©゙’ doubtnut

India's Number 1 Education App

MATHS

BOOKS - MODERN PUBLICATION

MOCK TEST-3

Exercise

1. Write the element a_{12} of the matrix $A=\left[a_{i j}\right]_{2 \times 2}$, whose elements are given by : $a_{i j}=e^{2 i x} \sin j x$
2. Given : $\int e^{x}(\tan x+1) \sec x d x=e^{x} f(x)+c$, write $f(x)$ satisfying the above.

D Watch Video Solution

3. Determine order and degree (if defined) of differential equation: $\frac{d^{4} y}{d x^{4}}+\sin \left(y^{\prime \prime \prime}\right)=0$

- Watch Video Solution

4. Find $|\vec{x}|$, if for a unit vector

$$
\vec{a},(\vec{x}-\vec{a}) \cdot(\vec{x}+\vec{a})=15
$$

5. By using elementary transformations, find the inverse of the matrix $A=\left[\begin{array}{ll}1 & 3 \\ 2 & 7\end{array}\right]$.

D Watch Video Solution

6. Using determinant, find the area of triangle with verticles
$(1,0),(6,0),(4,3)$

Watch Video Solution
7. Find $\frac{d y}{d x}$ if $x=a(\theta+\sin \theta), y=a(1-\cos \theta)$

- Watch Video Solution

8. Prove that the function f given by $f(x)=\log \sin x$ is strictly increasing on $\left(0, \frac{\pi}{2}\right)$ and strictly decreasing on $\left(\frac{\pi}{2}, \pi\right)$.

D Watch Video Solution
9. Find the equation of the tangent to the curve $x^{2}+3 y=3$, which is parallel to the line $\mathrm{y}-4 \mathrm{x}+5=0$
10. Evaluate : $\int\left[\log (\log x)+\frac{1}{(\log x)^{2}}\right] d x$.

- Watch Video Solution

11. Solve : $x y y^{\prime}=1+x+y+x y$.

D Watch Video Solution

12. If \vec{a} is any vector in space, show that :
$\vec{a}=(\vec{a} \cdot \hat{i}) \hat{i}+(\vec{a} \cdot \hat{j}) \hat{j}+(\vec{a} \cdot \hat{k}) \hat{k}$.
13.

Prove
that
$2 \tan ^{-1}\left(\frac{1}{2}\right)+\tan ^{-1}\left(\frac{1}{7}\right)=\tan ^{-1}\left(\frac{31}{17}\right)$

- Watch Video Solution

14. Solve: $\tan ^{-1} 2 x+\tan ^{-1} 3 x=\frac{\pi}{4}$

D Watch Video Solution
15. If $A=\left[\begin{array}{cc}2 & -1 \\ -1 & 2\end{array}\right]$, show that $A^{2}-4 A+3 I=0$.
16. If $A=\left[\begin{array}{ccc}2 & 0 & -1 \\ 5 & 1 & 0 \\ 0 & 1 & 3\end{array}\right]$, prove that
$A^{-1}=A^{2}-6 A+11 I$

- Watch Video Solution

17. Without expanding, prove the following
$\left|\begin{array}{lll}b+c & c+a & a+b \\ q+r & r+p & p+q \\ y+z & z+x & x+y\end{array}\right|=2\left|\begin{array}{lll}a & b & c \\ p & q & r \\ x & y & z\end{array}\right|$

D Watch Video Solution
18. If the function defined by:
$f(x)=\left\{\begin{array}{ll}2 x-1 & x<2 \\ a & x=2 \\ x+1 & x>2\end{array}\right.$ is continuous at $\mathrm{x}=2$, find
the value of 'a'. Also discuss the continuity of $f(x)$ at x $=3$.

D Watch Video Solution

19. Differentiate the following w.r.t.x.
$x^{\cot x}+(\sin x)^{x}$.

- Watch Video Solution

20. Evalute : $\int \frac{5 x+3}{\sqrt{x^{2}+4 x+10}} d x$

D Watch Video Solution

21. Evaluate : $\int_{0}^{\pi} \frac{x \sin x}{1+\cos ^{2} x} d x$.

D Watch Video Solution

22. Evaluate : $\int_{0}^{\frac{\pi}{2}} \frac{\cos ^{2} x}{\cos ^{2} x+4 \sin ^{2} x} d x$
23. For the differential equation, find the particular solution satisfying the given condition:
$(x+y) d y+(x-y) d x=0, y=1$ when $x=1$

- Watch Video Solution

24. Find the vector equation of the line parallel to the line : $\frac{x-1}{5}=\frac{3-y}{2}=\frac{z+1}{4}$ and passing through $(3,0,-4)$. Also find the distance between these two lines.

D Watch Video Solution

25. Find the equation of the plane passing through the point ($1,-1,2$) and perpendicular to the planes $2 x$ $+3 y-2 z=5$ and $x+2 y-3 z=8$.

D Watch Video Solution

26. A speaks truth in 60% of the cases, while B in 90%
of the cases. In what percentage are they likely to
contradict each other in stating the same fact? In the
case of contradiction do you think, the statement of
B will carry more weight as he speaks truth in more number of case than A ?
27. Consider $f: R \rightarrow[-5, \infty)$ given by
$f(x)=9 x^{2}+6 x-5$. Show that f is invertible. Find the inverse of f .

- Watch Video Solution

28. Consider the binary operations * $: R \times R \rightarrow R$ and $o: R \times R \rightarrow R$ defined as a * $\mathrm{b}=|\mathrm{a}-\mathrm{b}|$ and a o $\mathrm{b}=$ a for all a,b in R'. Show that '*' is commutative but not associative, 'o' is associative but not commutative.
29. Show that a cylinder of given volume, open at the top, has minimum total surface area if its height is equal to radius of the base.

- Watch Video Solution

30. Using integration find the area of region bounded by the triangle where vertices are : $(1,3),(2,5)$ and $(3,4)$

Watch Video Solution

31. Show that the points :
$A(-2 \hat{i}+3 \hat{j}+5 \hat{k}), B(\hat{i}+2 \hat{j}+3 \hat{k})$ and $C(7 \hat{i}-\hat{k})$

- Watch Video Solution

$$
\begin{aligned}
& \text { 32. Show that the lines } \\
& \frac{x-a+d}{\alpha-\delta}=\frac{y-a}{\alpha}=\frac{z-a-d}{\alpha+\delta} \\
& \frac{x-b+c}{\beta-\gamma}=\frac{y-b}{\beta}=\frac{z-b-c}{\beta+\gamma} \text { are coplanar. }
\end{aligned}
$$

- Watch Video Solution

33. Two tailors A and B earn Rs 150 and Rs 200 per day respectively. A can stitch 6 shirts and 4 pants while B can stitch 10 shirts and 4 pants per day. How many days shall each work it it is desired to produce
(at least) 60 shirts ands 32 pants at a minimum labour cost? Solve the problem graphically.

- Watch Video Solution

34. A coin is biased so that the head is 3 times as
likely to occur as tail. If the coin is tossed 3 times, find the probability distribution of number of tails.

- Watch Video Solution

35. There see three coins,one is a two headed coin
(having head on both the faces),another is a biased coin that comes up heads 75% of the time and the
third is anunbiased coin.One of the three coins is
choosen at random and tossed.Of it shows head,what is probability that it was the two headed coin?
