

MATHS

BOOKS - MODERN PUBLICATION

MOCK TEST-1

1. For what value of 'x', is the matrix $A = \begin{bmatrix} 0 & 1 & -2 \\ -1 & 0 & 3 \\ x & -3 & 0 \end{bmatrix}$ a skew-

symmetric matrix.

Watch Video Solution

2. Evaluate :
$$\int\!\!rac{1}{x{\left(\log x
ight)}^m}dx,\,m>0$$

3. Solve :
$$\frac{dy}{dx} = \sqrt{9 - y^2}$$

Watch Video Solution
4. Find the angle between the vectors
 $\vec{a} = \hat{i} - \hat{j} + \hat{k}$ and $\hat{b} = \hat{i} + \hat{j} - \hat{k}$.
Watch Video Solution

5. Construct a
$$3 imes 4$$
 matrix, whose elements are given by: $a_i j = rac{1}{2} |-3i+j|$

Watch Video Solution

6. If A_{ij} is the co-factor of the element a_{ij} of the determinant $\begin{vmatrix} 2 & -3 & 5 \\ 6 & 0 & 4 \\ 1 & 5 & -7 \end{vmatrix}$, then write the value of $a_{32} \cdot A_{32}$

10. Evaluate
$$\int_{\pi/6}^{\pi/3} \left(rac{1}{1+\sqrt{ an x}} \; \mathsf{d} \mathsf{x}
ight)$$

11. Solve the following differential equations

$$xdy+ig(y-x^3ig)dx=0$$

Watch Video Solution

12. Find the value of '
$$\lambda$$
' such that the vectors :
 $3\hat{i} + \lambda\hat{j} + 5\hat{k}, \hat{i} + 2\hat{j} - 3\hat{k}$ and $2\hat{i} - \hat{j} + \hat{k}$ are coplanar.

Watch Video Solution

13.
$$\tan^{-1} \frac{1}{5} + \tan^{-1} \frac{1}{7} + \tan^{-1} \frac{1}{3} + \tan^{-1} \frac{1}{8} = \frac{\pi}{4}$$

14. Prove that
$$: an^{-1}igg(rac{\cos x}{1+\sin x}igg)=rac{\pi}{4}-rac{x}{2}, x\in \Big(-rac{\pi}{2},rac{\pi}{2}\Big)$$

15. Show that if
$$A = \begin{bmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{bmatrix}$$
, then $A^n = \begin{bmatrix} \cos n\theta & \sin n\theta \\ -\sin n\theta & \cos n\theta \end{bmatrix}$

D

16. Using the properties of determinant, show that :
$$\begin{vmatrix} a^2 + 1 & ab & ac \\ ab & b^2 + 1 & bc \\ ac & bc & c^2 + 1 \end{vmatrix} = 1 + a^2 + b^2 + c^2$$

Watch Video Solution

17. The function f(x) is defined as follows:

$$f(x) = egin{cases} x^2 + ax + b & 0 \leq x < 2 \ 3x + 2 & 2 \leq x \leq 4 \ 2ax + 5b & 4 < x \leq 8 \end{cases}$$
 If f(s) is continuous on [0,8], find the

values of 'a' and 'b'.

18. Evalute :
$$\int rac{5x+3}{\sqrt{x^2+4x+10}} dx$$

S Watch Video Solution

19. By using the properties of definite integrals, evaluate the integral: $\int \frac{\pi}{2}$

$$\int_0^{rac{1}{2}}(2\log\sin x - \log\sin 2x)dx$$

Watch Video Solution

20. Solve:
$$rac{dy}{dx} + rac{2x}{x^2+1}y = rac{1}{\left(x^2+1
ight)^2}, y(0) = 0.$$

21. Find the shortest distance between the lines:
$$\vec{r} = 6\hat{i} + 2\hat{j} + 2\hat{k} + \lambda(\hat{i} - 2\hat{j} + 2\hat{k}) \text{ and } \vec{r} = -4\hat{i} - \hat{k} + \mu(3\hat{i} - 2\hat{j})$$

22. Find the equation of the plane passing through the intersection of the planes: 2x - y + z = 10 and x - 2y + 2z = 12 and parallel to the line with direction ratios <1,2,3>. Find the perpendiccular distance of (2,2,2) from this plane.

Watch Video Solution

23. A problem in Mathematics is given the three students whose chances of solving it are $\frac{1}{2}$, $\frac{1}{3}$, $\frac{1}{4}$. What is the probability in the following cases ? : Only one of them solves it correctly.

Watch Video Solution

24. A problem in Mathematics is given the three students whose chances of solving it are $\frac{1}{2}$, $\frac{1}{3}$, $\frac{1}{4}$. What is the probability in the following cases ?

: At least one of them solves it.

25. If A and B are subsets of the universal set U, then show that $A \subset A \cup B$.

containing all numbers represented by (i) 4n (ii) n + 6

28. Find the area of the smaller region bounded by the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ and the straight line $\frac{x}{a} + \frac{y}{b} = 1$ (using integration)

29. Simplify:
$$\left[\overrightarrow{a} - \overrightarrow{b}, \overrightarrow{b} - \overrightarrow{c}, \overrightarrow{c} - \overrightarrow{a}\right]$$
.

Watch Video Solution

30. If
$$\overrightarrow{a}$$
, \overrightarrow{b} , \overrightarrow{c} are three vectors such that $\overrightarrow{a} \times \overrightarrow{b} = \overrightarrow{c}$, $\overrightarrow{b} \times \overrightarrow{c} = \overrightarrow{a}$, prove that \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} are mutually at right angles and $\left|\overrightarrow{b}\right| = 1$, $\left|\overrightarrow{c}\right| = \left|\overrightarrow{a}\right|$.

Watch Video Solution

31. Convert the following measurements into mL. 0.75 liters

32. A class has 15 students whose ages are 14, 17, 15, 14, 21, 17, 19, 20, 16, 18, 20, 17, 16, 19 and 20 years. One student is selected in such a manner that each has the same chance of being chosen and the age X of the selected student is recorded. What is the probability distribution of the random variable X? Find mean, variance and standard deviation of X.

Watch Video Solution

33. Find the variance of the number obtained on a throw of an unbiased die.