©゙doubtnut

India's Number 1 Education App

MATHS

BOOKS - MODERN PUBLICATION

RELATIONS AND FUNCTIONS

Example

1. State the reason for the relation R, in the set $\{1,2,3\}$ given by $R=\{(1,2),(2$,
1), not to be transitive.

- Watch Video Solution

2. Let A be the set of all students of a boys school. Show that the relation R in A given by $R=\{(a, b)$: a is sister of $b\}$ is the empty relation and $R^{\prime}=\{(a$,
b) : the difference between heights of a and b is less than 3 meters $\}$ is the universal relation.

- Watch Video Solution

3.

$N_{7}=\{1,2,3,4,5,6,7\}$, doesthefollow \in gpartitiongiverise $\rightarrow a n \equiv a \leq$

Why?A _ $1=(1,2,5,6), A_{-} 2=\{3\}, A_{-} 3=\{4,6\}$

Watch Video Solution

4. If R is the relation 'lessthan from $A=\{1,2,3,4,5\}$ to $B=\{1,4,5\}$. Write down the cartesion product corresponding to R. Also find the inverse relation to R.

- Watch Video Solution

5. Let Z be the set of all integers and R be the relation on Z defined as $R=(a, b): a, b \mathrm{in}^{`} \mathrm{Z}$ and $\mathrm{a}-\mathrm{b}$ is divisible by 5) Prove that R is an equivalence relation.

- Watch Video Solution

6. Let L be the set of all lines in the plane and R be the relation in L, defined as $R=\left(L_{1}, L_{2}\right): L_{1}$ is perpendicular to $\left.L_{2}\right)$. Show that R is symmetric but neither reflexive nor transitive.

- Watch Video Solution

7. Let T be the set of all triangles in a plane with R a relation in T given by
: $R=\left\{\left(T_{1}, T_{2}\right): T_{1}\right.$ is congruent to $\left.T_{-} 2\right\}$. Show that R is an equivalence relation.

- Watch Video Solution

8. Show that the relation R defined in the set A of all polygons as $R=\left\{\left(P_{1}, P_{2}\right): P_{1}\right.$ and P_{2} have same numbers of sides $\}$ is an equivalence relation.

- Watch Video Solution

9. Let ' m ' be a given positive integer. Prove that the relation, Congruence modulo m^{\prime} on the set Z of all integers defined by : $a \equiv b(\bmod m) \Leftrightarrow(a-b)$ is divisible by m is an equivalence relation.

- Watch Video Solution

10. Let $\mathrm{A}=(1,2,3, \ldots, ., 9)$ and R be the relation in $A \times A$ defined by (a,b) R (c, d) if: $\mathrm{a}+\mathrm{d}=\mathrm{b}+\mathrm{c}$ for $(\mathrm{a}, \mathrm{b}),(\mathrm{c}, \mathrm{d})$ in $A \times A$. Prove that R is an equivalence relation. Also obtain the equivalence class $\{(2,5)\}$

- Watch Video Solution

11. Let N denote the set of all natural numbers and R be the relation on $N x N$ defined by $(a, b) R(c, d)<=>a d(b+c)=b c(a+d)$. Check whether R is an equivalence relation on $N \times N$.

- Watch Video Solution

12. Show that the relation R in the set :
$R=\{x: x \in Z, 0 \leq x \leq 12\}$, givenby: $\mathrm{R}=\{(\mathrm{a}, \mathrm{b}):|\mathrm{a}-\mathrm{b}|$ is a multiple of
$4\}$ is an equivalence relation.

- Watch Video Solution

13. Let R be the relation defined in the set $A=\{1,2,3,4,5,6,7\}$ by $R=\{(a, b)$
: both a and b are either odd or even\}. Show that R is an equivalence relation. Further, show that all the elements of the subset $\{1,3,5,7\}$ are related to each other and all the elements of the subset $\{2,4,6\}$ are related to each other, but no element of the subset $\{1,3,5,7\}$ is related to any element of the subset $\{2,4,6\}$.
