©゙doubtnut

India's Number 1 Education App

MATHS

BOOKS - MODERN PUBLICATION

MOCK TEST-1

Exercise

1. For what value of ' x ', is the matrix $A=\left[\begin{array}{ccc}0 & 1 & -2 \\ -1 & 0 & 3 \\ x & -3 & 0\end{array}\right]$ a skewsymmetric matrix.

- Watch Video Solution

2. Evaluate: $\int \frac{1}{x(\log x)^{m}} d x, m>0$
3. Solve : $\frac{d y}{d x}=\sqrt{9-y^{2}}$

- Watch Video Solution

4. Find the angle between the vectors
$\vec{a}=\hat{i}-\hat{j}+\hat{k}$ and $\hat{b}=\hat{i}+\hat{j}-\hat{k}$.

- Watch Video Solution

5. Construct a 3×4 matrix, whose elements are given by: $a_{i} j=\frac{1}{2}|-3 i+j|$

- Watch Video Solution

6. If $A_{i j}$ is the co-factor of the element $a_{i j}$ of the determinant $\left|\begin{array}{ccc}2 & -3 & 5 \\ 6 & 0 & 4 \\ 1 & 5 & -7\end{array}\right|$, then write the value of $a_{32} \cdot A_{32}$
7. If $\mathrm{x} \sin (\mathrm{a}+\mathrm{y})+\sin \mathrm{a} \cos (\mathrm{a}+\mathrm{y})=0$, then prove that: $\frac{d y}{d x}=\frac{\sin ^{2}(a+y)}{\sin a}$

- Watch Video Solution

8. Prove that the function f given by $f(x)=x^{2}-x+1$ is neither strictly increasing nor decreasing on $(-1,1)$.

- Watch Video Solution

9. Find the approximate change in the volume V of a cube of side x metres caused by increasing the side by 1%.

- Watch Video Solution

10. Evaluate $\int_{\pi / 6}^{\pi / 3}\left(\frac{1}{1+\sqrt{\tan x}} d x\right.$

- Watch Video Solution

11. Solve the following differential equations
$x d y+\left(y-x^{3}\right) d x=0$

- Watch Video Solution

12. Find the value of ' λ ' such that the vectors : $3 \hat{i}+\lambda \hat{j}+5 \hat{k}, \hat{i}+2 \hat{j}-3 \hat{k}$ and $2 \hat{i}-\hat{j}+\hat{k}$ are coplanar.

- Watch Video Solution

13. $\tan ^{-1} \frac{1}{5}+\tan ^{-1} \frac{1}{7}+\tan ^{-1} \frac{1}{3}+\tan ^{-1} \frac{1}{8}=\frac{\pi}{4}$

- Watch Video Solution

14. Prove that $: \tan ^{-1}\left(\frac{\cos x}{1+\sin x}\right)=\frac{\pi}{4}-\frac{x}{2}, x \in\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$
15. Show that if $A=\left[\begin{array}{cc}\cos \theta & \sin \theta \\ -\sin \theta & \cos \theta\end{array}\right]$, then $A^{n}=\left[\begin{array}{cc}\cos n \theta & \sin n \theta \\ -\sin n \theta & \cos n \theta\end{array}\right]$

- Watch Video Solution

16. Using the properties of determinant, show that : $\left|\begin{array}{ccc}a^{2}+1 & a b & a c \\ a b & b^{2}+1 & b c \\ a c & b c & c^{2}+1\end{array}\right|=1+a^{2}+b^{2}+c^{2}$

- Watch Video Solution

17. The funtion $f(x)$ is defined as follows:
$f(x)=\left\{\begin{array}{ll}x^{2}+a x+b & 0 \leq x<2 \\ 3 x+2 & 2 \leq x \leq 4 \\ 2 a x+5 b & 4<x \leq 8\end{array}\right.$ If $\mathrm{f}(\mathrm{s})$ is continuous on $[0,8]$, find the values of 'a' and 'b'.

- Watch Video Solution

18. Evalute : $\int \frac{5 x+3}{\sqrt{x^{2}+4 x+10}} d x$

- Watch Video Solution

19. By using the properties of definite integrals, evaluate the integral:
$\int_{0}^{\frac{\pi}{2}}(2 \log \sin x-\log \sin 2 x) d x$

- Watch Video Solution

20. Solve: $\frac{d y}{d x}+\frac{2 x}{x^{2}+1} y=\frac{1}{\left(x^{2}+1\right)^{2}}, y(0)=0$.

- Watch Video Solution

21. Find the shortest distance between the lines:
$\vec{r}=6 \hat{i}+2 \hat{j}+2 \hat{k}+\lambda(\hat{i}-2 \hat{j}+2 \hat{k})$ and $\vec{r}=-4 \hat{i}-\hat{k}+\mu(3 \hat{i}-2 \hat{j}-$
22. Find the equation of the plane passing through the intersection of the planes: $2 x-y+z=10$ and $x-2 y+2 z=12$ and parallel to the line with direction ratios $\langle 1,2,3\rangle$. Find the perpendiccular distance of $(2,2,2)$ from this plane.

- Watch Video Solution

23. A problem in Mathematics is given the three students whose chances of solving it are $\frac{1}{2}, \frac{1}{3}, \frac{1}{4}$. What is the probability in the following cases ?
: Only one of them solves it correctly.

- Watch Video Solution

24. A problem in Mathematics is given the three students whose chances of solving it are $\frac{1}{2}, \frac{1}{3}, \frac{1}{4}$. What is the probability in the following cases ?
: At least one of them solves it.
25. If A and B are subsets of the universal set U, then show that $A \subset A U B$.

Watch Video Solution

26. Is $*$ defined on the set $\{1,2,3,4,5\}$ by $a \cdot b=L . C . M$. ofa and b a binary operation? Justify your answer.

(Watch Video Solution

27. If $X=\{1,2,3\}$, if n represents any member of X, write the following sets containing all numbers represented by (i) $4 n$ (ii) $n+6$

- Watch Video Solution

28. Find the area of the smaller region bounded by the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ and the straight line $\frac{x}{a}+\frac{y}{b}=1$ (using integration)

- Watch Video Solution

29. Simplify : $[\vec{a}-\vec{b}, \vec{b}-\vec{c}, \vec{c}-\vec{a}]$.

D Watch Video Solution

30. If $\vec{a}, \vec{b}, \vec{c}$ are three vectors such that $\vec{a} \times \vec{b}=\vec{c}, \vec{b} \times \vec{c}=\vec{a}$, prove that $\vec{a}, \vec{b}, \vec{c}$ are mutually at right angles and $|\vec{b}|=1,|\vec{c}|=|\vec{a}|$.

- Watch Video Solution

31. Convert the following measurements into mL. 0.75 liters

- Watch Video Solution

32. A class has 15 students whose ages are $14,17,15,14,21,17,19,20,16,18$, $20,17,16,19$ and 20 years. One student is selected in such a manner that each has the same chance of being chosen and the age X of the selected student is recorded. What is the probability distribution of the random variable X ? Find mean, variance and standard deviation of X.

- Watch Video Solution

33. Find the variance of the number obtained on a throw of an unbiased die.
