©゙doubtnut

India's Number 1 Education App

MATHS

BOOKS - MODERN PUBLICATION

Three Dimensional Geometry

Example

1. If a line makes angles of $90^{\circ}, 60^{\circ}$ and 30° with the positive x, y and z axis respectively, find its direction-cosines.

- Watch Video Solution

2. If a line has direction ratios $<-2,-1,2>$ then its direction cosines are
3. If a line has direction cosine $: \leftarrow \frac{9}{11}, \frac{6}{11},-\frac{2}{11}>$, then what are its direction ratios?

- Watch Video Solution

4. Show that the points $A(1,-2,-8), B(5,0,-2)$ and $C(11,3,7)$ are collinear.

- Watch Video Solution

5. Find the acute angle between the lines whose direction ratios are :

$$
<1,1,2>\text { and } \leftarrow 3,-4,1\rangle
$$

- Watch Video Solution

6. Find the angle between the lines whose direction cosines are given by the equations $3 l+m+5 n=0,6 m n-2 n l+5 l m=0$

- Watch Video Solution

7. Find the length of the projection of the line segment joining the points $P(3,-1,2)$ and $Q(2,4-1)$ on the line with direction ratios $<1,2,-2>$

- Watch Video Solution

8. Find the area of the triangle $A B C$ whose vertices are : $A(1,2,4), B(-2,1,2)$ and $C(2,4,-3)$

- Watch Video Solution

9. A line makes angles $\alpha, \beta, \gamma, \delta$ with the diagonals of a cube, prove that $\cos ^{2} \alpha+\cos ^{2} \beta+\cos ^{2} \gamma+\cos ^{2} \delta=\frac{4}{3}$

Watch Video Solution

10. If the cartesian equations of a line are : $\frac{3-x}{5}=\frac{y+4}{7}=\frac{2 z-6}{4}$, write the vector equation for the line.

- Watch Video Solution

11. Find the direction cosines of the line : $\frac{2 x+5}{2}=\frac{3-2 y}{3}=\frac{3 z+1}{4}$

- Watch Video Solution

12. Write the cartesian equation of the straight line through the point $(1,2,3)$ and along the vector $3 \hat{i}+\hat{j}+2 \hat{k}$
13. Find the vector equation of the line through $(4,3,-1)$ and parallel to the line: $\vec{r}=(2 \hat{i}-\hat{j}+3 \hat{k})+\lambda(3 \hat{i}-\hat{j}+4 \hat{k})$

- Watch Video Solution

14. Find the angle between the following pair of lines : $\vec{r}=\hat{i}+\hat{j}-\hat{k}+\lambda(\hat{i}-3 \hat{j}+2 \hat{k}), \vec{r}=2 \hat{i}-\hat{j}+\hat{k}+\mu(3 \hat{i}+\hat{j}-2 \hat{k})$

- Watch Video Solution

15. Find the angle between the followig pair of lines :
$\frac{-x+2}{-2}=\frac{y-1}{7}=\frac{z+3}{-3}$ and $\frac{x+2}{-1}=\frac{2 y-8}{4}=\frac{z-5}{4} \quad$ and check whether the lines are parallel or perpendicuar.

- Watch Video Solution

16. Find the point on the line $\frac{x+2}{3}=\frac{y+1}{2}=\frac{z-3}{2}$ at a distance of $3 \sqrt{2}$ from the point $(1,2,3)$.

- Watch Video Solution

17. Find the equation of the line passing through the point $(-1,3,-2)$ and perpendicular to the lines : $\frac{x}{1}=\frac{y}{2}=\frac{z}{3} \quad$ and $\frac{x+2}{-3}=\frac{y-1}{2}=\frac{z+1}{5}$.

- Watch Video Solution

18. Find the vectoer and cartesian equations of the line through the point

$$
\begin{aligned}
& (1,2,-4) \text { and perpendicualr of the lines: } \\
& \vec{r}=(8 \hat{i}-19 \hat{j}+10 \hat{k})+\lambda(3 \hat{i}-16 \hat{j}+7 \hat{k}) \text { and } \vec{r}=(15 \hat{i}+29 \hat{j}+5 \hat{k})
\end{aligned}
$$

- Watch Video Solution

19. Show that, if the axes are rectangular, the equations of the line through $\left(x_{1}, y_{1}, z_{1}\right)$ at right angles to the lines: $\frac{x}{l_{1}}=\frac{y}{m_{1}}=\frac{z}{n_{1}}, \frac{x}{l_{2}}=\frac{y}{m_{2}}=\frac{z}{n_{2}}$
$\frac{x-x_{1}}{m_{1} n_{2}-m_{2} n_{1}}=\frac{y-y_{1}}{n_{1} l_{2}-n_{2} l_{1}}=\frac{z-z_{1}}{l_{1} m_{2}-l_{2} m_{1}}$ are

- Watch Video Solution

20. Find the length of perpendicular drawn from the point $(3,4,5)$ on the line $\frac{x-2}{2}=\frac{y-3}{5}=\frac{z-1}{3}$

Also find the foot of perpendicular.

- Watch Video Solution

21. Find the co-ordinates of the foot of the perpendicualr drawn from the point $\mathrm{A}(1,8,4)$ to the joining $\mathrm{B}(0,-1,3)$ and $\mathrm{C}(2,-3,-1)$.

- Watch Video Solution

22. Find the vector equation of the line parallel to the line : $\frac{x-1}{5}=\frac{3-y}{2}=\frac{z+1}{4}$ and passing through (3,0,-4). Also find the distance between these two lines.

- Watch Video Solution

23. Find the equation of the perpendicular drawn from the point $\mathrm{P}(2,4,-1)$ to the line : $\frac{x+5}{1}=\frac{y+3}{4}=\frac{z-6}{-9}$. Also write down the co ordinates of the foot of the perpendicualr from P to the line.

- Watch Video Solution

24. Find the image of the point $(1,6,3)$ in the line : $\frac{x}{1}=\frac{y-1}{2}=\frac{z-2}{3}$.

- Watch Video Solution

25. Slope of the line joining $(3,1)$ and $(4,5)$ is :
26. Find the co ordinates of the foot of perpendicular and the length of the perpendicular drawn from the point $P(5,4,2)$ to the line : $\vec{r}=-\hat{i}+3 \hat{j}+\hat{k}+\lambda(2 \hat{i}+3 \hat{j}-\hat{k})$. Also find the image of P in this line.

- Watch Video Solution

27. Find the shortest distance between the lines whose equations are :
$\vec{r}=(\hat{i}+2 \hat{j}+3 \hat{k})+\lambda(2 \hat{i}+3 \hat{j}+4 \hat{k})$ and
$\vec{r}=(2 \hat{i}+4 \hat{j}+5 \hat{k})+\mu(3 \hat{i}+4 \hat{j}+5 \hat{k})$.

- Watch Video Solution

28. Find the distance between the lines l_{1} and l_{2} given by :
$\vec{r}=\hat{i}+2 \hat{j}-4 \hat{k}+\lambda(2 \hat{i}+3 \hat{j}+6 \hat{k})$
and
$\vec{r}=3 \hat{i}+3 \hat{j}-5 \hat{k}+\mu(2 \hat{i}+3 \hat{j}+6 \hat{k}) C \widetilde{O}$
29. Show that the two lines $\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}$ and $\frac{x-4}{5}=\frac{y-1}{2}=z$ intersect each other. Find also the point of intersection.

- Watch Video Solution

30. Show that the lines $\frac{x+3}{-3}=\frac{y-1}{1}=\frac{z-5}{5} \quad$ and $\frac{x+1}{-1}=\frac{y-2}{2}=\frac{z-5}{5}$ are coplanar.

- Watch Video Solution

31. | Find |
| :---: |
| \vec{r} |
| \vec{r} |$=(\hat{i}-\hat{j}-\hat{k})+\lambda(2 \hat{i}+\hat{j})$ and $\vec{r}=(2 \hat{i}-\hat{j})+\mu(\hat{i}+\hat{j}-\hat{k})$

intersect or not. If itersecting, find their point of intersection..

- Watch Video Solution

32. Find the shortest distance and the vector equation of the line of shortest distance between the lines given by : $\vec{r}=(3 \hat{i}+8 \hat{j}+3 \hat{k})+\lambda(3 \hat{i}-\hat{j}+\hat{k})$ and $\vec{r}=(-3 \hat{i}-7 \hat{j}+6 \hat{k})+\mu$

- Watch Video Solution

33. Write the sum of intercepts cut off by the plane
$\vec{r} \cdot(2 \hat{i}+\hat{j}-\hat{k})-5=0$ on the three axes.

- Watch Video Solution

34. Find the distance of the plane: $x-y+4 z-9=0$ from the origin.

- Watch Video Solution

35. Find the distance of the plane $3 x-4 y+12 z=3$ from the origin.
36. Find the equation of the plane with interceots 2,3 and 4 on the x, y and z axis respectively.

- Watch Video Solution

37. Find the co-ordinates of the point where the line through the points $A(3,4,1)$ and $B(5,1,6)$ crosses the xy-plane.

- Watch Video Solution

38. Find the vector equation of a plane passing through the point having position vector $2 \hat{i}+\hat{j}+\hat{k}$ and perpendicular to the vector: $4 \hat{i}-2 \hat{j}+3 \hat{k}$.

- Watch Video Solution

39. Find the vector equation of the plane which is at a distance of from the origin and its normal vector from the origin is $2 \hat{i}-3 \hat{j}+4 \hat{k}$. Also find its cartesian form.

- Watch Video Solution

40. Find the direction cosines of the unit vector perpendicular to the plane $\vec{r} \cdot(6 \hat{i}-3 \hat{j}-2 \hat{k})+1=0$ passing through the origin.

- Watch Video Solution

41. Find the vector equation of a plane, which is at a distance of 7 uits from the origin and which is normal to the vector $3 \hat{i}+5 \hat{j}-6 \hat{k}$.

- Watch Video Solution

42. Find the angle between the two planes $2 x+y-2 z=5$ and $3 x-6 y-2 z=7$ using vector method.
43. Find the equation of the plane through the point ($1,-1,2$) and (2,-2,2) and perpendicular to the plane $6 x-2 y+2 z=9$.

- Watch Video Solution

44. Find equation of a plane passing through the points $(2,1,0),(3,-2,-2)$ and (3,1,7)

- Watch Video Solution

45. Find the equation of the plane determined by the points $A(3,-1,2)$, $B(5,2,4)$ and $C(-1,-1,6)$ and hence find the distance between the plane and the point $P(6,5,9)$.
46. Find the equation of the plane passing through the line of intersection of the planes $\vec{r} \cdot(\hat{i}+\hat{j}+\hat{k})=1 \quad$ and $\vec{r} \cdot(2 \hat{i}+3 \hat{j}-\hat{k})+4=0$ and parallel to x-axis.

- Watch Video Solution

47. Find the equation of the plane which contains the line of intersection of the planes $\vec{r} \cdot(\hat{i}+2 \hat{j}+3 \hat{k})-4=0 \quad$ and
$\vec{r} \cdot(2 \hat{i}+\hat{j}-\hat{k})+5=0$ and which is perpendicular to the plane
$\vec{r} \cdot(5 \hat{i}+3 \hat{j}-6 \hat{k})+8=0$

- Watch Video Solution

48. Find the equation of the plane which contains the line of intersection of planes $\vec{r} \cdot(\hat{i}+2 \hat{j}+3 \hat{k})-4=0 \quad$ and
$\vec{r} \cdot(2 \hat{i}+\hat{j}-\hat{k})+5=0$ and which is perpendicular to the plane
$\vec{r} \cdot(5 \hat{i}+3 \hat{j}-6 \hat{k})+8=0$
49.

$\frac{x-1}{-3}=\frac{y-2}{-2 k}=\frac{z-3}{2}$ and $\frac{x-1}{k}=\frac{y-2}{1}=\frac{z-3}{5}$
perpendicular, find the values of k and hence find the equation of plane containing these lines.

- Watch Video Solution

50. Find the vector equation of the line passing through ($1,2,3$) and parallel to the planes
$\vec{r} \cdot(\hat{i}-\hat{j}+2 \hat{k})=5$ and $\vec{r} \cdot(3 \hat{i}+\hat{j}+\hat{k})=6$.

Watch Video Solution

51. From the point $P(1,2,4)$, a perpendicular is drawn on the plane $2 x+y-2 z+3=0$. Find the equations, the length and co-ordinates of the foot of the perpendicular.
52. Find the co-ordinates of the point P, where the line through $A(3,-4,-5)$ and $\mathrm{B}(2,-3,1)$ crosses the plane passing through three points $\mathrm{L}(2,2,1)$, $M(3,0,1)$ and $N(4,-1,0)$. Also, find the ratio in which P divides the line segment AB.

(D) Watch Video Solution

53. Find the distance of the point $(1,-2,3)$ from the plane $x-y+z=5$ measured parallel to the line $\frac{x}{2}=\frac{y}{3}=\frac{z}{-6}$.

- Watch Video Solution

54. Find the co-ordinates of the foot of the perpendicular and the perpendicualr distance of the point $(1,3,4)$ from the plane $2 x-y+z+3=0$. Find also, the image of the point in the plane.
55. Find the equation of the plane, which meets the axes in A, B, C given that centroid of the triangle ABC is the point (α, β, γ).

- Watch Video Solution

56. Find the equation of the plane bisectiing the angles between the planes: $x+2 y+2 z-3=0,3 x+4 y+12 z+1=0$ and specify the plane, which bisects the acute angle.

- Watch Video Solution

57. Show that the plane whose vector equation is $\vec{r} \cdot(\hat{i}+2 \hat{j}-\hat{k})=3$ contains the line whose vector equation is $\vec{r}=\hat{i}+\hat{j}+\lambda(2 \hat{i}+\hat{j}+4 \hat{k})$.

- Watch Video Solution

58. Find the angle between the line : $\vec{r}=(\hat{i}-\hat{j}+\hat{k})+\lambda(2 \hat{i}-\hat{j}+3 \hat{k}) \quad$ and the plane
$\vec{r} \cdot(2 \hat{i}+\hat{j}-\hat{k})=4$. Also find whether the line is parallel to the plane or not.

- Watch Video Solution

59. Find the point of intersection of the line :
$\vec{r}=(\hat{i}+2 \hat{j}+3 \hat{k})+\lambda(2 \hat{i}+\hat{j}+2 \hat{k}) \quad$ and the plane $\vec{r} \cdot(2 \hat{i}-6 \hat{j}+3 \hat{k})+5=0$.

- Watch Video Solution

60. Show that the line, $\vec{r}=\hat{i}+\hat{j}+\lambda(2 \hat{i}+\hat{j}+4 \hat{k})$ lies in the plane $\vec{r} \cdot(\hat{i}+2 \hat{j}-\hat{k})=3$.

- Watch Video Solution

61. Find the distance from the point $(3,4,5)$ of the plane, where the line :
$\frac{x-3}{1}=\frac{y-4}{2}=\frac{z-5}{2}$ meets the plane $x+y+z=2$.

- Watch Video Solution

62. Find the angle between the line $\frac{x-2}{3}=\frac{y+1}{-1}=\frac{z-3}{-2}$ and the plane $3 x+4 y+z+5=0$.

- Watch Video Solution

63. State when the line $\vec{r}=\vec{a}+\lambda \vec{b}$ is parallel to the plane $\vec{r} \cdot \vec{n}=d$. Show that the line $\vec{r}=\hat{i}+\hat{j}+\lambda(2 \hat{i}+\hat{k}+4 \hat{k})$ is parallel to the plane $\vec{r} \cdot(-2 \hat{i}+\hat{k})=5$. Also, find the distance between the line and the plane.

- Watch Video Solution

64. Find the equation to the plane through the line $\frac{x-\alpha}{l}=\frac{y-\beta}{m}=\frac{z-\gamma}{n}$ and parallel to the line $\frac{x}{l^{\prime}}=\frac{y}{m^{\prime}}=\frac{z}{n^{\prime}}$

- Watch Video Solution

65. If the line $\frac{x-1}{2}=\frac{y+1}{3}=\frac{z-1}{4}$ and $\frac{x-3}{1}=\frac{y-k}{2}=\frac{z}{1}$ intersect, then k is equal to

- Watch Video Solution

66. Find the equation of the plane parallel to the line $\frac{x-2}{1}=\frac{y-1}{3}=\frac{z-3}{2}$, which contains the point ($5,2,-1$) and passes through the origin.

- Watch Video Solution

67. Find the equation of the plane containing the line : $\frac{x-1}{2}=\frac{y-2}{-1}=\frac{z-3}{4}$ and perpendicular to the plane $\mathrm{x}+2 \mathrm{y}+\mathrm{z}-2=$ 0.

- Watch Video Solution

68. Find the equation of the plane containingg the lines: $\vec{r}=\hat{i}+\hat{j}+\lambda(\hat{i}+2 \hat{j}-\hat{k})$ and $\vec{r}=\hat{i}+\hat{j}+\mu(-\hat{i}+\hat{j}-2 \hat{k})$.

Find the distance of this plane from origin and also from the point ($1,1,1$).

- Watch Video Solution

69. Find cartesian equations of the plane containing the lines:
$\vec{r}=2 \hat{i}+\hat{j}-3 \hat{k}+\lambda(\hat{i}+2 \hat{j}+5 \hat{k})$
and
$\vec{r}=3 \hat{i}+3 \hat{j}-7 \hat{k}+\mu(3 \hat{i}-2 \hat{j}+5 \hat{k})$

- Watch Video Solution

1. Find the distance of the point $(2,3,4)$ from the x axis.

- Watch Video Solution

2. If a line makes angles of $90^{\circ}, 60^{\circ}$ and θ with the x, y and z axis respectively,where θ is acute, find its θ

- Watch Video Solution

3. If a line has direction cosines $<\frac{2}{3},-\frac{1}{3},-\frac{2}{3}>$, then find the direction ratios.

- Watch Video Solution

4. If a line has direction ratios $<2,-1,-2>$, then what are its direction cosines?
5. Find the direction cosines of a line passing through the points ($1,0,0$) and ($0,1,1$).

- Watch Video Solution

6. Find the direction cosines of the lines joining the points: $(-1,-1,-1)$ and $(2,3,4)$

- Watch Video Solution

7. Find the direction ratios and direction cosines of the vector joining the points (4,7,2) and (5,11,-4).
8. Write the direction cosines of the vector : $-2 \hat{i}+\hat{j}-5 \hat{k}$

- Watch Video Solution

9. Write the direction cosines of the vector : $\hat{i}+2 \hat{j}+3 \hat{k}$

- Watch Video Solution

10. Find the length of the projection of the line segment joining $(3,4,5)$
and $(4,6,3)$ on the straight line $: \frac{x-4}{2}=\frac{y-5}{3}=\frac{z-6}{6}$

- Watch Video Solution

11. Show that the following points are collinear : $(1,2,3),(2,6,3),(3,10,-1)$

- Watch Video Solution

12. Find the acute angle between two lines whose direction ratios are $<2,3,6>$ and $<1,2,-2\rangle$

- Watch Video Solution

13. Find the obtuse angle between two lines whose direction ratios are : $<3,-6,2>$ and $<1,-2,-2>$

- Watch Video Solution

14. Find the angle between the lines whose direction ratios are : a, b, c and $b-c, c-a, a-b$

- Watch Video Solution

15. Find the direction cosines of the sides of the triangle whose vertices are $(3,5,-4),(-1,1,2)$ and $(-5,-5,-2)$.
16. Show that the three lines with direction cosines $\frac{12}{13},-\frac{3}{13},-\frac{4}{13}, \frac{4}{13}, \frac{12}{13}, \frac{3}{13}, \frac{3}{13},-\frac{4}{13}, \frac{12}{13} \quad$ are mutually perpendicular.

Watch Video Solution

17. The angle between the lines whose direction cosines are given by the equatios $l^{2}+m^{2}-n^{2}=0, m+n+l=0$ is

- Watch Video Solution

18. Find the angle between the lines whose direction cosines are given by
$: 2 l-m+2 n=0, m n+n l+l m=0$.
19. Find the area of the triangle $A B C$ whose vertices are : $A(1,2,4), B(-2,1,2)$ and $C(2,4,-3)$

- Watch Video Solution

20. Show that the line through the points $(4,7,8),(2,3,4)$ is parallel to the line through the points $(-1,-2,1),(1,2,5)$.

- Watch Video Solution

21. Show that the line joining the origin to the point $(2,1,1)$ is perpendicular to the line determined by the points (3,5, - 1), (4, 3, - 1).

- Watch Video Solution

22. Determine the value of k so that the lie joining the points $A(k, 1,-1), B(2,0,2 k)$ is perpendicular to the line joining the points $C(4,2 k, 1)$ and $D(2,3,2)$
23. Prove that the angle between any two diagonals of a cube is $\cos ^{-1} \frac{1}{3}$

- Watch Video Solution

24. Find the projection of the line segment joining the points: $(2,-3,0)$, $(0,4,5)$ on the line with direction cosines $<\frac{2}{7}, \frac{3}{7},-\frac{6}{7}>$

- Watch Video Solution

25. Find the projection of the line segment joining the points $(1,2,3),(4,3,1)$ on the line with direction ratios $<3,-6,2>$.

- Watch Video Solution

26. If the edges of a rectangular parallelopiped are a, b and c, show that the angles between the four diagonals are given by $\cos ^{-1} \frac{a^{2} \pm b^{2} \pm c^{2}}{a^{2}+b^{2}+c^{2}}$

- Watch Video Solution

27. write the vectoe equation of the line : $\frac{x-5}{-3}=\frac{y+4}{7}=\frac{6-z}{2}$.

(Watch Video Solution

28. show that the three lines with direction cosines $<\frac{12}{13},-\frac{3}{13},-\frac{4}{13}>,<\frac{4}{13}, \frac{12}{13}, \frac{3}{13}>,<\frac{3}{13},-\frac{4}{13}, \frac{12}{13}>$
are mutually perpendicular.

- Watch Video Solution

29. express the following equations of the lines into vector form:
$\frac{x-3}{3}=\frac{y-8}{-1}=\frac{z-3}{1}$ and $\frac{x+3}{-3}=\frac{y+7}{2}=\frac{z-6}{4}$.
30. Find the cartesian equation of the line which passes through the point (- 2, 4, - 5) and parallel to the line given by $\frac{x+3}{3}=\frac{y-4}{5}=\frac{z+8}{6}$

- Watch Video Solution

31. Find the cartesian as well as the vector equation of the line passing through : $(0,-1,4)$ and parallel to the straight line : $\frac{-x-2}{1}=\frac{y+3}{7}=\frac{2 z-6}{3}$

- Watch Video Solution

32. Find the cartesian as well as the vector equation of the line passing through : $(-1,2,3)$ and parallel to the line: $(x-3) / 2=(y+1) / 3=(z-1) / 6$
33. The cartesian equations of a line are : $\frac{x-5}{3}=\frac{y+4}{7}=\frac{z-6}{2}$ and $\frac{x+3}{2}=\frac{y-5}{4}=\frac{z+6}{2}$. find the vector equation of the lines.

- Watch Video Solution

34. Find the equation of a line parallel to x-axis and passing through the origin.

- Watch Video Solution

35. Find the direction cosines of a line parallel to the line : $\frac{x-5}{6}=\frac{y+4}{2}=\frac{7-z}{6}$

- Watch Video Solution

36. Write the direction cosine of a line parallel to the line : $\frac{3-x}{3}=\frac{y+2}{-2}=\frac{z+2}{6}$
37. Find the vector and the Cartesian equations of the line through the point ($5,2,-4$) and which is parallel to the vector $3 \hat{i}+2 \hat{j}-8 \hat{k}$

- Watch Video Solution

38. Find the equation of the line passing through the point $(2,-1,3)$ and perpendicular to the lines : $\vec{r}=(\hat{i}-\hat{j}+\hat{k})+\lambda(2 \hat{i}+\hat{j}-3 \hat{k})$ and $\vec{r}=(\hat{i}+\hat{j}-\hat{k})+\mu(\hat{i}+\hat{j}+\hat{k})$

- Watch Video Solution

39. Find the equation of the line in vector and in cartesian form that passes through the point with position vector $2 \hat{i}-\hat{j}+4 \hat{k}$ and is in the direction $\hat{i}+2 \hat{j}-\hat{k}$
40. Find the vector equation for the line through the points : $(1,2,2)$ and $(6,4,6)$.

- Watch Video Solution

41. Find the vector and the cartesian equations of the lines that passes through the origin and ($5,-2,3$).

- Watch Video Solution

42. Find the vector and cartesian equations of the line that passes through : the points (1,2,3) and (2,-1,4).

- Watch Video Solution

43. Find the equation of a st line through ($-1,2,3$) and equally inclined to the axes.
44. Find the equation of a line parallel to x-axis and passing through the origin.

- Watch Video Solution

45. Find the angle between the pairs of lines with direction ratios: $<5,12,1>,<2,4,6>$

- Watch Video Solution

46. Find the angle between the pairs of lines with direction ratios: $<a, b, c$ $>,<b-c, c-a, a-b>$

- Watch Video Solution

47. The angle between a line with direction ratios proportional to $2,2,1$ and a line joining $(3,1,4)$ and $(7,2,12)$ is

- Watch Video Solution

48. Find the angle between the following pairs of lines :
$\vec{r}=3 \hat{i}+2 \hat{j}-4 \hat{k}+\lambda(\hat{i}+2 \hat{j}+2 \hat{k})$,
$\vec{r}=5 \hat{j}-2 \hat{k}+\mu(3 \hat{i}+2 \hat{j}+6 \hat{k})$

- Watch Video Solution

49. Find the angle between the following pair of lines:
$\vec{r}=3 \hat{i}+\hat{j}-2 \hat{k}+\lambda(\hat{i}-\hat{j}-2 \hat{k})$
and
$\vec{r}=2 \hat{i}-\hat{j}-56 \hat{k}+\mu(3 \hat{i}-5 \hat{j}-4 \hat{k})$

- Watch Video Solution

50. Find the angle between the following pairs of lines : $\frac{x-2}{2}=\frac{y-1}{5}=\frac{z+3}{-3}$ and $\frac{x+2}{-1}=\frac{y-4}{8}=\frac{z-5}{4}$

- Watch Video Solution

51. Find the angle between the following pairs of lines : $\frac{5-x}{3}=\frac{y+3}{-4}, z=7$ and $x=\frac{1-y}{2}=\frac{z-6}{2}$

- Watch Video Solution

52. Find the angle between the following lines
$\frac{x+1}{1}=\frac{y-4}{1}=\frac{z-5}{2}$ and $\frac{x+3}{3}=\frac{y-2}{5}=\frac{z+5}{4}$

- Watch Video Solution

53. Find the angle between the pair of lines $\frac{x+3}{3}=\frac{y-1}{5}=\frac{z+3}{4}$ and $\frac{x+1}{1}=\frac{y-4}{1}=\frac{z-5}{2}$

- Watch Video Solution

54. Show that the lines $\frac{x-5}{7}=\frac{y+2}{-5}=\frac{z}{1}$ and $\frac{x}{1}=\frac{y}{2}=\frac{z}{3}$ are perpendicular to each other

- Watch Video Solution

55. Show that the lines
$\frac{x-3}{2}=\frac{y+1}{-3}=\frac{z-2}{4}$ and $\frac{x+2}{2}=\frac{y-4}{4}=\frac{z+5}{2}$
perpendicular to each other.

Watch Video Solution

56. Find the value of p so that the lines :
$l_{1}: \frac{1-x}{3}=\frac{7 y-14}{2 p}=\frac{z-3}{2}$ and $l_{2}: \frac{7-7 x}{3 p}=\frac{y-5}{1}=\frac{6-z}{5}$
are at right angles. also find the equations of the line passing through
$(3,2,-4)$ and parallel to line l_{1}.
57. Find k so that the lines
$\frac{x-3}{2}=\frac{y+1}{3}=\frac{z-2}{2 k}$ and $\frac{x+2}{1}=\frac{4-y}{k}=\frac{z+5}{1}$
perpendicular to each other.

- Watch Video Solution

58. Show that the line through the points $(1,-1,2),(3,4,-2)$ is perpendicular to the line through the points $(0,3,2)$ and $(3,5,6)$.

- Watch Video Solution

59. Show that the line through the points: $(4,7,8),(2,3,4)$ is parallel to the line through the points ($-1,-2,1$) and ($1,2,5$).

- Watch Video Solution

60. The cartesian equations of a line are $3 x+1=6 y-2=1-z$. Find the fixed point through which it passes, its direction-ratios and also its vector equation.

- Watch Video Solution

61. The points $A(4,5,10), B(2,3,4)$ and $C(1,2,-1)$ are three vertices of a parallelogram $A B C D$. Find the vector equations of side $A B$ and $B C$ and also find the coordinates of point D .

- Watch Video Solution

62. Write the equation of a line, parallel to the line $\frac{x-2}{-3}=\frac{y+3}{2}=\frac{z+3}{6}$ and passing through the point $(1,2,3)$.

- Watch Video Solution

63. Find the equation of the line perpendicular to the lines : $\vec{r}=(3 \hat{i}+2 \hat{j}-4 \hat{k})+\lambda(\hat{i}+2 \hat{j}-2 \hat{k})$ and $\vec{r}=(5 \hat{j}-2 \hat{k})+\mu(3 \hat{i}+\varepsilon$ and passing through the point $(1,1,1)$

- Watch Video Solution

64. Find the equations of the straight line passing through the point (2,3 ,
$-1)$ and is perpendicular to the lines : $\frac{x-2}{2}=\frac{y+1}{1}=\frac{z-3}{3}$ and $\frac{x-3}{1}=\frac{y+2}{1}=\frac{z-1}{1}$.

- Watch Video Solution

65. Find the equations of the straight line passing through the point (1,2 ,
-4) and is perpendicular to the lines: $\frac{x-8}{3}=\frac{y+19}{-16}=\frac{z-10}{7}$ and $\frac{x-15}{3}=\frac{y-29}{8}=\frac{z-5}{-5}$.

- Watch Video Solution

66. Find the vector and cartesian equations of the line passing through the point $(2,1,3)$ and perpendicualr to thelines : $\frac{x-1}{1}=\frac{y-2}{2}=\frac{z-3}{3}$ and $\frac{x}{-3}=\frac{y}{2}=\frac{z}{5}$

- Watch Video Solution

67. Find the equation in vector anf cartesian form of the line passing through the point : $(2,-1,3)$ and perpendicular to the lines $\vec{r}=(\hat{i}+\hat{j}-\hat{k})+\lambda(2 \hat{i}-2 \hat{j}+\hat{k})$ and $\vec{r}=(2 \hat{i}-\hat{j}-3 \hat{k})+\mu(\hat{i}+2$

- Watch Video Solution

68. Find the equation of the line passing through the point $(2,-1,3)$ and perpendicular to the lines : $\vec{r}=(\hat{i}-\hat{j}+\hat{k})+\lambda(2 \hat{i}+\hat{j}-3 \hat{k})$ and $\vec{r}=(\hat{i}+\hat{j}-\hat{k})+\mu(\hat{i}+\hat{j}+\hat{k})$

- Watch Video Solution

69. Prove that the points $(1,2,3),(4,0,4),(-2,4,2)$ and $(7,-2,5)$ are collinear.

- Watch Video Solution

70. Show that the following points whose psitions vectors are given are collinear : $5 \hat{i}+5 \hat{k}, 2 \hat{i}+\hat{j}+3 \hat{k}$ and $-4 \hat{i}+3 \hat{j}-\hat{k}$

- Watch Video Solution

71. Show that the following points whose psitions vectors are given are collinear : $-2 \hat{i}+3 \hat{j}+5 \hat{k}, \hat{i}+2 \hat{j}+3 \hat{k}$ and $7 \hat{i}-\hat{k}$

- Watch Video Solution

72. Find the points on the line through the points $A(1,2,3)$ and $B(5,8,15)$ at a distance of 14 units from the mid point of AB.
73. Find the equations of the perpendicular from the point ($3,-1,11$,) to the line : $\frac{x}{2}=\frac{y-2}{3}=\frac{z-3}{4}$

- Watch Video Solution

74. Show that the line joining the origin to the point $(2,1,1)$ is perpendicular to the line determined by the points (3, 5, - 1), (4, 3, - 1).

- Watch Video Solution

75. Find the vector equation of a line passing through a point with position vector $2 \hat{i}-\hat{j}+\hat{k}$ and parallel t the line joining the points with position vectors $-\hat{i}+4 \hat{j}+\hat{k}$ and $\hat{i}+2 \hat{j}+2 \hat{k}$. Also, find the cartesian equivalent of the equation.

- Watch Video Solution

76. Find the vector equation of a line passing through the point with position vector $\hat{i}-2 \hat{j}-3 \hat{k}$ and parallel to the line joining the points with position vectors $\hat{i}-\hat{j}+4 \hat{k}$ and $2 \hat{i}+\hat{j}+2 \hat{k}$. Also find the cartesian form of the equation.

- Watch Video Solution

77. Find the distance of the point $(1,2,3)$ from the line joining the points $(-1,2,5)$ and ($2,3,4$).

- Watch Video Solution

78. Find the distance of the point $(1,2,3)$ from the co ordinate axes.

- Watch Video Solution

79. Find the distance of $(-1,2,5)$ from the plane passing through the point $(3,4,5)$ whose direction ratios are $\langle 2,-3,6>$.

- Watch Video Solution

80. Find the perpendicular distance of the point $(1,0,0)$ from the line : $\frac{x-1}{2}=\frac{y+1}{-3}=\frac{z+10}{8}$. Also find the co ordinates of the foot of the perpendicular.

- Watch Video Solution

81. Find the length of the perpendicular from the point $(1,2,3)$ to the line :
$\frac{x-6}{3}=\frac{y-7}{2}=\frac{z-7}{-2}$

- Watch Video Solution

82. Find the perpendicular distance from the point $(1,2,3)$ to the line : $\vec{r}=6 \hat{i}+7 \hat{j}+7 \hat{k}+\lambda(3 \hat{i}+2 \hat{j}-2 \hat{k})$

- Watch Video Solution

83. Find the image of the point $(2,-1,5)$ in the line $\frac{x-11}{10}=\frac{y+2}{-4}=\frac{z+8}{-11}$. Also find the equation of the line joining the given point and its. Also the length of that line segment.

- Watch Video Solution

84. Find the foot of the perpendicular from the point $(0,2,3)$ on the line : $\frac{x+3}{5}=\frac{y-1}{2}=\frac{z+4}{3}$. Also find the length of the perpendicular.

- Watch Video Solution

85. Find the coordinates of the foot of the perpendicular drawn from point $A(1,0,3)$ to the join of points $B(4,7,1)$ and $C(3,5,3)$.

- Watch Video Solution

86. $A(1,0,4), B(0,-11,3), C(2,-3,1)$ are three points and D is the foot of the perpandicular from A on $B C$. Find the coodinates of D.

- Watch Video Solution

87. The perpendicular distance of a corner of a unit cube from a diagonal not passing through it is

- Watch Video Solution

88. Find the image of the point $(2,0,1)$ in the line

$$
\frac{x-3}{1}=\frac{y+2}{-2}=\frac{z-3}{5}
$$

89. Find the image of the point $(1,2,3)$ in the line $\frac{x-6}{3}=\frac{y-7}{2}=\frac{z-7}{-2}$.

- Watch Video Solution

90. Find the image of the point $A(-1,8,4)$ in the line joining the points $B(0,-1,3)$ and $C(2,-3,-1)$.

- Watch Video Solution

91. Let the point $\mathrm{P}(5,9,3)$ lie on the top of Qutub Minar, Delhi.Find the image of the point on the line: $\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}$. do you think that conversation of monuments is important and why?

- Watch Video Solution

92. Find the foot and hence the length of the perpendicular from the point $(5,7,3)$ to the line $\frac{x-15}{3}=\frac{y-29}{8}=\frac{5-z}{5}$. find also the equations of the perpendicular.

- Watch Video Solution

93. Find the length and foot of perpendicular drawn from the point $(2,-1,3)$ to the line
$\frac{x-11}{10}=\frac{y+2}{-4}=\frac{z+8}{-11}$

- Watch Video Solution

94. Find the equations of the perpendicular drawn from the point $(2,4,-1)$ to the line : $\frac{x+5}{1}=\frac{y+3}{4}=\frac{z-6}{-9}$

- Watch Video Solution

95. Find the length of perpendicular from point $(2,3,4)$ to the $\frac{4-x}{2}=\frac{y}{6}=\frac{1-z}{3}$.

- Watch Video Solution

96. Find the equations of the perpendicular from the point $(3,-1,11$,$) to the$ line $: \frac{x}{2}=\frac{y-2}{3}=\frac{z-3}{4}$

- Watch Video Solution

97. A line passing through the point A with position vector $\vec{a}=4 \hat{i}+2 \hat{j}+2 \hat{k}$ is parllel to vector $\vec{b}=2 \hat{i}+3 \hat{j}+6 \hat{k}$. Find the length of the perpendicular drawn on this line from a point P with position vector $\vec{r}_{1}=\hat{i}+2 \hat{j}+3 \hat{k}$.

- Watch Video Solution

98.1 Find the shortest distance between the lines l_{1} and l_{2} whose vector equations \quad are: $\quad \vec{r}=\hat{i}+\hat{j}+\lambda(2 \hat{i}-\hat{j}+\hat{k})$, and $\vec{r}=2 \hat{i}+\hat{j}-\hat{k}+\mu(3 \hat{i}-5 \hat{j}+2 \hat{k})$

- Watch Video Solution

99. Find the shortest distance between two lines whose vector equations are $\quad: \quad \vec{r}=3 \hat{i}+8 \hat{j}+3 \hat{k}+\lambda(3 \hat{i}-\hat{j}+\hat{k}) \quad$ and $\vec{r}=-3 \hat{i}-7 \hat{j}+6 \hat{k}+\mu(-3 \hat{i}+2 \hat{j}+4 \hat{k})$

- Watch Video Solution

100. Find the shortest distance between the following lines whose vector equations are $: \quad \vec{r}=(\hat{i}-\hat{j}+2 \hat{k})+\lambda(-2 \hat{i}+\hat{j}+3 \hat{k})$ and $\vec{r}=(2 \hat{i}+3 \hat{j}-\hat{k})+\mu(3 \hat{i}-2 \hat{j}+2 \hat{k})$

- Watch Video Solution

101. Find the shortest distance between the following lines whose vector equations are

$$
\vec{r}=6 \hat{i}+2 \hat{j}+2 \hat{k}+\lambda(\hat{i}-2 \hat{j}+2 \hat{k}) \text { and } \vec{r}=-4 \hat{i}-\hat{k}+\mu(3 \hat{i}-2 \hat{j}-
$$

- Watch Video Solution

102. Find the shortest distance between the following lines whose vector equations are
$\vec{r}=(4 \hat{i}-\hat{j})+\lambda(\hat{i}+2 \hat{j}-3 \hat{k})$ and $\vec{r}=(\hat{i}-\hat{j}+2 \hat{k})+\mu(2 \hat{i}+4 \hat{j}$

- Watch Video Solution

103. Find the shortest distance between the following lines whose vector equations are
$\vec{r}=(\hat{i}+2 \hat{j}-4 \hat{k})+\lambda(2 \hat{i}+3 \hat{j}+6 \hat{k})$ and $\vec{r}=(3 \hat{i}+3 \hat{j}+5 \hat{k})+\mu($

- Watch Video Solution

104. Find the shortest distance between the following lines whose vector equations are
$\vec{r}=(\hat{i}+2 \hat{j}-4 \hat{k})+\lambda(2 \hat{i}+3 \hat{j}+6 \hat{k})$ and $\vec{r}=(3 \hat{i}+3 \hat{j}-5 \hat{k})+\mu(\varepsilon$

- Watch Video Solution

105. Find the shortest distance between the following lines whose vector equations are : $\vec{r}=(\lambda-1) \hat{i}+(\lambda-1) \hat{j}-(1+\lambda) \hat{k} \quad$ and $\vec{r}=(1-\mu) \hat{i}+(2 \mu-1) \hat{j}+(\mu+2) \hat{k}$

- Watch Video Solution

106. Find the shortest distance between the following lines whose vector equations are
$\vec{r}=(1+\lambda) \hat{i}+(2-\lambda) \hat{j}+(1+\lambda) \hat{k}$ and $\vec{r}=2(1+\mu) \hat{i}-(1-\mu) \hat{j}+$

- Watch Video Solution

107. Consider the equation of the straight lines given by :
$L_{1}: \vec{r}=(\hat{i}+2 \hat{j}+\hat{k})+\lambda(\hat{i}-\hat{j}+\hat{k})$
$L_{2}: \vec{r}=(2 \hat{i}-\hat{j}-\hat{k})+\mu(2 \hat{i}+\hat{j}+2 \hat{k})$
$\vec{a}_{1}=\hat{i}+2 \hat{j}+\hat{k}, \vec{b}_{1}=\hat{i}-\hat{j}+\hat{k}, \vec{a}_{2}=2 \hat{i}-\hat{j}-\hat{k}, \vec{b}_{2}=2 \hat{i}+\hat{j}+2 \hat{k}$
,then find: $\vec{a}_{2}-\vec{a}_{1}$

- Watch Video Solution

108. Consider the equation of the straight lines given by :
$L_{1}: \vec{r}=(\hat{i}+2 \hat{j}+\hat{k})+\lambda(\hat{i}-\hat{j}+\hat{k})$
$L_{2}: \vec{r}=(2 \hat{i}-\hat{j}-\hat{k})+\mu(2 \hat{i}+\hat{j}+2 \hat{k})$
If
$\vec{a}_{1}=\hat{i}+2 \hat{j}+\hat{k}, \vec{b}_{1}=\hat{i}-\hat{j}+\hat{k}, \vec{a}_{2}=2 \hat{i}-\hat{j}-\hat{k}, \vec{b}_{2}=2 \hat{i}+\hat{j}+2 \hat{k}$
, then find: $\vec{b}_{2}-\vec{b}_{1}$

- Watch Video Solution

109. Consider the equation of the straight lines given by :

$$
L_{1}: \vec{r}=(\hat{i}+2 \hat{j}+\hat{k})+\lambda(\hat{i}-\hat{j}+\hat{k})
$$

$$
L_{2}: \vec{r}=(2 \hat{i}-\hat{j}-\hat{k})+\mu(2 \hat{i}+\hat{j}+2 \hat{k})
$$

$\vec{a}_{1}=\hat{i}+2 \hat{j}+\hat{k}, \vec{b}_{1}=\hat{i}-\hat{j}+\hat{k}, \vec{a}_{2}=2 \hat{i}-\hat{j}-\hat{k}, \vec{b}_{2}=2 \hat{i}+\hat{j}+2 \hat{k}$, then find: $\vec{b}_{1} \times \vec{b}_{2}$

- Watch Video Solution

110. Consider the equation of the straight lines given by :
$L_{1}: \vec{r}=(\hat{i}+2 \hat{j}+\hat{k})+\lambda(\hat{i}-\hat{j}+\hat{k})$
$L_{2}: \vec{r}=(2 \hat{i}-\hat{j}-\hat{k})+\mu(2 \hat{i}+\hat{j}+2 \hat{k})$
$\vec{a}_{1}=\hat{i}+2 \hat{j}+\hat{k}, \vec{b}_{1}=\hat{i}-\hat{j}+\hat{k}, \vec{a}_{2}=2 \hat{i}-\hat{j}-\hat{k}, \vec{b}_{2}=2 \hat{i}+\hat{j}+2 \hat{k}$
,then find: $\vec{a}_{1} \times \vec{a}_{2}$

- Watch Video Solution

111. Consider the equation of the straight lines given by : $L_{1}: \vec{r}=(\hat{i}+2 \hat{j}+\hat{k})+\lambda(\hat{i}-\hat{j}+\hat{k})$
$L_{2}: \vec{r}=(2 \hat{i}-\hat{j}-\hat{k})+\mu(2 \hat{i}+\hat{j}+2 \hat{k})$
$\vec{a}_{1}=\hat{i}+2 \hat{j}+\hat{k}, \vec{b}_{1}=\hat{i}-\hat{j}+\hat{k}, \vec{a}_{2}=2 \hat{i}-\hat{j}-\hat{k}, \vec{b}_{2}=2 \hat{i}+\hat{j}+2 \hat{k}$,then find: $\left(\vec{b}_{1} \times \vec{b}_{2}\right) \cdot\left(\vec{a}_{2}-\vec{a}_{1}\right)$

- Watch Video Solution

112. Consider the equation of the straight lines given by :
$L_{1}: \vec{r}=(\hat{i}+2 \hat{j}+\hat{k})+\lambda(\hat{i}-\hat{j}+\hat{k})$
$L_{2}: \vec{r}=(2 \hat{i}-\hat{j}-\hat{k})+\mu(2 \hat{i}+\hat{j}+2 \hat{k})$
$\vec{a}_{1}=\hat{i}+2 \hat{j}+\hat{k}, \vec{b}_{1}=\hat{i}-\hat{j}+\hat{k}, \vec{a}_{2}=2 \hat{i}-\hat{j}-\hat{k}, \vec{b}_{2}=2 \hat{i}+\hat{j}+2 \hat{k}$
, then find : the shortest distance between L_{1} and L_{2}.

- Watch Video Solution

113. Find the shortest distance between the following lines whose vector equations are
$\vec{r}=(1-t) \hat{i}+(t-2) \hat{j}+(3-2 t) \hat{k}$ and $\vec{r}=(s+1) \hat{i}+(2 s-1) \hat{j}-(\dot{s}$
where t and s are scalars.

- Watch Video Solution

114. Find the shortest distance between the following lines whose vector equations are
$\vec{r}=(3-t) \hat{i}+(4+2 t) \hat{j}+(t-2) \hat{k}$ and $\vec{r}=(1+s) \hat{i}+(3 s-7) \hat{j}+(\stackrel{؛}{2}$
where t and s are scalars.

- Watch Video Solution

115. Find the shortest distance between the following lines whose vector equations are : $\vec{r}=(8+3 \lambda) \hat{i}-(9+16 \lambda) \hat{j}+(10+7 \lambda) \hat{k} \quad$ and $\vec{r}=15 \hat{i}+29 \hat{j}+5 \hat{k}+\mu(3 \hat{i}+8 \hat{j}-5 \hat{k})$

- Watch Video Solution

116. Find the shortest distance between the following lines whose vector equations are

$$
\vec{r}=3 \hat{i}-15 \hat{j}+9 \hat{k}+\lambda(2 \hat{i}-7 \hat{j}+5 \hat{k}) \text { and } \vec{r}=(2 \mu-1) \hat{i}+(1+\mu) \hat{j}
$$

117. Find the S.D. between the lines
$\frac{x}{2}=\frac{y}{-3}=\frac{z}{1}$ and $\frac{x-2}{3}=\frac{y-1}{-5}=\frac{z+2}{2}$

- Watch Video Solution

118. Find the shortest distance between given lines. $\frac{x-1}{1}=\frac{y-2}{-1}=\frac{z-1}{1}$ and $\frac{x-2}{2}=\frac{y+1}{1}=\frac{z+1}{2}$.

- Watch Video Solution

119. Find the S.D. between the lines
$\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{2}$ and $\frac{x+1}{3}=\frac{y-1}{2}=\frac{z-1}{5}$

- Watch Video Solution

120. Find the angle between the lines
$\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}$ and $\frac{x-2}{3}=\frac{y-4}{4}=\frac{z-5}{5}$

- Watch Video Solution

S.D.
between
the
lines
$\frac{x-3}{3}=\frac{y-8}{-1}=\frac{z-3}{1}$ and $\frac{x+3}{-3}=\frac{y+7}{2}=\frac{z-6}{4}$

- Watch Video Solution

122. Determine whether or not the following pairs of lines intersect :
$\vec{r}=(\hat{i}-2 \hat{j}+3 \hat{k})+\lambda(-\hat{i}+\hat{j}-2 \hat{k})$ and
$\vec{r}=(\hat{i}-\hat{j}-\hat{k})+\mu(\hat{i}+2 \hat{j}-2 \hat{k})$

- Watch Video Solution

123. Determine whether or not the following pairs of lines intersect :
$\vec{r}=(2 \lambda+1) \hat{i}-(\lambda+1) \hat{j}+(\lambda+1) \hat{k}$ and
$\vec{r}=(3 \mu+2) \hat{i}-(5 \mu+5) \hat{j}+(2 \mu-1) \hat{k}$

- Watch Video Solution

124. Determine whether or not the following pairs of lines intersect :
$\frac{x-1}{2}=\frac{y+1}{3}=z, \frac{x+1}{5}=\frac{y-2}{1}=\frac{z-2}{0}$

- Watch Video Solution

125. Prove that the lines : $\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}$ and $\frac{x-2}{3}=\frac{y-3}{4}=\frac{z-4}{5}$ are coplanar.
126. Find the shortest distance and the equation of the shortest distance between the following two lines:

$$
\vec{r}=(-\hat{i}+\hat{j}+9 \hat{k})+\lambda(2 \hat{i}+\hat{j}-3 \hat{k}) \text { and } \vec{r}=(3 \hat{i}-15 \hat{j}+9 \hat{k})+\mu
$$

- Watch Video Solution

127. Find the shortest distance and the vector equation of the line of shortest distance between the lines given by :

$$
\vec{r}=(-4 \hat{i}+4 \hat{j}+\hat{k})+\lambda(\hat{i}+\hat{j}-\hat{k}) \text { and } \vec{r}=(-3 \hat{i}-8 \hat{j}-3 \hat{k})+
$$

- Watch Video Solution

128. How many cubic feet are there in a room measuring $5 \mathrm{~m} \times 10 \mathrm{~m} \times 2 \mathrm{~m}$?

- Watch Video Solution

129. Write the vector equation of the following lines and hence find distance between them
$\frac{x-1}{2}=\frac{y-2}{3}=\frac{z+4}{6}, \frac{x-3}{4}=\frac{y-3}{6}=\frac{z+5}{12}$

- Watch Video Solution

130. Show that the lines
$\frac{x+1}{3}=\frac{y+3}{5}=\frac{z+5}{7}$ and $\frac{x-2}{1}=\frac{y-4}{3}=\frac{z-6}{5} \quad$ intersect
each other. Also find their point of intersection.

- Watch Video Solution

131.

Show
that
the
lines
$\vec{r}=3 \hat{i}+2 \hat{j}-4 \hat{k}+\lambda(\hat{i}+2 \hat{j}+2 \hat{k})$ and $\vec{r}=5 \hat{i}-2 \hat{j}+\mu(3 \hat{i}+2 \hat{j}+6$
are intersecting. Hence, find their point of intersection.

- Watch Video Solution

$\vec{r}=(\hat{i}+\hat{j}-\hat{k})+\lambda(3 \hat{i}-\hat{j})$ and $\vec{r}=(4 \hat{i}-\hat{k})+\mu(2 \hat{i}+3 \hat{k})$
are intersecting. Hence find their point of intersection.

- Watch Video Solution

133.

Show
that
the
lines:
$\frac{x-1}{3}=\frac{y+1}{2}=\frac{z-1}{5}$ and $\frac{x-2}{4}=\frac{y-1}{3}=\frac{z+1}{-2} \quad$ do not intersect.

- Watch Video Solution

134.

that
the
lines:
$\vec{r}=(\hat{i}+\hat{j})+\lambda(2 \hat{i}-\hat{k})$ and $\vec{r}=(2 \hat{i}-\hat{j})+\mu(\hat{i}+\hat{k}-\hat{k}) \quad$ do not intersect.

- Watch Video Solution

135. Find shortest distance between lines $\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}$ and $\frac{x-2}{3}=\frac{y-4}{4}=\frac{z-5}{5}$

- Watch Video Solution

136. Show that the following lines are coplanar $\frac{5-x}{-4}=\frac{y-7}{-4}=\frac{z+3}{-5}$ and $\frac{x-8}{7}=\frac{2 y-8}{2}=\frac{z-5}{3}$

- Watch Video Solution

137. Show that the lines $\frac{x+3}{-3}=\frac{y-1}{1}=\frac{z-5}{5} \quad$ and $\frac{x+1}{-1}=\frac{y-2}{2}=\frac{z-5}{5}$ are coplanar. Also find the equation of the plane containing the lines.

- Watch Video Solution

138. Show that the lines $\frac{x-a+d}{\alpha-\delta}=\frac{y-a}{\alpha}=\frac{z-a-d}{\alpha+\delta}$ and $\frac{x-b+c}{\beta-\gamma}=\frac{y-b}{\beta}=\frac{z-b-c}{\beta+\gamma}$ are coplanar.

(Watch Video Solution

139. Find the equations the lines joining the following pair of vertices:
(0,0,0), (1,0,2)

- Watch Video Solution

140. Find the equations the lines joining the following pair of vertices: (1,3,0),(0,3,0)

- Watch Video Solution

141. Find the shortest distance between the lines

$$
\left(\frac{x+1}{7}=\frac{y+1}{-6}=\frac{z+1}{1} \text { and } \frac{x-3}{1}=\frac{y-5}{-2}=\frac{z-7}{1}\right)
$$

$$
\begin{aligned}
& \text { 142. } \begin{array}{c}
\text { Show } \\
\vec{r}
\end{array}=(\hat{i}+\hat{j}-\hat{k})+\lambda(3 \hat{i}-\hat{j}) \text { and } \vec{r}=(4 \hat{i}-\hat{k})+\mu(2 \hat{i}+3 \hat{k})
\end{aligned}
$$

lines:
are intersecting. Hence find their point of intersection.

- Watch Video Solution

143. Find the equation of the plane with the intercept 5 on the y axis and parallel to ZOX plane.

- Watch Video Solution

144. Find the equation of the plane with intercept 4 on the z axis and parallel to XOY plane.

- Watch Video Solution

145. Find the vector equation of a plane, which is at a distance of 7 uits from the origin and which is normal to the vector $3 \hat{i}+5 \hat{j}-6 \hat{k}$.

- Watch Video Solution

146. Find the vector equation of a plane, which is at a distance of 5 units from the origin and its normal vector is $2 \hat{i}-3 \hat{j}+6 \hat{k}$.

- Watch Video Solution

147. Find the vector equation of the plane whose cartesian form of equation is : $4 x-6 y+z=5$

- Watch Video Solution

148. Find the vector equation of the plane whose cartesian form of equation is : $7 x-6 y+4 z+9=0$
149. Find the cartesian equations of the following planes: $\vec{r} \cdot(3 \hat{i}+3 \hat{j}-2 \hat{k})=3$

- Watch Video Solution

150. Find the cartesian equations of the following planes: $\vec{r} \cdot(2 \hat{i}+3 \hat{j}-4 \hat{k})=1$

- Watch Video Solution

151. Find the Cartesian equation of the following plane: $\vec{r} \cdot[(s-2 t) \hat{i}+(3-t) \hat{j}+(2 s+t) \hat{k}]=15$

- Watch Video Solution

152. What are the direction cosines of the normal to the plane $3 x+2 y-3 z=8$?

- Watch Video Solution

153. Find the direction cosine of the perpendicular from origin to plane
$\vec{r} \cdot(\hat{i}+2 \hat{j}-2 \hat{k})=18$

- Watch Video Solution

154. Find the vector equation of the line through the origin, which is perpendicular to the plane $\vec{r} \cdot(\hat{i}-2 \hat{j}+\hat{k})=3$.

- Watch Video Solution

155. Find the distance of the points $(2,3,4)$ from the plane $\vec{R} \cdot(3 \hat{i}-6 \hat{j}+2 \hat{k})=-11$.
156. Find the distance of a point $(2,5,-3)$ from the plane $\vec{R} \cdot(6 \hat{i}-3 \hat{j}+2 \hat{k})=4$

- Watch Video Solution

157. Find the distance from $(1,2,3)$ to the plane $2 x+3 y-z+2=0$

- Watch Video Solution

158. Find the length of the perpendicular drawn from the origin to the plane $4 x-y+7 z+2=0$
159. Find a unit vector normal to the plane : $\vec{r} \cdot(2 \hat{i}-3 \hat{j}+6 \hat{k})+14=0$.

- Watch Video Solution

160. Find the angle between the two planes $3 x-6 y+2 z=7$ and $2 x+2 y-2 z=5$

- Watch Video Solution

161. Find the angle between the planes : $4 x+8 y+z=8$ and $y+z=4$

- Watch Video Solution

162. Find the angle between the following planes
$2 x-y-z=6$ and $x+y+2 z=7$
163. Find the angle between the planes
$\vec{r} \cdot(2 \hat{i}+2 \hat{j}-3 \hat{k})=5$ and $\vec{r} \cdot(3 \hat{i}-3 \hat{j}+5 \hat{k})=3$

- Watch Video Solution

164. Find the angle between the planes
$\vec{r} \cdot(2 \hat{i}+2 \hat{j}-3 \hat{k})=5$ and $\vec{r} \cdot(3 \hat{i}-3 \hat{j}+5 \hat{k})=3$

- Watch Video Solution

165. Find the value of k for whicj the planes:
$3 x-6 y-2 z=7$ and $2 x+y-k z=5$ are perpendicular to each other.

- Watch Video Solution

166. The position vectors of two points A and B are $3 \hat{i}+\hat{j}+2 \hat{k}$ and $\hat{i}-2 \hat{j}-4 \hat{k}$ respectively. Find the equation of the plane passing through B and perpendicular to $\overrightarrow{A B}$

- Watch Video Solution

167. Find the vector equation of the plane through the point ($2,0,-1$) and perpendicular to the line joining the two pints $(1,2,3)$ and $(3,-1,6)$.

- Watch Video Solution

168. Find the equation of the plane passing through the points $(1,2,1)$ and perpendicular to the line joining the points $(1,4,2)$ and $(2,3,5)$, Also, find the perpendicular distance of the plane from the origin.

- Watch Video Solution

169. Find the vector and cartesian equations of the plane which passes through the point ($5,2,-4$) and perpendicular to the line with direction ratios 2, 3, - 1 .

- Watch Video Solution

170. Find the vector and cartesian equations of the plane that passes through the point $(1,0,-2)$ and the normal to the plane is $\hat{i}+\hat{j}-\hat{k}$

- Watch Video Solution

171. Find the vector and cartesian equations of the plane that passes through the point $(1,4,6)$ and the normal vector to the plane is $\hat{i}-2 \hat{j}+\hat{k}$

- Watch Video Solution

172. Find the length of the perpendicular from the point $(2,3,7)$ to the plane $3 x-y-z=7$. Also find the co-ordinates of the foot of the perpendicular.

- Watch Video Solution

173. In the following, find the distance of each of the given points from the correspnding given planes: $(0,0,0) 2 x-y+2 z+1=0$

- Watch Video Solution

174. In the following, find the distance of each of the given points from the correspnding given planes: $(3,-2,1) 2 x-y+2 z+3=0$

- Watch Video Solution

175. In the following case, find the distance of each of the given point from the corresponding given plane: Point $(-6,0,0)$ Plane $2 x-3 y+6 z-2=0$

- Watch Video Solution

176. In the following case, find the distance of each of the given point from the corresponding given plane:Point (2,3,-5) Plane $x+2 y-2 z=9$

- Watch Video Solution

177. In the following, determine the direction cosines of the normal to the plane and the distance from the origin : $z=2$

- Watch Video Solution

178. In the following, determine the direction cosines of the normal to the plane and the distance from the origin : $5 y+8=0$

- Watch Video Solution

179. If the points $(1,1, p)$ and $(-3,0,1)$ be equidistant from the plane $\vec{r} \cdot(3 \hat{i}+4 \hat{j}-12 \hat{k})+13=0$, then find the value of p .

- Watch Video Solution

180. In the following case, find the coordinates of the foot of the perpendicular drawn from the origin: $2 x+3 y+4 z-12=0$

- Watch Video Solution

181. In the following case, find the coordinates of the foot of the perpendicular drawn from the origin: $3 y+4 z-6=0$
182. In the following cases, find the co-ordinates of the foot of the perpendicular drawn from the origin : $x+y+z=1$

- Watch Video Solution

183. In the following case, find the coordinates of the foot of the perpendicular drawn from the origin: $5 y+8=0$

- Watch Video Solution

184. Find the length and the foot of the perpendicular from the point
$(7,14,5)$ to the plane $2 x+4 y-z=2$.

- Watch Video Solution

185. Find the vector equation of the line passing through ($1,2,3$) and parallel to the planes
$\vec{r} \cdot(\hat{i}-\hat{j}+2 \hat{k})=5$ and $\vec{r} \cdot(3 \hat{i}+\hat{j}+\hat{k})=6$.

- Watch Video Solution

186. Find the vector equation of the line passing through (1,2,3) and perpendicular to the plane $\vec{r} \cdot(\hat{i}+2 \hat{j}-5 \hat{k})+9=0$

- Watch Video Solution

187. Find the equation of the plane passing through (a, b, c) and parallel to the plane $\vec{r} \cdot(\hat{i}+\hat{j}+\hat{k})=2$

- Watch Video Solution

188. Find cartesian equations of the plane containing the lines: $\vec{r}=2 \hat{i}+\hat{j}-3 \hat{k}+\lambda(\hat{i}+2 \hat{j}+5 \hat{k})$
$\vec{r}=3 \hat{i}+3 \hat{j}-7 \hat{k}+\mu(3 \hat{i}-2 \hat{j}+5 \hat{k})$

- Watch Video Solution

189. Find the angle between the lines: $x-2 y+z=0=x+2 y-2 z$ and $x+2 y+z=0=3 x+9 y+5 z$.

- Watch Video Solution

190. Show that the lines : $3 x-2 y+5=0, y+3 z-15=0$ and $\frac{x-1}{5}=\frac{y+5}{-3}=\frac{z}{1}$ are perpendicular to each other.

- Watch Video Solution

191. Find the equations of the line passing through the point $(1,-2,-3)$ and parallel to the planes: $x-y+2 z=5$ and $3 x+2 y-z=6$

Watch Video Solution

192. Find the equation of the plane, which bisects the line joining the points ($-1,2,3$) and ($3,-5,6$) ate right angles.

- Watch Video Solution

193. Find the equation of the plane throught he intersection of the planes
$: 3 x-y+2 z-4=0$ and $x+y+z-2=0$ at the point $(2,2,1)$.

- Watch Video Solution

194. Find the vector equation of the plane through the planes : $\vec{r} \cdot(\hat{i}+\hat{j}+\hat{k})=6$ and $\vec{r} \cdot(2 \hat{i}+3 \hat{j}+4 \hat{k})=-5$ at the point

- Watch Video Solution

195. Find the vector equation of the following plane in scalar product form: $\vec{r}=\hat{i}-\hat{j}+\lambda(\hat{i}+\hat{j}+\hat{k})+\mu(\hat{i}-2 \hat{j}+3 \hat{k})$

- Watch Video Solution

196. Find the Cartesian equation of the plane passing through three noncollinear points :(0, - $1,-1$) , ($4,5,1$) and ($3,9,4$)

- Watch Video Solution

197. Find the equations of the plane that passes through three points : $(1,1,0),(1,2,1),(-2,2,-1)$
198. Find the equations of the planes passing through the following points
$(2,5,-3),(-2,-3,5),(5,3,-3)$

- Watch Video Solution

199. Find the equation of the plane through three non-collinear points (0 , $-1,0),(1,1,1)$ and (3, 3, 0).

- Watch Video Solution

200. Find the equation of the plane passing through the points : $(3,-1,2)$, $(5,2,4),(-1,-1,6)$

- Watch Video Solution

201. Find the equation of the plane through three non-collinear points: $(2,2,-1),(3,4,2),(7,0,6)$

Watch Video Solution

202. Find the equation of the plane through three non-collinear points:
$(2,1,-1),(6,5,0),(2,-1,5)$

- Watch Video Solution

203. Find the equation of the plane throught he points $(3,-2,4),(-13,17,-1)$, $(-6,3,2)$. Show that it passes through $(5,7,3)$.

- Watch Video Solution

204. Find the equations of the planes passing through the following points
$(-3,5,1),(4,-1,2),(2,3,4)$

- Watch Video Solution

205. Find the vector equations of the plane passing through the points $R(2,5,-3), S(-2,-3,5), T(5,3,-3)$

- Watch Video Solution

206. Find the distance between the points : (2,1,0), (1,1,2).

- Watch Video Solution

207. Find the distance between the point $P(6,5,9)$ and the plane determined by the points $A(3,-1,2), B(5,2,4), C(-1,-1,6)$

- Watch Video Solution

208. Find the distance between the point $(7,2,4)$ and the plane determined by the points: $A(2,5,-3),(B(-2,-3,5), C(5,3,-3)$.

- Watch Video Solution

209. Find the equation of the plane through the points $(2,-3,-1)$ and $(5,2,-1)$ and perpendicular to the plane $x-2 y+4 z=10$.

- Watch Video Solution

210. Find the vector equation of the plane throught the points (2,1,-1) and $(-1,3,4)$ and perpendicular to the plane $x-2 y+4 z=10$.

- Watch Video Solution

211. Find the equation of the plane through the point $(0,0,0)$ and $(3,-1,2)$ and parallel of the line $\frac{x-4}{1}=\frac{y+3}{-4}=\frac{z+1}{7}$
212. Show that the following four points are coplanar : $(4,5,1),(0,-1,-1)$, (3,9,4),(-4,4,4)

- Watch Video Solution

213. Show that the following four points are coplanar:($0,-1,0),(2,1,-1),(1,1,1)$, (3,3,0)

- Watch Video Solution

214. Show that the four points: $(0,-1,1),(4,5,1),(3,9,4),(-4,4,4)$ are coplanar. Also find the equation of the plane containing them.

- Watch Video Solution

215. The foot of the perpendicular drawn from the origin to the plane is :
$(2,-3,-4)$. Find the equation of the plane.

Watch Video Solution

216. Find the foot and length of the perpendicular from the point $(3,4,5)$ to the plane: $2 x-5 y+3 z=39$.

- Watch Video Solution

217. Find the length and the foot of the perpendicular from the point $(7,14,5)$ to the plane $2 x+4 y-z=2$.

- Watch Video Solution

218. Find the co-ordinates of the points where the line through the points
$(3,-4,-5)$ and $(2,-3,1)$ crosses the plane $2 x+y+z=7$
219. Find the distance between two parallel planes : $2 x+3 y+4 z=4$ and $4 x+6 y+8 z=12$.

- Watch Video Solution

220. Find the equation passing throught the intersection of the planes :
$2 x-7 y+4 z=3$ and $3 x-5 y+4 z+11=0$ and the point $(-2,1,3)$.

- Watch Video Solution

221. Find the equation of the plane throught he intersection of the planes
$: 3 x-y+2 z-4=0$ and $x+y+z-2=0$ at the point $(2,2,1)$.

- Watch Video Solution

222. Find the vector equation of the plane through the intersection of the planes $\vec{r} \cdot(\hat{i}+\hat{j}+\hat{k})=6$ and $\vec{r} \cdot(2 \hat{i}+3 \hat{j}+4 \hat{k})=-5$ and the point (1,1,1).

- Watch Video Solution

223. Find the equation of the plane passing through the intersection of the planes $x+y+z=6$ and $2 x+3 y+4 z+5=0$ and the point (1,1,1)

- Watch Video Solution

224. Find the equation of the plane through the intersection of the planes $x+y+z=1$ and $2 x+3 y+4 z=5$ which is perpendicular to the plane $x-y+z=0$

- Watch Video Solution

225. Find the equation of the plane passing through the line of intersection of the planes $\vec{r} \cdot(\hat{i}+\hat{j}+\hat{k})=1 \quad$ and $\vec{r} \cdot(2 \hat{i}+3 \hat{j}-\hat{k})+4=0$ and parallel to x-axis.

- Watch Video Solution

226. Find the equation of the plane through the intersection of the planes
$\vec{r} \cdot(2 \hat{i}+\hat{j}+3 \hat{k})=7$ and $\vec{r} \cdot(2 \hat{i}+3 \hat{j}+3 \hat{k})=9$ and passing through the point $(2,1,3)$.

- Watch Video Solution

227. Find the equation of the plane passing through the line of intersection of the planes
$\vec{r} \cdot(\hat{i}+3 \hat{j})-6=0$ and $\vec{r} \cdot(3 \hat{i}-\hat{j}-4 \hat{k})=0$,
perpendicular distance form origin is unity.
228. Find the equation of the plane passing through the line of intersection of the planes $2 x+y-z=3$ and $5 x-3 y+4 z=9$ and parallel to the lines $\frac{x-1}{2}=\frac{y-3}{4}=\frac{z-5}{5}$

- Watch Video Solution

229. Find the equation of the plane through the line of intersection of the planes: $x+3 y-z+1=0$ and $x+y-2 z+3=0$ and perpendicular to the plane $3 x-y-2 z-4=0$

- Watch Video Solution

230. Find the vector equation of the plane passing through the intersection of the planes
$\vec{r} \cdot(2 \hat{i}-\hat{j}+2 \hat{k})=2$ and $\vec{r} \cdot(3 \hat{i}+\hat{j}-2 \hat{k})=-2$
and perpendicular to the $\vec{a}=5 \hat{i}-2 \hat{j}+3 \hat{k}$.
231. Find the equation of the plane passing through the points $(2,2,1)$, $(9,3,6)$ and perpendicular to the plane $2 x+6 y+6 z=1$.

- Watch Video Solution

232. Find the equation of the plane passing through the point ($1,-1,2$) and perpendicular to the planes $2 x+3 y-2 z=5$ and $x+2 y-3 z=8$.

- Watch Video Solution

233. Find the equation of the plane passing through the point $(1,1,-1)$ and perpendicular to each of the planes
$x+2 y+3 z-7=0$ and $2 x-3 y+4 z=0$

- Watch Video Solution

234. Find the equation of the plane through the point $(-1,-1,2)$ and perpendicular to the planes $3 x+2 y-3 z=1$ and $5 x-4 y+z=5$.

Watch Video Solution

235. The distance of the point $P(-2,3,-4)$ from the line $\frac{x+2}{3}=\frac{2 y+3}{4}=\frac{3 z+4}{5}$ measured parallel to the plane $4 x+12 y-3 z+1=0$ is d , then find the value of $(2 d-8)$, is

- Watch Video Solution

236. Find the ratio in which the line segment joining : $(2,1,5)$ and $(3,4,3)$ is divided by the plane $x+y-z=\frac{1}{2}$

- Watch Video Solution

237. Find the ratio in which the line segment joining : $(1,2,3)$ and $(-3,4,-5)$ is divided by the xy-plane.

- Watch Video Solution

238. Find the equation of the plane passing through the points $(1,2,1)$ and perpendicular to the line joining the points ($1,4,2$) and ($2,3,5$), Also, find the perpendicular distance of the plane from the origin.

- Watch Video Solution

239. Find the image of the point : $(3,-2,1)$ in the plane $3 x-y+4 z=2$

- Watch Video Solution

240. Find the image of the point : $(1,2,3)$ in the plane $3 x+2 y+z=24$
241. Find the image of the point : $(2,-1,3)$ in the plane $3 x-2 y-z=9$

- Watch Video Solution

242. Find the co-ordinates of the foot of perpendicular drawn from the point (2, 3, 5) on the plane given by the equation : $2 x-3 y+4 z+10=0$

- Watch Video Solution

243. The foot of the perpendicular drwan from origin to a plane is $(4,-2,5)$: How far is the plane from the origin?

- Watch Video Solution

244. The foot of the perpendicular drwan from origin to a plane is $(4,-2,5)$
: How far is the plane from the origin?

- Watch Video Solution

245. The foot of the perpendicular drwan from origin to a plane is $(4,-2,5)$: Obtain the equation of the plane in general form.

- Watch Video Solution

246. Find the co-ordinates of the foot of the perpendicular distance of the point $\mathrm{P}(3,2,1)$ from the plane $2 x-y+z+1=0$. Find also , the image of the point in the plane.

- Watch Video Solution

247. Find the length and the foot of the perpendicular from the point $(7,14,5)$ to the plane $2 x+4 y-z=2$.

- Watch Video Solution

248. Find the distance of the point $P(1,2,3)$ from its image in the plane $x+2 y+4 z=38$.

- Watch Video Solution

249. Find the co-ordinates of the point P, where the line through $A(3,-4,-5)$ and $B(2,-3,1)$ crosses the plane passing through three points $L(2,2,1)$, $M(3,0,1)$ and $N(4,-1,0)$. Also, find the ratio in which P divides the line segment AB.

- Watch Video Solution

250. A variable plane which remains at a constant distance $3 p$ from the origin cuts the coordinate axes at $\mathrm{A}, \mathrm{B}, \mathrm{C}$. Show that locus of the O centroid of the triangle $A B C$ is
$\frac{1}{x^{2}}+\frac{1}{y^{2}}+\frac{1}{z^{2}}=\frac{1}{p^{2}}$.

- Watch Video Solution

251. A variable plane which remains at a constant distance $3 p$ from the origin cuts the coordinate axes at A,B,C. Show that locus of the O centroid of the triangle $A B C$ is
$\frac{1}{x^{2}}+\frac{1}{y^{2}}+\frac{1}{z^{2}}=\frac{1}{p^{2}}$.

- Watch Video Solution

252. A variable plane is at a constant distance $4 p$ from the origin and cuts axes in A, B, C respectively. Show that the centroid of the tetrahedron OABC lies on : $\frac{1}{x^{2}}+\frac{1}{y^{2}}+\frac{1}{z^{2}}=\frac{1}{p^{2}}$
253. A variable plane which remains at a constant distance p from the origin cuts the co-ordinate axes at A, B, C. Through A, B, C planes are drawn parallel to the co-ordinate planes. Show that locus of the point of intersection is : $x^{-2}+y^{-2}+z^{-2}=p^{-2}$

(Watch Video Solution

254. A variable plane passes through a fixed point a, b, c and meet the coordinates axes in A, B, C. Show that the locus of the point common to the planes through A, B, C parallel to the co-ordinate planes is $\frac{a}{x}+\frac{b}{y}+\frac{c}{z}=1$

- Watch Video Solution

255. A variable plane moves so that the sum of reciprocals of its intercepts on the three coordinate axes is constant, show that it passes
through a fixed point.

D Watch Video Solution

256. Show that the sum of the reciprocals of the intercepts on rectangular axes made by a fixed plane is same for all systems of rectangular axes, with a given origin.

(Watch Video Solution

257. Find the equations of the bisector planes of the angle between the planes : $3 x-2 y+6 z+8=0$ and $2 x-y+2 z+3=0$

- Watch Video Solution

258. In the following case, determine whether the given planes are parallel or perpendicular, and in case they are neither, find the angles between them: $7 x+5 y+6 z+30=0$ and $3 x-y-10 z+4=0$
259. In the following case, determine whether the given planes are parallel or perpendicular, and in case they are neither, find the angles between them: $2 x+y+3 z-2=0$ and $x-2 y+5=0$

- Watch Video Solution

260. In the following case, determine whether the given planes are parallel or perpendicular, and in case they are neither, find the angles between them: $2 x-2 y+4 z+5=0$ and $3 x-3 y+6 z-1=0$

- Watch Video Solution

261. Uln the following case, determine whether the given planes are parallel or perpendicular, and in case they are neither, find the angles between them: $2 x-y+3 z-1=0$ and $2 x-y+3 z+3=0$
262. In the following case, determine whether the given planes are parallel or perpendicular, and in case they are neither, find the angles between them: $4 x+8 y+z-8=0$ and $y+z-4=0$

- Watch Video Solution

263. What is the point of intersection of the line $x=y=z$ with the plane $x+2 y+3 z=6$?

- Watch Video Solution

264. Find the angle between the lines in which the planes: $3 x-7 y-5 z=1,5 x-13 y+3 z+2=0$ cut the plane $8 x-11 y+2 z=0$.

- Watch Video Solution

265. Show that the line, $\vec{r}=2 \hat{i}-3 \hat{j}+5 \hat{k}+\lambda(\hat{i}-\hat{j}+2 \hat{k})$ lies in the plane $\vec{r} \cdot(3 \hat{i}+\hat{j}-\hat{k})+2=0$.

- Watch Video Solution

266. Show that the line, $\vec{r}=\hat{i}+\hat{j}+\lambda(2 \hat{i}+\hat{j}+4 \hat{k})$ lies in the plane $\vec{r} \cdot(\hat{i}+2 \hat{j}-\hat{k})=3$.

- Watch Video Solution

267. Find the vector equation of the line passing through the point $(3,1,2)$ and perpendicular to the plane $\vec{r} \cdot 2 \hat{i}-\hat{j}+\hat{k})=4$. Also find the point of intersection of this line and the plane.

- Watch Video Solution

268. Find the point where the line $\frac{x+1}{2}=\frac{y+2}{3}=\frac{z+3}{4}$ meets the plane $x+y+4 z=6$.

- Watch Video Solution

269. Find the angle between the line
$(2 \hat{i}+3 \hat{j}+4 \hat{k})+\lambda(2 \hat{i}+3 \hat{j}+4 \hat{k})$ and the plane
$\vec{r} \cdot(\hat{i}+\hat{j}+\hat{k})=5$.

- Watch Video Solution

270. Find the angle between the line joing ($3,-4,-2$) and $(12,2,0)$ and the plane $\vec{r} \cdot(\hat{i}+\hat{j}+\hat{k})=4$

- Watch Video Solution

271. Find the angle between the line $: \frac{x+1}{2}=\frac{y}{3}=\frac{z-3}{6}$ and the plane $10 x+2 y-11 z=3$.

- Watch Video Solution

272. Find the angle between the line $\frac{x+1}{2}=\frac{y}{3}=\frac{z-3}{6}$ and the plane $10 x+2 y-11 z=3$

- Watch Video Solution

273. Find the distance of the point ($-1,-5,-10$) from the point of intersection of the $\frac{x-2}{3}=\frac{y+1}{4}=\frac{z-2}{12}$ and the plane $\mathrm{x}-\mathrm{y}+\mathrm{z}=5$.

- Watch Video Solution

274. Find the distance of the point ($-1,-5,-10$) from the point of intersection of the line $\vec{r}=2 \hat{i}-\hat{j}+2 \hat{k}+\lambda(3 \hat{i}+4 \hat{j}+2 \hat{k})$ and the
plane $\vec{r} \cdot(\hat{i}-\hat{j}+\hat{k})=5$.

- Watch Video Solution

275. Find the distance of the point with position vector $-\hat{i}-5 \hat{j}-10 \hat{k}$ from the point of intersection of the line $\vec{r}=(2 \hat{i}-\hat{j}+2 \hat{k})+\lambda(3 \hat{i}+4 \hat{j}+12 \hat{k}) \quad$ and the plane $\vec{r} \cdot(\hat{i}-\hat{j}+\hat{k})=5$.

- Watch Video Solution

276. Find the distance of the point $(2,12,5)$ from the point of intersection of the line: $\vec{r}=2 \hat{i}-4 \hat{j}+2 \hat{k}+\lambda(3 \hat{i}+4 \hat{j}+2 \hat{k})$ and the plane $\vec{r} \cdot(\hat{i}-2 \hat{j}+\hat{k})=0$.

- Watch Video Solution

277. Find the distance between the point with position vector $-\hat{i}-5 \hat{j}-10 \hat{k}$ and the point of intersection of the line $\frac{x-2}{3}=\frac{y+1}{4}=\frac{z-12}{12}$ with the plane $x-y+z=5$.

- Watch Video Solution

278. Find the vector equation of the line passing through ($1,2,3$) and parallel to the planes
$\vec{r} \cdot(\hat{i}-\hat{j}+2 \hat{k})=5$ and $\vec{r} \cdot(3 \hat{i}+\hat{j}+\hat{k})=6$.

- Watch Video Solution

279. Find the vector equation of the line passing through (1, 2, 3) and perpendicular to the plane $\vec{r} \cdot(\hat{i}+2 \hat{j}-5 \hat{k})+9=0$

- Watch Video Solution

280. Find the equation of the plane which is parallel to the line $\frac{x-4}{1}=\frac{y+3}{-4}=\frac{z+1}{7}$ and passes through the point $(0,0,0)$ and $(3,-1,2)$.

- Watch Video Solution

281. Find the equations of the plane through the points $(1,0,-1),(3,2,2)$ and parallel to the line $\frac{x-1}{1}=\frac{y-1}{-2}=\frac{z-2}{3}$

- Watch Video Solution

282. Find the equation of the plane containing the line $\frac{x+2}{2}=\frac{y+3}{3}=\frac{z-4}{-2}$ and the point $(0,6,0)$.

- Watch Video Solution

283. Find the equation of the plane, which contains two lines: $\frac{x-4}{1}=\frac{y-3}{-4}=\frac{z-2}{5}$ and $\frac{x-3}{1}=\frac{y+2}{-4}=\frac{z}{5}$.

- Watch Video Solution

284. Find the vector and cartesian equations of the plane containing the lines:

$$
\vec{r}=\hat{i}+2 \hat{j}-4 \hat{k}+\lambda(2 \hat{i}+3 \hat{j}+6 \hat{k}) \quad \text { and }
$$

$\vec{r}=3 \hat{i}+3 \hat{j}-5 \hat{k}+\mu(-2 \hat{i}+3 \hat{j}+8 \hat{k})$.

- Watch Video Solution

285. Find the equation of the plane through the point $(1,1,1)$ and perpendicular to the plane $x-2 y+z=3,4 x+3 y-z=5$.

- Watch Video Solution

286. If the line drawn from ($4,-1,2$) to the point $(-3,2,3)$ meets a plane at right angles, at the point $(-10,5,4)$, then find the equation of the plane.

- Watch Video Solution

287. Find the length and the foot of the perpendicular from: $P(1,1,2)$ to the plane $2 x-2 y+4 z+5=0$

- Watch Video Solution

288. Find the coordinates of the foot of the perpendicular drawn from the origin to the plane $2 x-3 y+4 z-6=0$

- Watch Video Solution

289. Find the co-ordinates of the foot of the perpendicular from the point $(2,3,7)$ to the plane $3 x-y-z=7$. Also find the length of the
perpendicular.

- Watch Video Solution

290. Find the equation of the plane containing the line : $\frac{x-1}{3}=\frac{y+2}{1}=\frac{z-3}{2}$ and perpendicular to the plane $2 x-y+2 z-3=$ 0.

- Watch Video Solution

291. Show that the line L whose vector equation is $\vec{r}=2 \hat{i}-2 \hat{j}+3 \hat{k}+\lambda(\hat{i}-\hat{j}+4 \hat{k})$ is parallel to the plane π whose vector equation is $\vec{r} \cdot(\hat{i}+5 \hat{j}+\hat{k})=5$ and find the distance between them.

- Watch Video Solution

292. State when the line $\vec{r}=\vec{a}+\lambda \vec{b}$ is parallel to the plane $\vec{r} \cdot \vec{n}=d$. Show that the line $\vec{r}=\hat{i}+\hat{j}+\lambda(2 \hat{i}+\hat{k}+4 \hat{k})$ is parallel to the plane $\vec{r} \cdot(-2 \hat{i}+\hat{k})=5$. Also, find the distance between the line and the plane.

- Watch Video Solution

293. Find the equations of the line through $(-1,3,2)$ and perpendicular to the plane $x+2 y+2 z=3$, the length of the perpendicular and coordeinates of its foot.

- Watch Video Solution

294. Find the vector equation of the line passing through the point $(3,1,2)$ and perpendicular to the plane $\vec{r} \cdot 2 \hat{i}-\hat{j}+\hat{k})=4$. Also find the point of intersection of this line and the plane.
295. Find the vector equation of a line passing through the point with position vector $(2 \hat{i}-3 \hat{j}-5 \hat{k})$ and perpendicular to the plane $\vec{r} \cdot(6 \hat{i}-3 \hat{j}-5 \hat{k})+2=0$. Also, find the point of intersection of this line and the plane.

- Watch Video Solution

296. Find the co-ordinates of the point, where the line: $\frac{x-2}{3}=\frac{y+1}{4}=\frac{z-2}{2}$ intersects the plane $x-y+z-5=0$. Also find the angle between the line and the plane.

- Watch Video Solution

297. Find the length of the perpendicular from the point $(1,2,3)$ to the line
$: \frac{x-6}{3}=\frac{y-7}{2}=\frac{z-7}{-2}$

- Watch Video Solution

298. Find the point, where the line joining the points $(1,3,4)$ and $(-3,5,2)$ intersects the plane $\vec{r} \cdot(2 \hat{i}+\hat{j}+\hat{k})+3=0$. Is the point equaidistant from the gien points?

- Watch Video Solution

299. Find the co-ordinates of the point where the line joining the points $(1,-2,3)$ and $(2,-1,5)$ cuts the plane $x-2 y+3 z=19$. Hence, find the distance of this point from the point $(5,4,1)$.

- Watch Video Solution

300. Find the equation of the plane passing through the point ($1,1,1$) and containing the line: $\vec{r}=(-3 \hat{i}+\hat{j}+5 \hat{k})+\lambda(3 \hat{i}-\hat{j}+5 \hat{k})$. Also, show that the plane contains the line: $\vec{r}=(-\hat{i}+2 \hat{j}+5 \hat{k})+\lambda(\hat{i}-2 \hat{j}-5 \hat{k})$.
301. Find the equation of the plane passing through the points $(1,2,1)$ and perpendicular to the line joining the points $(1,4,2)$ and $(2,3,5)$, Also, find the perpendicular distance of the plane from the origin.

- Watch Video Solution

302. Find the vector equation of the plane passing through three points with position vectors $\hat{i}+\hat{j}-2 \hat{k}, 2 \hat{i}-\hat{j}+\hat{k}$ and $\hat{i}+2 \hat{j}+\hat{k}$. Also find the co-ordinates of the point of intersection of this plane and the line $\vec{r}=3 \hat{i}-\hat{j}-\hat{k}+\lambda(2 \hat{i}-2 \hat{j}+\hat{k})$.

- Watch Video Solution

303. A line makes $90^{\circ}, 135^{\circ}, 45^{\circ}$ with x, y and z axes respectively than its direction cosines are

- Watch Video Solution

304. Find the direction cosine of a line which makes equal angles with the co-ordinate axes.

- Watch Video Solution

305. If a line has the direction ratios $-18,12,-4$, then what are its direction cosines ?

- Watch Video Solution

306. Show that the points $(2,3,4),(-1,-2,1),(5,8,7)$ are collinear.

- Watch Video Solution

307. Find the direction cosines of the sides of the triangle whose vertices are $(3,5,-4),(-1,1,2)$ and $(-5,-5,-2)$.

- Watch Video Solution

308. show that the three lines with direction cosines $<\frac{12}{13},-\frac{3}{13},-\frac{4}{13}>,<\frac{4}{13}, \frac{12}{13}, \frac{3}{13}>,<\frac{3}{13},-\frac{4}{13}, \frac{12}{13}>$ are mutually perpendicular.

- Watch Video Solution

309. Show that the line through the points $(1,-1,2),(3,4,-2)$ is perpendicular to the line through the points $(0,3,2)$ and $(3,5,6)$.

- Watch Video Solution

310. Show that the line through the points : $(4,7,8),(2,3,4)$ is parallel to the line through the points ($-1,-2,1$) and ($1,2,5$).

- Watch Video Solution

311. Find the equation of the line which passes through the point $(1,2,3)$ and is parallel to the vector $3 \hat{i}+2 \hat{j}-2 \hat{k}$

- Watch Video Solution

312. Find the equation of the line in vector and in cartesian form that passes through the point with position vector $2 \hat{i}-\hat{j}+4 \hat{k}$ and is in the direction $\hat{i}+2 \hat{j}-\hat{k}$

- Watch Video Solution

313. Find the cartesian equation of the line which passes through the point (- 2, 4, - 5) and parallel to the line given by $\frac{x+3}{3}=\frac{y-4}{5}=\frac{z+8}{6}$
314. The cartesian equation of a line is $\frac{x-5}{3}=\frac{y+4}{7}=\frac{z-6}{2}$. Write its vector form.

- Watch Video Solution

315. Find the vector and the cartesian equations of the lines that passes through the origin and (5, $-2,3$).

- Watch Video Solution

316. Find the vector and the cartesian equations of the line that passes through the points $(3,-2,-5),(3,-2,6)$.

- Watch Video Solution

317. Find the angle between the following pair of lines:
$\vec{r}=2 \hat{i}-5 \hat{j}+\hat{k}+\lambda(3 \hat{i}+2 \hat{j}+6 \hat{k})$
$\vec{r}=7 \hat{i}-6 \hat{j}+\mu(\hat{i}+2 \hat{j}+2 \hat{k})$

- Watch Video Solution

318. Find the angle between the following pair of lines:
$\vec{r}=3 \hat{i}+\hat{j}-2 \hat{k}+\lambda(\hat{i}-\hat{j}-2 \hat{k})$
and
$\vec{r}=2 \hat{i}-\hat{j}-56 \hat{k}+\mu(3 \hat{i}-5 \hat{j}-4 \hat{k})$

- Watch Video Solution

319. Find the angle between the following pairs of lines : $\frac{x-2}{2}=\frac{y-1}{5}=\frac{z+3}{-3}$ and $\frac{x+2}{-1}=\frac{y-4}{8}=\frac{z-5}{4}$

- Watch Video Solution

320. Find the angle between the lines $\frac{x}{2}=\frac{y}{2}=\frac{z}{1}$ and $\frac{x-5}{4}=\frac{y-2}{1}=\frac{z-3}{8}$
321. Find the value of p so that the lines $l_{1}: \frac{1-x}{3}=\frac{7 y-14}{2 p}=\frac{z-3}{2}$ and $l_{2}: \frac{7-7 x}{3 p}=\frac{y-5}{1}=\frac{6-z}{5}$ are at right angles. also find the equations of the line passing through $(3,2,4)$ and parallel to line l_{1}.

- Watch Video Solution

322. Show that the lines $\frac{x-5}{7}=\frac{y+2}{-5}=\frac{z}{1}$ and $\frac{x}{1}=\frac{y}{2}=\frac{z}{3}$ are perpendicular to each other

- Watch Video Solution

323. Find the shortest distance between the lines
$\vec{r}=(\hat{i}+2 \hat{j}+\hat{k})+\lambda(\hat{i}-\hat{j}+\hat{k})$
and
$\vec{r}=2 \hat{i}-\hat{j}-\hat{k}+\mu(2 \hat{i}+\hat{j}+2 \hat{k})$
324. Find the shortest distance between the lines $\left(\frac{x+1}{7}=\frac{y+1}{-6}=\frac{z+1}{1}\right.$ and $\left.\frac{x-3}{1}=\frac{y-5}{-2}=\frac{z-7}{1}\right)$

- Watch Video Solution

325. Find the shortest distance between the lines whose vector equations are

$$
\vec{r}=(\hat{i}+2 \hat{j}+3 \hat{k})+\lambda(\hat{i}-3 \hat{j}+2 \hat{k}) \quad \text { and }
$$

$\vec{r}=4 \hat{i}+5 \hat{j}+6 \hat{k}+\mu(2 \hat{i}+3 \hat{j}+\hat{k})$

Watch Video Solution

326. Find the shortest distance between the following lines whose vector equations are $\vec{r}=(1-t) \hat{i}+(t-2) \hat{j}+(3-2 t) \hat{k}$ and $\vec{r}=(s+1) \hat{i}+(2 s-1) \hat{j}-(\dot{s}$ where t and s are scalars.
327. In the following case, determine the direction cosines of the normal to the plane and the distance from the origin: $z=2$

- Watch Video Solution

328. In the following case, determine the direction cosines of the normal to the plane and the distance from the origin: $x+y+z=1$

- Watch Video Solution

329. In each of the following cases, determine the direction cosines of the normal to the plane and the distance from the origin. : $2 x+3 y-z=5$

- Watch Video Solution

330. In the following case, determine the direction cosines of the normal to the plane and the distance from the origin: $5 y+8=0$
331. Find the vector equation of a plane, which is at a distance of 7 units from the origin and which is normal to the vector $3 \hat{i}+5 \hat{j}-6 \hat{k}$.

- Watch Video Solution

332. Find the cartesian equations of the following planes:
$\vec{r} \cdot(4 \hat{i}+8 \hat{j}-7 \hat{k})=2$

- Watch Video Solution

333. Find the cartesian equations of the following planes:
$\vec{r} \cdot(2 \hat{i}+3 \hat{j}-4 \hat{k})=1$

- Watch Video Solution

334. Find the cartesian equations of the following planes: $r \cdot\left[(s-2 t)^{\wedge} i\right.$
$\left.+(3-t)^{\wedge} j+(2 s+t)^{\wedge} k\right]=15$

- Watch Video Solution

335. In the following case, find the coordinates of the foot of the perpendicular drawn from the origin: $2 x+3 y+4 z-12=0$

- Watch Video Solution

336. In the following case, find the coordinates of the foot of the perpendicular drawn from the origin: $3 y+4 z-6=0$

- Watch Video Solution

337. In the following cases, find the co-ordinates of the foot of the perpendicular drawn from the origin : $x+y+z=1$
338. In the following case, find the coordinates of the foot of the perpendicular drawn from the origin: $5 y+8=0$

- Watch Video Solution

339. Find the vector and cartesian equations of the plane that passes through the point $(1,0,-2)$ and the normal to the plane is $\hat{i}+\hat{j}-\hat{k}$

- Watch Video Solution

340. Find the vector and cartesian equations of the plane that passes through the point $(1,4,6)$ and the normal vector to the plane is $\hat{i}-2 \hat{j}+\hat{k}$
341. Find the equations of the plane that passes through three points: (1,1,-1), (6,4,-5), (-4,-2,3)

- Watch Video Solution

342. Find the equations of the plane that passes through three points: $(1,1,0),(1,2,1),(-2,2,-1)$

- Watch Video Solution

343. Find the intercepts cut off by the plane $2 x+y-z=5$

- Watch Video Solution

344. Find the equation of the plane with intercept 3 on the y-axis and parallel to ZOX plane.
345. Find the equation of the plane through the intersection of the planes $3 x-y+2 z-4=0$ and $x+y+z-2=0$ and the point $(2,2$, 1).I

- Watch Video Solution

346. Find the vector equation of the plane passing through the intersection of the planes
$\vec{r} \cdot(2 \hat{i}+2 \hat{j}-3 \hat{k})=7, \vec{r} \cdot(2 \hat{i}+5 \hat{j}+3 \hat{k})=9$ and through the point (2, 1, 3)

- Watch Video Solution

347. Find the equation of the plane through the intersection of the planes $x+y+z=1$ and $2 x+3 y+4 z=5$ which is perpendicular to the plane $x-y+z=0$
348. Find the angle between the planes whose vector equations are $\vec{r} \cdot(2 \hat{i}+2 \hat{j}-3 \hat{k})=5$ and $\vec{r} \cdot(3 \hat{i}-3 \hat{j}+5 \hat{k})=3$

- Watch Video Solution

349. In the following determine whether the given planes are parallel or perpendicular and in case they are neither, find the angles between them: $7 x+5 y+6 z+30=0$ and $3 x-y-10 z+4=0$

- Watch Video Solution

350. In the following determine whether the given planes are parallel or perpendicular and in case they are neither, find the angles between them:
$2 x+y+3 z-2=0$ and $x-2 y+5=0$

- Watch Video Solution

351. In the following determine whether the given planes are parallel or perpendicular and in case they are neither, find the angles between them: $2 x-2 y+4 z+5=0$ and $3 x-3 y+6 z-1=0$

- Watch Video Solution

352. In the following determine whether the given planes are parallel or perpendicular and in case they are neither, find the angles between them:

$$
2 x-y+3 z-1=0 \text { and } 2 x-y+3 z+3=0
$$

- Watch Video Solution

353. In the following case, determine whether the given planes are parallel or perpendicular, and in case they are neither, find the angles between them: $4 x+8 y+z-8=0$ and $y+z-4=0$

- Watch Video Solution

354. In the following case, find the distance of each of the given point from the corresponding given plane: Point $(0,0,0)$ Plane $3 x-4 y+12 z=3$

- Watch Video Solution

355. In the following, find the distance of each of the given points from the correspnding given planes: $(3,-2,1) 2 x-y+2 z+3=0$

- Watch Video Solution

356. In the following, find the distance of each of the given points from the correspnding given planes: (2,3,-5)
$x+2 y-2 z=9$

- Watch Video Solution

357. In the following case, find the distance of each of the given point from the corresponding given plane: Point $(-6,0,0)$ Plane $2 x-3 y+6 z-2=0$

- Watch Video Solution

358. Show that the line joining the origin to the point $(2,1,1)$ is perpendicular to the line determined by the points ($3,5,-1$), ($4,3,-1$).

- Watch Video Solution

359. If l_{1}, m_{1}, n_{1} and l_{2}, m_{2}, n_{2} are the direction cosines of two mutually perpendicular lines, show that the direction cosines of the line perpendicular to both of these are $m_{1} n_{2}-m_{2} n_{1}, n_{1} l_{2}-n_{2} l_{1}, l_{1} m_{2}-l_{2}-m_{1}$

- Watch Video Solution

360. Find the angle between the lines whose direction ratios are : a, b, c and $b-c, c-a, a-b$

- Watch Video Solution

361. Find the equation of a line parallel to x-axis and passing through the origin.

- Watch Video Solution

362. If the coordinates of the points A, B, C, D be (1, 2, 3), (4, 5, 7), (-4, 3, -

6) and $(2,9,2)$ respectively, then find the angle between the lines $A B$ and CD.

- Watch Video Solution

363.

If
the
lines:

$$
\frac{x-1}{3 k}=\frac{y-2}{2}=\frac{z+3}{1} \text { and } \frac{x-1}{2}=\frac{y-1}{k}=\frac{z-6}{-5}
$$

perpendicular, find the values of k.

- Watch Video Solution

364. Find the vector equation of the line passing through (1, 2, 3) and perpendicular to the plane $\vec{r} \cdot(\hat{i}+2 \hat{j}-5 \hat{k})+9=0$

Watch Video Solution

365. Find the equation of the plane passing through (a, b, c) and parallel to the plane $\vec{r} \cdot(\hat{i}+\hat{j}+\hat{k})=2$

- Watch Video Solution

366. Find the shortest distance between the following lines whose vector equations are
$\vec{r}=6 \hat{i}+2 \hat{j}+2 \hat{k}+\lambda(\hat{i}-2 \hat{j}+2 \hat{k})$ and $\vec{r}=-4 \hat{i}-\hat{k}+\mu(3 \hat{i}-2 \hat{j}-$
367. Find the coordinates of the points where the line through $(5,1,6)$ and $(3,4,1)$ crosses YZ-plane.

- Watch Video Solution

368. Find the coordinates of the point where the line through $(5,1,6)$ and $(3,4,1)$ crosses the ZX-plane.

- Watch Video Solution

369. Find the coordinates of the point where the line through ($3,-4,-5$) and ($2,-3,1$) crosses the plane $2 x+y+z=7$

- Watch Video Solution

370. Find the equation of the plane passing through the point $(-1,3,2)$ and perpendicular to each of the planes : $x+2 y+3 z=5$ and $3 x+3 y+z=0$.

- Watch Video Solution

371. If the points $(1,1, p)$ and $(-3,0,1)$ be equidistant from the plane $\vec{r} \cdot(3 \hat{i}+4 \hat{j}-12 \hat{k})+13=0$ then find the value of p .

- Watch Video Solution

372. Find the equation of the plane passing through the line of intersection of the planes $\vec{r} \cdot(\hat{i}+\hat{j}+\hat{k})=1 \quad$ and $\vec{r} \cdot(2 \hat{i}+3 \hat{j}-\hat{k})+4=0$ and parallel to x-axis.

- Watch Video Solution

373. If O be the origin and the coordinates of P be $(1,2,-3)$, then find the equation of the plane passing through P and perpendicular to $O P$.

- Watch Video Solution

374. Find the equation of the plane which contains the line of intersection of the planes $\vec{r} \cdot(\hat{i}+2 \hat{j}+3 \hat{k})-4=0 \quad$ and $\vec{r} \cdot(2 \hat{i}+\hat{j}-\hat{k})+5=0$ and which is perpendicular to the plane $\vec{r} \cdot(5 \hat{i}+3 \hat{j}-6 \hat{k})+8=0$

- Watch Video Solution

375. Find the distance of the point ($-1,-5,-10$) from the point of intersection of the line $\vec{r}=2 \hat{i}-\hat{j}+2 \hat{k}+\lambda(3 \hat{i}+4 \hat{j}+2 \hat{k})$ and the plane $\vec{r} \cdot(\hat{i}-\hat{j}+\hat{k})=5$.

- Watch Video Solution

376. Find the vector equation of the line passing through (1, 2, 3) and parallel to the
$\vec{r} \cdot(\hat{i}-\hat{j}+2 \hat{k})=5$ and $\vec{r} \cdot(3 \hat{i}+\hat{j}+\hat{k})=6$.

- Watch Video Solution

377. Find the vector equation of the line passing through the point $(1,2,-4)$ and perpendicular to the lines
$\frac{x-8}{3}=\frac{y+19}{-16}=\frac{z-15}{3}$ and $\frac{x-15}{3}=\frac{y-29}{8}=\frac{z-5}{-5}$

- Watch Video Solution

378. Prove that if a plane has intercepts a, b, c and is at a distance of p units from the origin, then $\frac{1}{a^{2}}+\frac{1}{b^{2}}+\frac{1}{c^{2}}=\frac{1}{p^{2}}$.

- Watch Video Solution

379. Find the Distance between the two planes $2 x+3 y+4 z=4$ and $4 x+6 y+8 z=12$

Watch Video Solution

380. The planes $2 x-y+4 z=5$ and $5 x-2.5 y+10 z=6$ are :
A. perpendicular
B. parallel
C. intersect y axis
D. passes through $\left(0,0, \frac{5}{4}\right)$

Answer:

- Watch Video Solution

381. The x, co-ordinate of a point on the line joining the points $Q(2,2,1)$ and $R(5,1,-2)$ is 4 . Find its z-co-ordinate

- Watch Video Solution

382. Find the distance of the point $(-1,-5,-10)$ from the point of intersection of the line $\vec{r}=2 \hat{i}-\hat{j}+2 \hat{k}+\lambda(3 \hat{i}+4 \hat{j}+2 \hat{k})$ and the plane $\vec{r} \cdot(\hat{i}-\hat{j}+\hat{k})=5$.

- Watch Video Solution

383. Find the equation of a plane which is at a distance $3 \sqrt{3}$ units from origin and the normal to which is equally inclined to co-ordinate axes.

- Watch Video Solution

384. Find the equation of the two lines through the origin which intersect the line $\frac{x-3}{2}=\frac{y-3}{1}=\frac{z}{1}$ at angle of $\frac{\pi}{3}$ each.

- Watch Video Solution

385. The plane $a x+b y=0$ is rotated through an angle α about its line of intersection with the plane $z=0$. Show that the equation to the plane in new position is $a x+b y \pm z \sqrt{a^{2}+b^{2}} \tan \alpha=0$.

- Watch Video Solution

386. Show that the sequence t n defined by $\mathrm{t}=3 \mathrm{n}+1$ is an AP .

- Watch Video Solution

387. Prove that the lines, whose direction cosines are given by $a l+b m+c n=0, f m n+g n l+h l m=0 \quad$ are: \quad perpendicular if $\frac{f}{a}+\frac{g}{b}+\frac{h}{c}=0$

- Watch Video Solution

388. Prove that the lines, whose direction cosines are given by $a l+b m+c n=0, f m n+g n l+h l m=0 \quad$ are: \quad perpendicular if
$\frac{f}{a}+\frac{g}{b}+\frac{h}{c}=0$

- Watch Video Solution

389. Using converse of Basic Proportionality theorem prove that the line joining the mid-points of any two sides of a triangle is parallel to the third side. (Recall that you have done it in Class IX).

- Watch Video Solution

390. Verify that $<\frac{l_{1}+l_{2}+l_{3}}{\sqrt{3}}, \frac{m_{1}+m_{2}+m_{3}}{\sqrt{3}}, \frac{n_{1}+n_{2}+n_{3}}{\sqrt{3}}>$ can be taken as the direction cosines of a line L equally inclined to three mutually perpendicular lines with direction cosines: ',, '

- Watch Video Solution

391. Find the vector equation of the line passing through ($1,2,3$) and perpendicular to the plane $\vec{r} \cdot(\hat{i}+2 \hat{j}-5 \hat{k})+9=0$

Watch Video Solution

392. The two lines
$x=a y+b, z=c y+d$ and $x=a^{\prime} y+b^{\prime}, z=c^{\prime} y+d^{\prime}$ are perpendicular to each other, if

Watch Video Solution

393. Prove that the line joining the points $\overrightarrow{6 a}-\overrightarrow{4 b}+\overrightarrow{4 c}$ and $-\overrightarrow{4 c}$ and the line joining the points $-\vec{a}-\overrightarrow{2 b}-\overrightarrow{3 c}, \vec{a}+\overrightarrow{2 b}-\overrightarrow{5 c}$ intersect at $-\overrightarrow{4 c}$

- Watch Video Solution

394. Find the vector equation of the line passing through (1, 2, 3) and parallel to the planes
$\vec{r} \cdot(\hat{i}-\hat{j}+2 \hat{k})=5$ and $\vec{r} \cdot(3 \hat{i}+\hat{j}+\hat{k})=6$.
395. Find the vector equation of the line passing through the point $(1,2,4)$ and perpendicular to the lines
$\frac{x-8}{3}=\frac{y+19}{-16}=\frac{z-15}{3}$ and $\frac{x-15}{3}=\frac{y-29}{8}=\frac{z-5}{-5}$

- Watch Video Solution

396. Find the co-ordinates of the points where the line through the points ($3,-4,-5$) and ($2,-3,1$) crosses the plane $2 x+y+z=7$

- Watch Video Solution

397. Show that the equation of the plane passing through a point having position vector \vec{a} and parallel to \vec{b} and \vec{c} is $\vec{r}=\vec{a}+\lambda \vec{b}+\mu \vec{c}$

- Watch Video Solution

398. Find the distance of the point $(2,1,0)$ from the plane $2 x+y+2 z+5=0$.

- Watch Video Solution

399. Find the distance of the point with position vector $-\hat{i}-5 \hat{j}-10 \hat{k}$ from the point of intersection of the line $\vec{r}=(2 \hat{i}-\hat{j}+2 \hat{k})+\lambda(3 \hat{i}+4 \hat{j}+12 \hat{k}) \quad$ and the plane $\vec{r} \cdot(\hat{i}-\hat{j}+\hat{k})=5$.

- Watch Video Solution

400. Find the point, where the line joining the points $(1,3,4)$ and $(-3,5,2)$ intersects the plane $\vec{r} \cdot(2 \hat{i}+\hat{j}+\hat{k})+3=0$. Is the point equaidistant from the gien points?

- Watch Video Solution

401. Find the equation of the plane passing through the line of intersection of the planes $2 x+y-z=3$ and $5 x-3 y+4 z=9$ and parallel to the lines $\frac{x-1}{2}=\frac{y-3}{4}=\frac{z-5}{5}$

- Watch Video Solution

402. If from a point $\mathrm{P}(\mathrm{a}, \mathrm{b}, \mathrm{c})$ perpendicular PA and PB are drawn to yz and zx-planes, find the vector equation of the plane OAB.

- Watch Video Solution

403. If O be the origin and the coordinates of P be $(1,2,-3)$, then find the equation of the plane passing through P and perpendicular to OP .

- Watch Video Solution

404. Find the equation of the plane which contains the line of intersection of the planes $\vec{r} \cdot(\hat{i}+2 \hat{j}+3 \hat{k})-4=0 \quad$ and
$\vec{r} \cdot(2 \hat{i}+\hat{j}-\hat{k})+5=0$ and which is perpendicular to the plane $\vec{r} \cdot(5 \hat{i}+3 \hat{j}-6 \hat{k})+8=0$

- Watch Video Solution

405. Prove that the S.D. between a diagonal of a rectangular parallelopiped and its edges not meeting it are: $\frac{b c}{\sqrt{b^{2}+c^{2}}}, \frac{c a}{\sqrt{c^{2}+a^{2}}}, \frac{a b}{\sqrt{a^{2}+b^{2}}}$ where $\mathrm{a}, \mathrm{b}, \mathrm{c}$ are lengths of the edges.

- Watch Video Solution

406. What is the equation of the $x y$-plane?

- Watch Video Solution

407. If a line makes an angle α, β, γ with x axis, y axis and z axis, then : $\sin ^{2} \alpha+\sin ^{2} \beta+\sin ^{2} \gamma=\ldots \ldots$.
408. Write the direction cosines of the vector : $2 \hat{i}+2 \hat{j}+3 \hat{k}$

- Watch Video Solution

409. Find the vector equation of the line $\frac{x+4}{3}=\frac{y+3}{7}=\frac{z-5}{2}$

- Watch Video Solution

410. Find the equation of a st line through $(3,1,-5)$ and equally inclined to the axes.

- Watch Video Solution

411. The distance of the point $(2,3,-5)$ from the plane $x+2 y-2 z-9=0$ is
412. Find the distance of the plane $x-3 y+2 z-8=0$ from the origin.

- Watch Video Solution

413. Find the intercepts cut off by the plane $x+4 y-2 z=8$ with the axes.

- Watch Video Solution

414. Find the equation of the plane with intercept 9 on the y axis and parallel to ZOX plane.

- Watch Video Solution

415. What is the point of intersection of the line $x=y=z$ with the plane $x+2 y+3 z=6$?
416. Distance between the two planes: $2 x+3 y+4 z=4$ and $4 x+6 y+8 z=12$ is:
A. 2
B. 4
C. 8
D. $\frac{1}{\sqrt{29}}$ units

Answer:

Watch Video Solution
417. The planes $2 x-y+4 z=5$ and $5 x-2.5 y+10 z=6$ are :
A. perpendicular
B. parallel
C. intersect y axis
D. passes through $\left(0,0, \frac{5}{4}\right)$

Answer:

- Watch Video Solution

418. The co-ordinates of foot of the perpendicular drawn from the point
$(2,5,7)$ on the x axis are given by:
A. $(2,0,0)$
B. $(0,5,0)$
C. $(0,0,7)$
D. $(0,5,7)$

Answer:

419. If α, β, γ are the angles that a line makes with the positive direction of x, y, z axis repectively, then the direction cosines of the line are:
A. $<\sin \alpha, \sin \beta, \sin \gamma>$
B. $<\cos \alpha, \cos \beta, \cos \gamma>$
C. $<\tan \alpha, \tan \beta, \tan \gamma>$
D. $<\cos ^{2} \alpha, \cos ^{2} \beta, \cos ^{2} \gamma>$

Answer:

- Watch Video Solution

420. The distance of a point $P(a, b, c)$ from x axis is:
A. $\sqrt{a^{2}+c^{2}}$
B. $\sqrt{a^{2}+b^{2}}$
C. $\sqrt{b^{2}+c^{2}}$
D. $b^{2}+c^{2}$

- Watch Video Solution

421. If the direction cosine of a line are < k,k,k>, then,
A. 1) $k>0$
B. 2) $0<k<1$
C. 3) $k=1$
D. 4) $k=\frac{1}{\sqrt{3}}$ or $-\frac{1}{\sqrt{3}}$

Answer:

422. The reflection of the point (α, β, γ) in the xy-plane is:

$$
\text { A. }(\alpha, \beta, 0)
$$

B. $(0,0, \gamma)$
C. $(-\alpha,-\beta, \gamma)$
D. $(\alpha, \beta,-\gamma)$

Answer:

- Watch Video Solution

423. Distance between the point ($0,1,7$) and the plane $3 x+4 y+1=0$ is:
A. 1 unit
B. 2 units
C. 3 units
D. 4 units

Answer:

424. If a line makes angles of $90^{\circ}, 60^{\circ}$ and 30° with the positive x, y and z axis respectively, find its direction-cosines.
A. $\left\langle 0, \frac{1}{2}, \frac{\sqrt{3}}{2}\right\rangle$
B. $\left\langle 1, \frac{1}{2}, \frac{\sqrt{3}}{2}\right\rangle$
C. $\left\langle 0,-\frac{1}{2}, \frac{\sqrt{3}}{2}\right\rangle$
D. none of these

Answer:

- Watch Video Solution

425. If a line passes through two points $(-2,4,-5)$ and $(1,2,3)$, then its direction cosines will be:
A. $<\frac{3}{\sqrt{77}},-\frac{2}{\sqrt{77}}, \frac{8}{\sqrt{77}}>$
B. $\leftarrow \frac{2}{\sqrt{77}}, \frac{3}{\sqrt{77}}, \frac{8}{\sqrt{77}}>$
c. $<\frac{3}{\sqrt{77}}, \frac{2}{\sqrt{77}}, \frac{8}{\sqrt{77}}>$
D. none of these

Answer:

- Watch Video Solution

426. The direction cosines of the line whose direction ratios are $6,-2,3$
А. 1) $\frac{6}{7}, \frac{2}{7},-\frac{3}{7}$
В. 2) $\frac{6}{7},-\frac{2}{7}, \frac{3}{7}$
С. 3) $\frac{6}{7}, \frac{2}{7}, \frac{3}{7}$
D. 4) none of these

Answer:

- Watch Video Solution

427. The direction cosines of the line joining the points $(-2,1,-8)$ and $(4,3,-5)$ is :
A. 6/7,-2/7,3/7
B. $6 / 7,2 / 7,-3 / 7$
C. 6/7,2/7,3/7
D. none of these

Answer:

- Watch Video Solution

428. The equation of line passing through the point: $(2,-1,4)$ and in the direction of $\hat{i}+\hat{j}-2 \hat{k}$ in cartesian form is :
A. 1) $\frac{x-2}{1}=\frac{y+1}{1}=\frac{z-4}{-2}$
B. 2) $\frac{x-2}{1}=\frac{y+1}{1}=\frac{z+4}{-2}$
с. 3) $\frac{x+2}{1}=\frac{y-1}{1}=\frac{z-4}{-2}$
D. 4) none of these

Answer:

- Watch Video Solution

429. Find the cartesian equation of the line which passes through the point $(-2,4,-5)$ and parallel to the line given by $\frac{x+3}{3}=\frac{y-4}{5}=\frac{z+8}{6}$
A. $\frac{x+2}{3}=\frac{y-4}{5}=\frac{z+5}{6}$
B. $\frac{x-2}{3}=\frac{y+4}{5}=\frac{z-5}{6}$
C. $\frac{x-2}{3}=\frac{y+4}{5}=\frac{y+5}{6}$
D. none of these

Answer:

430. Find the angle between the following pair of lines :
$\vec{r}=\hat{i}+\hat{j}-\hat{k}+\lambda(\hat{i}-3 \hat{j}+2 \hat{k}), \vec{r}=2 \hat{i}-\hat{j}+\hat{k}+\mu(3 \hat{i}+\hat{j}-2 \hat{k})$
A. 0°
B. 30°
C. 60°
D. none of these

Answer:

- Watch Video Solution

431. The direction ratios of a line normal to the plane $x+2 y-3 z+4=0$ are
A. 1,-2,3
B. 1,-2,-3
C. 1,2,-3
D. none of these

Answer:

- Watch Video Solution

432. Find the equation of the plane with interceots 2,3 and 4 on the x, y and z axis respectively.
A. $2 x+3 y+4 z=1$
B. $2 x+3 y+4 z=12$
C. $6 x+4 y+3 z=1$
D. $6 x+4 y+3 z=12$

Answer:

433. The distance of the point $(2,1,-1)$ from the plane $x-2 y+4 z=9$ is :
A. $-\frac{13}{\sqrt{21}}$
B. $\frac{9}{\sqrt{6}}$
C. $\frac{13}{\sqrt{21}}$
D. $-\frac{9}{\sqrt{6}}$

Answer:

- Watch Video Solution

434. If the line $\frac{x-4}{1}=\frac{y-2}{1}=\frac{z-k}{2}$ lies exactly on the plane $2 x-4 y+z=7$, the value of k is
A. -7
B. -4
C. 7
D. 4

- Watch Video Solution

435. The point which lies in the plane given by the equations $2 x+y-3 z=10$ is :
A. $(0,0,0)$
B. $(1,1,1)$
C. $(1,10,1)$
D. $(1,11,1)$

Answer:

- Watch Video Solution

436. The angle between two planes $3 x-6 y+2 z=7$ and $2 x+2 y-2 z=5$ is :
A. $\sin ^{-1}\left(\frac{5 \sqrt{3}}{21}\right)$
B. $\sin ^{-1}\left(\frac{-5 \sqrt{3}}{21}\right)$
C. $\sin ^{-1}\left(\frac{21}{\sqrt{75}}\right)$
D. none of these

Answer:

- Watch Video Solution

437. Direction cosines of the normal to the plane: $2 x-3 y+4 z-6=0$ are :
A. $2,-3,4$
B. $\frac{2}{6},-\frac{3}{6}, \frac{4}{6}$
c. $\frac{2}{\sqrt{29}},-\frac{3}{\sqrt{29}}, \frac{4}{\sqrt{29}}$
D. none of these
438. If a vector makes angles α, β, γ with x, y and z axes respectively, then $\cos \alpha, \cos \beta, \cos \gamma$ are known as:
A. direction ratios
B. direction cosines
C. direction angles
D. cosines angles

Answer:

- Watch Video Solution

439. If a line makes angles of $90^{\circ}, 60^{\circ}$ and 30° with the positive x, y and z axis respectively, find its direction-cosines.
A. $\left\langle 1, \frac{\sqrt{3}}{2}, \frac{1}{2}\right\rangle$
B. $<u n d e f \in e d, \sqrt{3}, \frac{1}{\sqrt{3}}>$
C. $<0, \frac{1}{2}, \frac{\sqrt{3}}{2}>$
D. $\langle 0,1,1\rangle$

Answer:

- Watch Video Solution

440. The direction cosines of the line joining the points $(-2,4,-5)$ and $(1,2$,
3) is :
A. $\leftarrow \frac{2}{\sqrt{77}}, \frac{8}{\sqrt{77}}, \frac{3}{\sqrt{77}}>$
B. $\leftarrow 3,2,8>$
c. $<\frac{3}{\sqrt{77}},-\frac{2}{\sqrt{77}}, \frac{8}{\sqrt{77}}>$
D. $\langle 3,-2,8\rangle$

Answer:

441. Distance between plane defined by $3 x+4 y+5=0$ and the point $(5,0,7)$ is
A. 3 units
B. 4 units
C. 5 units
D. 6 units

Answer:

- Watch Video Solution

442. Vector equation of the line $\frac{x+1}{2}=\frac{y-4}{4}=\frac{z+6}{3}$
A. $\vec{r}=(\hat{i}-4 \hat{j}+6 \hat{k})+\lambda(2 \hat{i}+4 \hat{j}+3 \hat{k})$
B. $\vec{r}=(-\hat{i}+4 \hat{j}+6 \hat{k})+\lambda(2 \hat{i}+4 \hat{j}+3 \hat{k})$
c. $\vec{r}=(2 \hat{i}-4 \hat{j}+3 \hat{k})+\lambda(\hat{i}-4 \hat{j}+6 \hat{k})$
D. $\vec{r}=(2 \hat{i}+4 \hat{j}+3 \hat{k})+\lambda(-\hat{i}+4 \hat{j}-6 \hat{k})$

Answer:

- Watch Video Solution

443. The value of lambda for which the plane $\vec{r} \cdot(2 \hat{i}-2 \hat{j}+4 \hat{k})=5$ is perpendicular to $\vec{r} \cdot(3 \hat{i}-3 \hat{j}+\lambda \hat{k})=7$ is :
A. 4
B. 3
C. -3
D. -4

Answer:

- Watch Video Solution

444. Direction casines of z-axis are
A. $\langle 0,0,1\rangle$
B. $\langle 1,0,0\rangle$
C. $\langle 0,0,0\rangle$
D. $\langle 0,1,0\rangle$

Answer:

- Watch Video Solution

445. If a line has direction ratios $<2,-1,-2\rangle$, then what are its direction cosines?
A. $\left\langle\frac{2}{3},-\frac{1}{3},-\frac{2}{3}>\right.$
B. $\leftarrow \frac{2}{3},-\frac{1}{3}, \frac{2}{3}>$
c. $\leftarrow \frac{2}{3},-\frac{1}{3},-\frac{2}{3}>$
D. none of these

Answer:

- Watch Video Solution

446. A line makes angles 45° and 60° with the positive direction of the axis of x and y makes with the positive direction of z axis, an angle of:
A. 60°
B. 120°
C. 60° and 120°
D. none of these

Answer:

D Watch Video Solution

447. Equation of line passing through the point $(2,3,1)$ and parallel to the line of intersection of the planes:
$x-2 y-z+5=0$ and $x+y+3 z=6$ is:
A. 1) $\frac{x-2}{5}=\frac{y-3}{-4}=\frac{z-1}{5}$
B. 2) $\frac{x-2}{-5}=\frac{y-3}{-4}=\frac{z-1}{3}$
с. 3) $\frac{x-2}{5}=\frac{y-3}{4}=\frac{z-1}{3}$
D. 4) $\frac{x-2}{4}=\frac{y-3}{3}=\frac{z-1}{2}$

Answer:

- Watch Video Solution

448. If the direction cosines of a vector of magnitude 3 are $<\frac{2}{3},-\frac{a}{3}, \frac{2}{3}>, a>0$, then the vector is:
A. $2 \hat{i}+\hat{j}+2 \hat{k}$
B. $2 \hat{i}-\hat{j}+2 \hat{k}$
C. $\hat{i}-2 \hat{j}+2 \hat{k}$
D. $\hat{i}+2 \hat{j}+2 \hat{k}$

- Watch Video Solution

449. Equation of line passing through the point $(2,3,1)$ and parallel to the line of intersection of the planes:
$x-2 y-z+5=0$ and $x+y+3 z=6$ is:
A. $\frac{x-2}{-5}=\frac{y-3}{-4}=\frac{z-1}{3}$
B. $\frac{x-2}{5}=\frac{y-3}{-4}=\frac{z-1}{3}$
C. $\frac{x-2}{5}=\frac{y-3}{4}=\frac{z-1}{3}$
D. $\frac{x-2}{4}=\frac{y-3}{3}=\frac{z-1}{2}$

Answer:

450. A unit vector parallel to the straight line: $\frac{x-2}{3}=\frac{3+y}{-1}=\frac{z-2}{-4}$ is:
A. $\frac{1}{\sqrt{26}}(3 \hat{i}-\hat{j}+4 \hat{k})$
B. $\frac{1}{\sqrt{26}}(\hat{i}+3 \hat{j}-\hat{k})$
C. $\frac{1}{\sqrt{26}}(3 \hat{i}-\hat{j}-4 \hat{k})$
D. $\frac{1}{\sqrt{26}}(3 \hat{i}+\hat{j}+4 \hat{k})$

Answer:

D Watch Video Solution

451. The angle between a normal to the plane : $2 x-y+2 z-1=0$ and the z axis is:
A. $\cos ^{-1}\left(\frac{1}{3}\right)$
B. $\sin ^{-1}\left(\frac{2}{3}\right)$
C. $\cos ^{-1}\left(\frac{2}{3}\right)$
D. $\sin ^{-1}\left(\frac{1}{3}\right)$

Answer:

- Watch Video Solution

452. Find the coordinates of the Foot of the perpendicular drawn from the origin to the plane $2 x-3 y+4 z=29$ is:
A. $(5,-1,4)$
B. $(7,-1,3)$
C. $(5,-2,3)$
D. $(2,-3,4)$

Answer:

453. The distance between the x axis and the point $(3,12,5)$ is :
A. 3
B. 13
C. 14
D. 12

Answer:

- Watch Video Solution

454. The shortest distance of the point (a, b, c) from the x-axis is
A. $\sqrt{a^{2}+b^{2}}$
B. $\sqrt{b^{2}+c^{2}}$
C. a
D. $\sqrt{a^{2}+c^{2}}$

- Watch Video Solution

455. Equation of the plane perpendicular to the line $\frac{x}{1}=\frac{y}{2}=\frac{z}{3}$ and passing through the point $(2,3,4)$ is :
A. $2 x+3 y+z=17$
B. $x+2 y+3 z=9$
C. $3 x+2 y+z=16$
D. $x+2 y+3 z=20$

Answer:

- Watch Video Solution

456. The line $\frac{x-2}{3}=\frac{y-3}{4}=\frac{z-4}{5}$ is parallel to the plane:
A. $2 x+3 y+4 z=0$
B. $3 x+4 y+5 z=7$
C. $2 x+y-2 z=0$
D. $x+y+z=2$

Answer:

- Watch Video Solution

457. Prove that the angle between any two diagonals of a cube is $\cos ^{-1} \frac{1}{3}$
A. $\cos ^{-1}\left(\frac{1}{3}\right)$
B. 30°
C. $\cos ^{-1}\left(\frac{1}{\sqrt{3}}\right)$
D. 45°

Answer:

Watch Video Solution

458. The line passing through the points $(5,1, a)$ and $(3, b, 1)$ crosses the $Y Z$-plane at the point $\left(0, \frac{17}{2},-\frac{13}{2}\right)$. Then,
A. $a=8, b=2$
B. $a=2, b=8$
C. $a=4, b=6$
D. $a=6, b=4$

Answer:

- Watch Video Solution

459.

the
straight
lines

$$
\frac{x-1}{k}=\frac{y-2}{2}=\frac{z-3}{3} \text { and } \frac{x-2}{3}=\frac{y-3}{k}=\frac{z-1}{2} \text { intersect at }
$$

a point, then the integer k is equal to:
A. -2
B. -5
C. 5
D. 2

Answer:

- Watch Video Solution

460. Let $P(3,2,6)$ be a point in space and Q be a point on the line $r=(\hat{i}-\hat{j}+2 \hat{k})+\mu(-3 \hat{i}+\hat{j}+5 \hat{k})$. Then the value of μ for which the vector the vector PQ is parallel to the plane $x-4 y+3 z=1$ is
A. $\frac{1}{4}$
B. $-\frac{1}{4}$
C. $\frac{1}{8}$
D. $-\frac{1}{8}$

D Watch Video Solution

461. A line with positive direction cosines passes through the pint $\mathrm{P}(2,-1,2)$ and makes the plane $2 x+y+z=9$ at point Q . The length of the line segment PQ equals:
A. 1
B. $\sqrt{2}$
C. $\sqrt{3}$
D. 2

Answer:

462. Let the line $\frac{x-2}{3}=\frac{y-1}{-5}=\frac{z+2}{2}$ lies in the plane $x+3 y-\alpha z+\beta=0$. Then, (α, β) equals
A. $(-6,-17)$
B. $(5,-15)$
C. $(-5,5)$
D. $(6,-17)$

Answer:

- Watch Video Solution

463. The projection of a vector on the three coordinate axes are $6,-3,2$
, respectively. The direction cosines of the vector are
A. $\frac{6}{5},-\frac{3}{5}, \frac{2}{5}$
B. $\frac{6}{7},-\frac{3}{7}, \frac{2}{7}$
C. $-\frac{6}{7},-\frac{3}{7}, \frac{2}{7}$
D. $6,-3,2$

Answer:

- Watch Video Solution

464. A line $A B$ in three-dimensional space makes angles 45° and 120° with the positive X-axis and The positive Y-axis, respectively. If $A B$ makes an acute angle θ with the positive Z-axis, then θ equals
A. 30°
B. 45°
C. 60°
D. 75°

Answer:

- Watch Video Solution

465. Equation of the plane containing the straight line $\frac{x}{2}=\frac{y}{3}=\frac{z}{4}$ and perpendicular to the plane containing the straight lines $\frac{x}{3}=\frac{y}{4}=\frac{z}{2}$ and $\frac{x}{4}=\frac{y}{2}=\frac{z}{3}$ is :
A. 1) $x+2 y-2 z=0$
B. 2) $3 x+2 y-2 z=0$
C. 3) $x-2 y+z=0$
D. 4) $5 x+2 y-4 z=0$

Answer:

- Watch Video Solution

466. If the distance of the point $\mathrm{P}(1,-2,1)$ from the plane $x+2 y-2 z=\alpha$, where $\alpha>0$, is 5 , then the foot of the perpendicular from P to the plane is:
A. $\left(\frac{8}{3}, \frac{4}{3},-\frac{7}{3}\right)$
B. $\left(\frac{4}{3},-\frac{4}{3}, \frac{1}{3}\right)$
C. $\left(\frac{1}{3}, \frac{2}{3}, \frac{10}{3}\right)$
D. $\left(\frac{2}{3},-\frac{1}{3}, \frac{5}{2}\right)$

Answer:

- Watch Video Solution

467. If the angle between the line $x=\frac{y-1}{2}=(z-3)(\lambda)$ and the plane $x+2 y+3 z=4 i s \cos ^{-1}\left(\sqrt{\frac{5}{14}}\right)$, then λ equals
A. $\frac{2}{3}$
B. $\frac{3}{2}$
C. $\frac{2}{5}$
D. $\frac{5}{3}$

Answer:
468. The length of the perpendicular drawn from the point $(3,-1,11)$ to the line $\frac{x}{2}=\frac{y-2}{3}=\frac{z-3}{4}$ is
A. $\sqrt{29}$
B. $\sqrt{33}$
C. $\sqrt{53}$
D. $\sqrt{65}$

Answer:

- Watch Video Solution

469. The distance of the point $(1,-5,9)$ fromthe plane $x-y+z=5$, measured along a straight line: $x=y=z$ is
A. $10 \sqrt{3}$
B. $5 \sqrt{3}$
C. $3 \sqrt{10}$
D. $3 \sqrt{5}$

Answer:

- Watch Video Solution

470. If the line $\frac{x-1}{2}=\frac{y+1}{3}=\frac{z-1}{4}$ and $\frac{x-3}{1}=\frac{y-k}{2}=\frac{z}{1}$ intersect, then k is equal to
A. -1
B. $\frac{2}{9}$
C. $\frac{9}{2}$
D. 0

Answer:

- Watch Video Solution

471. An equation of a plane parallel to the plane $x-2 y+2 z-5=0$ and at a unit distance from the origin is
A. $x-2 y+2 z-3=0$
B. $x-2 y+2 z+1=0$
C. $x-2 y+2 z-1=0$
D. $x-2 y+2 z+5=0$

Answer:

- Watch Video Solution

472. The equation of the plane passing through the line of intersection of the planes $x+2 y+3 z=2$ and $x-y+z=3$ at a distance $\frac{2}{\sqrt{3}}$ from the point $(3,1,-1)$ is :
A. $5 x-11 y+z=17$
B. $\sqrt{2} x+y=3 \sqrt{2}-1$
C. $x+y+z=\sqrt{3}$
D. $x-\sqrt{2} y=1-\sqrt{2}$

Answer:

- Watch Video Solution

473. The point P is the intersection of the straight line joining the points $\mathrm{Q}(2,3,5)$ and $\mathrm{R}(1,-1,4)$ with the plane $5 x-4 y-z=1$. If S is the foot of the perpendicular drawn from the point $T(2,1,4)$ to $Q R$, then the length of the line segment PS is:
A. $\frac{1}{\sqrt{2}}$
B. $\sqrt{2}$
C. 2
D. $2 \sqrt{2}$

Answer:

474.

If the

$$
\frac{x-2}{1}=\frac{y-3}{1}=\frac{z-4}{-k} \text { and } \frac{x-1}{k}=\frac{y-4}{2}=\frac{z-5}{1} \text { are coplanar }
$$

then k can have
A. exactly one value
B. exactly two values
C. exactly three values
D. any value

Answer:

Watch Video Solution

475.

$2 x+y+2 z=8$ and $4 x+2 y+4 z+5=0$ is
A. $\frac{5}{2}$
B. $\frac{7}{2}$
C. $\frac{9}{2}$
D. $\frac{3}{2}$

Answer:

- Watch Video Solution

476. The image of the line $\frac{x-1}{3}=\frac{y-3}{1}=\frac{z-4}{-5}$ in the plane $2 x-y+z+3=0$ is the line
A. $\frac{x+3}{-3}=\frac{y-5}{-1}=\frac{z+2}{5}$
B. $\frac{x-3}{3}=\frac{y+5}{1}=\frac{z-2}{-5}$
C. $\frac{x-3}{-3}=\frac{y+5}{-1}=\frac{z-2}{5}$
D. $\frac{x+3}{3}=\frac{y-5}{1}=\frac{z-2}{-5}$

Answer:

477. The angle between the lines whose direction cosines satisfy the equations $l+m+n=0$ and $l^{2}=m^{2}+n^{2}$ is
A. $\frac{\pi}{4}$
B. $\frac{\pi}{6}$
C. $\frac{\pi}{2}$
D. $\frac{\pi}{3}$

Answer:

- Watch Video Solution

478. The distance of the point $(1,0,2)$ from the poitn of intersection of the line $\frac{x-2}{3}=\frac{y+1}{4}=\frac{z-2}{12}$ and the plane $x-y+z=16$ is:
A. $2 \sqrt{14}$
B. 8
C. 3 sqrt21
D. 13

Answer:

- Watch Video Solution

479. The equation of the plane containing the line $2 x-5 y+z=3, x+y+4 z=5$ and parallel to the plane $x+3 y+6 z=1$, is
A. $2 x+6 y+12 z=13$
B. $x+3 y+6 z=-7$
C. $x+3 y+6 z=7$
D. $2 x+6 y-12 z=-13$

Answer:

480. If the line, $\frac{x-3}{2}=\frac{y+2}{-1}=\frac{z+4}{3}$ lies in the place, $l x+m y-z=9$, then $l^{2}+m^{2}$ is equal to:
A. 18
B. 5
C. 2
D. 26

Answer:

- Watch Video Solution

481. The distance of the point $(1,-5,9)$ from the plane $x-y+z=5$ measured along the line $x=y=z$ is
A. $10 \sqrt{3}$
B. $\frac{10}{\sqrt{3}}$
C. $\frac{20}{3}$
D. $3 \sqrt{10}$

Answer:

- Watch Video Solution

482. If a line has direction ratios $<2,-1,-2>$, then what are its direction cosines?

- Watch Video Solution

483. Find the Cartesian equation of the following plane:
$\vec{r} \cdot(\hat{i}+\hat{j}-\hat{k})=2$

- Watch Video Solution

484. Show that the line, $\vec{r}=\hat{i}+\hat{j}+\lambda(2 \hat{i}+\hat{j}+4 \hat{k})$ lies in the plane $\vec{r} \cdot(\hat{i}+2 \hat{j}-\hat{k})=3$.

- Watch Video Solution

485. Find the area of the triangle whose vertices are : $A(1,2,3), B(2,-1,4)$ and $C(4,5,-1)$

- Watch Video Solution

486. Find the equations of the straight line passing through the point (2,

3, -1) and is perpendicular to the lines : $\frac{x-2}{2}=\frac{y+1}{1}=\frac{z-3}{3}$ and $\frac{x-3}{1}=\frac{y+2}{1}=\frac{z-1}{1}$.

- Watch Video Solution

487. Find the image of the point $(1,6,3)$ in the line : $\frac{x}{1}=\frac{y-1}{2}=\frac{z-2}{3}$.
488. Find the equation of the plane passing through the point(-1, 3, 2) and perpendicular to the planes $x+2 y+3 z=5$ and $3 x+3 y+z=0$.

Watch Video Solution

489. Prove that if a plane has intercepts a, b, c and is at a distance of p units from the origin, then $\frac{1}{a^{2}}+\frac{1}{b^{2}}+\frac{1}{c^{2}}=\frac{1}{p^{2}}$.

- Watch Video Solution

490. A line makes angles $\alpha, \beta, \gamma, \delta$ with the diagonals of a cube, prove that $\cos ^{2} \alpha+\cos ^{2} \beta+\cos ^{2} \gamma+\cos ^{2} \delta=\frac{4}{3}$

- Watch Video Solution

491. Show that the lines $\frac{x-a+d}{\alpha-\delta}=\frac{y-a}{\alpha}=\frac{z-a-d}{\alpha+\delta}$ and $\frac{x-b+c}{\beta-\gamma}=\frac{y-b}{\beta}=\frac{z-b-c}{\beta+\gamma}$ are coplanar.

- Watch Video Solution

