vec{x}$, then :
A. $\vec{b}=(\vec{b} \cdot \vec{z})(\vec{z}-\vec{x})$
B. $\vec{a}=(\vec{a} \cdot \vec{y})(\vec{y}-\vec{z})$
C. $\vec{a} \cdot \vec{b}=-(\vec{a} \cdot \vec{y})(\vec{b} \cdot \vec{z})$
D. $\vec{a}=(\vec{a} \cdot \vec{y})(\vec{z}-\vec{y})$

Answer:

- Watch Video Solution

8. From a point $P(\lambda, \lambda, \lambda)$, perpendicular PQ and PR are drawn respectively on the lines $y=x, z=1$ and $y=-x, z=-1$. If P is such that $\angle Q P R$ is a right angle, then the possible value(s) of λ is (are)
A. $\sqrt{2}$
B. 1
C. -1
D. $-\sqrt{2}$

- Watch Video Solution

9. Let \vec{A} be vector parallel to line of intersection of planes P_{1} and P_{2} through origin. P_{1} is parallel to the vector $2 \hat{j}+3 \hat{k}$ and $4 \hat{j}-3 \hat{k}$ and P_{2} is parallel to $\hat{j}-\hat{k}$ and $3 \hat{i}-3 \hat{j}$, then the angle between the vectors \vec{A} and $2 \hat{i}+\hat{j}-3 \hat{k}$ is :
A. $\frac{\pi}{2}$
B. $\frac{\pi}{4}$
C. $\frac{\pi}{6}$
D. $\frac{3 \pi}{4}$

Answer:

10. Let $\quad \alpha=a \hat{i}+b \hat{j}+c \hat{k}, \beta=b \hat{i}+c \hat{j}+a \hat{k} \quad$ and $\gamma=c \hat{i}+a \hat{j}+b \hat{k}$ be three coplanar vectos with $a \neq b$ and $v=\hat{i}+\hat{j}+\hat{k}$. Then v is perpendicular to
A. $\vec{\alpha}$
B. $\vec{\beta}$
C. $\vec{\gamma}$
D. $\vec{\alpha}+\vec{\beta}+\vec{\gamma}$

Answer:

- Watch Video Solution

11.

$$
\vec{a}=x \hat{i}+y \hat{j}+z \hat{k}, \vec{b}=y \hat{i}+z \hat{j}+x \hat{k}, \vec{c}=z \hat{i}+x \hat{j}+y \hat{k}
$$

then $\vec{a} \times(\vec{b} \times \vec{c})$ is:
A. parallel to $(y-z) \hat{i}+(z-x) \hat{j}+(x-y) \hat{k}$
B. orthogonal to $\hat{i}+\hat{j}+\hat{k}$
C. orthogonal to $(y+z) \hat{i}+(z+x) \hat{j}+(x+y) \hat{k}$
D. parallel to $\hat{i}+\hat{j}+\hat{k}$

Answer:

- Watch Video Solution

12. Let \vec{a} and \vec{b} be two non- zero perpendicular vectors. A vector \vec{r} satisfying the equation $\vec{r} \times \vec{b}=\vec{a}$ can be a $. b-\frac{a \times b}{|b|^{2}}$
b. $2 b-\frac{a \times b}{|b|^{2}}$
c. $|a| b-\frac{a \times b}{|b|^{2}}$
d. $|b| b-\frac{a \times b}{|b|^{2}}$
A. $\vec{b}=\frac{\vec{a} \times \vec{b}}{|\vec{b}|^{2}}$
B. $2 \vec{b}=\frac{\vec{a} \times \vec{b}}{|\vec{b}|^{2}}$
C. $|\vec{a}| \vec{b}=\frac{\vec{a} \times \vec{b}}{|\vec{b}|^{2}}$
D. $|\vec{b}| \vec{b}=\frac{\vec{a} \times \vec{b}}{|\vec{b}|^{2}}$

Answer:

D Watch Video Solution

13. Let a plane pass through orogin and is parallel to the line: $\frac{x-1}{2}=\frac{y+3}{-1}=\frac{z+1}{-2}$ such that distance between plane
and the line is $\frac{5}{3}$.Then equation of the plane is:
A. $x-2 y+2 z=0$
B. $x-2 y-2 z=0$
C. $2 x+2 y+z=0$
D. $x+y+z=0$

Answer:

- Watch Video Solution

14. A non-zero vectors a is parallel to the line of intersection of the plane determined by the vectors $\hat{i}, \hat{i}+\hat{j}$ and the plane determined by the vectors $\hat{i}-\hat{j}$ and $\hat{i}+\hat{k}$. Find the angle between a and $\hat{i}-2 \hat{j}+2 \hat{k}$.
A. $\frac{\pi}{3}$
B. $\frac{\pi}{4}$
C. $\frac{2 \pi}{3}$
D. $\frac{3 \pi}{4}$

Answer:

- Watch Video Solution

15. For two events A and B , let $P(A)=\frac{3}{5}, P(B)=\frac{2}{3}$, then which of the following statements is correct?
A. $P(A \cap \bar{B}) \leq \frac{1}{3}$
B. $P(A \cup B) \geq \frac{2}{3}$
C. $\frac{4}{15} \leq P(A \cap B) \leq \frac{3}{5}$
D. $\frac{2}{5} \leq P\left(\frac{A}{B}\right) \leq \frac{9}{10}$

- Watch Video Solution

16. If A and B are two events such that $P(B) \neq 1, B^{c}$ denotes the event complementary to B, then :
A. $P\left(\frac{A}{B^{c}}\right)=\frac{P(A)-P(A \cap B)}{1-P(B)}$
B. $P(A \cap B) \geq P(A)+P(B)-1$
C.
D.

Answer:

17. Suppose that \vec{p}, \vec{q} and \vec{r} are three non-coplanar vectors in R^{3}. Let the components of a vector \vec{s} along \vec{p}, \vec{q} and \vec{r} be 4,3 and 5 respectively. If the componenets of ths vector \vec{s} along
$(-\vec{p}+\vec{q}+\vec{r}),(\vec{p}-\vec{q}+\vec{r})$ and $(-\vec{p}-\vec{q}+\vec{r})$ are x, y and z respectively, then the value of $2 x+y+z$ is.

- Watch Video Solution

18. Let \vec{a}, \vec{b} and \vec{c} be three non-coplanar unit vectors such that the angle bet ween every pair of them is $\frac{\pi}{3}$. If $\vec{a} \times \vec{b}+\vec{b} \times \vec{c}=p \vec{a}+q \vec{b}+r \vec{c}$, where p, q and r are scalars, then the value of $\frac{p^{2}+2 q^{2}+r^{2}}{q^{2}}$ is:
19. The square of the shortest distance between the lines:
$\vec{r}=s(\hat{i}-\hat{j}-\hat{k})$ and $\vec{r}=3 \hat{j}+t(\hat{i}-\hat{k})$ is :

- Watch Video Solution

20. Write the set $A=\{x: x$ is an integer, $-1 \leq x \leq 4\}$ in roster form.

D Watch Video Solution

21. If $|\vec{a}|=3,|\vec{b}|=1$ and $|\vec{a}+\vec{b}|=|\vec{a}-\vec{b}|$, then $|\vec{a} \times \vec{b}|$ is:

- Watch Video Solution

22.

$$
|\vec{a}|=|\vec{b}|=|\vec{c}|=1 \text { and } \vec{a} \cdot \vec{b}=\vec{b} \cdot \vec{c}=\vec{c} \cdot \vec{a}=\frac{1}{2}
$$

then the value of $4[\vec{a} \vec{b} \vec{c}]^{2}$ is:

- Watch Video Solution

23.

Consider
the
lines
$L_{1}: \frac{x-7}{3}=\frac{y-7}{2}=\frac{z-3}{1}$ and $L_{2}: \frac{x-1}{2}=\frac{y+1}{4}=\frac{z+1}{3}$
. If a line 'L' whose direction ratios are $\langle 2,2,1\rangle$ intersects
the lines L_{1} and L_{2} at A and B respectively, then the distance of $\frac{A B}{2}$ is:

- Watch Video Solution

24. Value of λ so that the planes:
$x-y+z+1=0, \lambda x+3 y+2 z-3=0,3 x+\lambda y+z-2=0$
form a triangular prism is :
25. If A and B are two events of an expeiment with $P(A)=\frac{1}{4}, P(A \cup B)=\frac{1}{2}$, then $3 P\left(\frac{B}{A}\right)$ is :

- Watch Video Solution

26. One function is selected at random from all functions of the set $S=\{1,2,3, \ldots \ldots, n\}$ to itself. If, probability that it is oneone is $\frac{3}{32}$, then n is :

- Watch Video Solution

27. Football teams T_{1} and T_{2} have to play two games against each other. It is assumed that the outcomes of the two games are independent. The probabilities of T_{1} winning. Drawing and
losing a game against T_{2} are $\frac{1}{2}, \frac{1}{6}$ and $\frac{1}{3}$ respectively. Each team gets 3 points for a win. 1 point for a draw and 10 pont for a loss in a game. Let X and Y denote the total points scored by teams T_{1} and T_{2} respectively. after two games.
$P(X=Y)$ is
A. $\frac{1}{4}$
B. $\frac{5}{12}$
C. $\frac{1}{2}$
D. $\frac{7}{12}$

Answer:

- Watch Video Solution

28. Football teams T_{1} and T_{2} have to play two games against each other. It is assumed that the outcomes of the two games
are independent. The probabilities of T_{1} winning. Drawing and losing a game against T_{2} are $\frac{1}{2}, \frac{1}{6}$ and $\frac{1}{3}$ respectively. Each team gets 3 points for a win. 1 point for a draw and 10 pont for a loss in a game. Let X and Y denote the total points scored by teams T_{1} and T_{2} respectively. after two games.
$P(X=Y)$ is
A. $\frac{11}{36}$
B. $\frac{1}{3}$
C. $\frac{13}{36}$
D. $\frac{1}{2}$

Answer:

- Watch Video Solution

29. Find the S.D. between the lines :

$$
\frac{x-3}{3}=\frac{y-8}{-1}=\frac{z-3}{1} \text { and } \frac{x+3}{-3}=\frac{y+7}{2}=\frac{z-6}{4}
$$

A. $\sqrt{30}$
B. $6 \sqrt{10}$
C. $3 \sqrt{30}$
D. $9 \sqrt{10}$

Answer:

- Watch Video Solution

30. Find the S.D. between the lines :

$$
\frac{x-3}{3}=\frac{y-8}{-1}=\frac{z-3}{1} \text { and } \frac{x+3}{-3}=\frac{y+7}{2}=\frac{z-6}{4}
$$

A. $(1,8,2)$
B. $(3,8,3)$
C. $(-3,8,3)$
D. none of these

Answer:

- Watch Video Solution

31. Box 1 contains three cards bearing number $1,2,3$, box 2 contains five cards bearing numbers 1,2,3,4,5 and box 3 contains seven cards bearing numbers $1,2,3,4,5,6,7$. A card is drawn from each of the boxes. Let x_{i} be the number on the card drawn from the ith box $, i=1,2,3$.

The probability that x_{1}, x_{2} and x_{3} are in arithmetic progression , is

$$
\text { A. } \frac{29}{105}
$$

B. $\frac{53}{105}$
C. $\frac{57}{105}$
D. $\frac{1}{2}$

Answer:

- Watch Video Solution

32. Box 1 contains three cards bearing number $1,2,3$, box 2 contains five cards bearing numbers 1,2,3,4,5 and box 3 contains seven cards bearing numbers $1,2,3,4,5,6,7$. A card is drawn from each of the boxes. Let x_{i} be the number on the card drawn from the ith box $, i=1,2,3$.

The probability that x_{1}, x_{2} and x_{3} are in arithmetic progression , is
A. $\frac{9}{105}$
B. $\frac{10}{105}$
C. $\frac{11}{105}$
D. $\frac{7}{105}$

Answer:

- Watch Video Solution

33. A fair die is tossed repeated until a six is obtained. Let X denote the number of tosses required.

The probability that $X=3$ is
A. $\frac{25}{216}$
B. $\frac{25}{36}$
C. $\frac{5}{36}$
D. $\frac{125}{216}$

- Watch Video Solution

34. A fair die is tossed repeatedly until a 6 is obtained. Let X denote the number of tosses rerquired.

The probability that $X \geq 3$ equals
A. $\frac{125}{216}$
B. $\frac{25}{36}$
C. $\frac{5}{36}$
D. $\frac{25}{216}$

Answer:

35. Let n_{1} and n_{2} be the number of red and black balls respectively, in box I. Let n_{3} and n_{4} be the number of red and black ball respctively, in box II.: One of the two boxes, box I andbox II, was selected at random and a ball was drawn randomly out of this box. The ball was found to be red.

If the probability that this red ball was drawn from box II is $\frac{1}{3}$, then the correct option(s) with the possible values of n_{1}, n_{2}, n_{3} and n_{4} is (are):
A. $n_{1}=3, n_{2}=3, n_{3}=5, n_{4}=15$
B. $n_{1}=3, n_{2}=6, n_{3}=10, n_{4}=50$
C. $n_{1}=8, n_{2}=6, n_{3}=5, n_{4}=20$
D. $n_{1}=6, n_{2}=12, n_{3}=5, n_{4}=20$

Answer:

36. Let n_{1} and n_{2} be the number of red and black balls respectively, in box I. Let n_{3} and n_{4} be the number of red and black ball respctively, in box II.: One of the two boxes, box I andbox II, was selected at random and a ball was drawn randomly out of this box. The ball was found to be red.

If the probability that this red ball was drawn from box II is $\frac{1}{3}$, then the correct option(s) with the possible values of n_{1}, n_{2}, n_{3} and n_{4} is (are):
A. $n_{1}=4$ and $n_{2}=6$
B. $n_{1}=2$ and $n_{2}=3$
C. $n_{1}=10$ and $n_{2}=20$
D. $n_{1}=3$ and $n_{2}=6$

Answer:

37. For all sets A and $B,(A-B) \cup(A \cap B)=A$. Is this statement true?

- Watch Video Solution

38. For all sets A, B and C, if $A \subset C$ and $B \subset C$,then $A \cup B \subset C$.

D Watch Video Solution

