©゙" doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - MODERN PUBLICATION

CLASSIFICATION OF MAGNETIC

MATERIALS

Example

1. The permeability of material is measured to
be $0.126 T A^{-1} \mathrm{~m}$. Find its relative permeability
and susceptibility.

- Watch Video Solution

2. An iron rod of $0.5 \mathrm{~cm}^{2}$ area of cross-section
is subjected to a magnetising field of 1,200
$A m^{-1}$. If susceptibility of iron is 599, calculate
μ

D Watch Video Solution
3. An iron rod of $0.5 \mathrm{~cm}^{2}$ area of cross-section is subjected to a magnetising field of 1,200 $A m^{-1}$. If susceptibility of iron is 599 , calculate μ

- Watch Video Solution

4. An iron rod of $0.5 \mathrm{~cm}^{2}$ area of cross-section
is subjected to a magnetising field of 1,200
$A m^{-1}$. If susceptibility of iron is 599 , calculate
μ
5. A bar magnet has pole strength 4.5Am, magnetic length 12 cm and cross sectional area $0.9 \mathrm{~cm}^{2}$. Find intensity of magnetisation (I).

- Watch Video Solution

6. A bar magnet has pole strength 4.5Am, magnetic length 12 cm and cross sectional area $0.9 \mathrm{~cm}^{2}$. Find magnetising intesity (H) at the centre

- Watch Video Solution

7. For a magnetising field of intensity
$2 \times 10^{3} \mathrm{~A} / \mathrm{m}$, aluminium at 280 K acquires intensity of magnetisation of
$4.8 \times 10^{-2} \mathrm{Am}^{-1}$. Find the susceptibility of aluminium at 280 K . If the temperature of the metal is raised to $320 K$, what will be its susceptibility and intensity of magnetisation?

- Watch Video Solution

8. An iron rod of volume $10^{-4} m^{3}$ and relative permeability 1000 is placed inside a long solenoid wound with 5 turns $/ \mathrm{cm}$. If a current of 0.5 A is passed through the solenoid, find the magnetic moment of the rod.

D Watch Video Solution

9. An iron smaple having mass 8.4 kg is repeatedly taken over cycles of magnetisation and demagnetisation at a frequency of 50 Hz . It is found that energy of 3.2 J is dissipated as
heat in the sample in 30 minutes. If the denstiy of iron is $7200 \mathrm{kgm}^{-3}$, calculate the value of energy dissipated per unit volume per cycle in the iron sample.

D Watch Video Solution

10. A bar magnet has coercivity $4 \times 10^{3} \mathrm{Am}^{-1}$
it is desired to demagnetize it by inserting it inside a solenoid 12 cm long and has 60 turns
the current that should be sent through the solenoid.

Watch Video Solution

11. How does the intensity of magnetization of
a paramagnetic material vary with
temperature?

D Watch Video Solution
12. Write the dimensional formula of magnetic
flux.
13. Name the physical quantity which is measured in weber ampere ${ }^{-1}$.

D Watch Video Solution
14. Define the term magnetic flux.

- Watch Video Solution

15. Define Weber unit of Magnetic flux.
16. SI unit of magnetic flux is :

- Watch Video Solution

17. Which physical quantity has the unit $\frac{W b}{m^{2}}$ Is it a scalar or a vector quantity?

- Watch Video Solution

18. Name the physical quantity, whose unit is tesla. Hence, define tesla.

D Watch Video Solution
19. Define magnetic susceptibility.

D Watch Video Solution

20. Define permeability. Give its types.
21. An iron rod of $0.1 m^{2}$ area of cross-section
subjected to a magnetising field of 1,000
$A m^{-1}$. Calculate its magnetic permeability.

Given susceptibility of iron is 59.9.

D Watch Video Solution

22. Name the source of magnetic properties of materials.
23. What is meant by non-magnetic material?

(Watch Video Solution

24. What are diamagnetic substances ? Give
three examples
(Watch Video Solution
25. What are diamagnetic substances ? Give three examples

- Watch Video Solution

26. The permeability of a magnetic material is
0.9983. Name the type of magnetic material it
represents.

D Watch Video Solution
27. Write two properties of diamagentic substances.

- Watch Video Solution

28. What happens when a diamagnetic substance is placed in a varying magnetic field?

D Watch Video Solution
29. Answer the following questions: Why is
diamagnetism, in
contrast,
almost
independent of temperature?

D Watch Video Solution

30. The susceptibility of a magnetic material is
-4.2×10^{-6}. Name the type of magnetic materials it represents.
31. The magnetic susceptibilityfor a sample has
a small negative value. To which class of magnetic substances, does the specimen belong?

- Watch Video Solution

32. What is paramagnetic substance ? Give one example.
33. Name any two paramagnetic substances.

D Watch Video Solution

34. The susceptibility of a magnetic material is
1.91×10^{-5}. Name the type of magneti material it represents.

- Watch Video Solution

35. The value of intensity of magnetisation is
small positive for a specimen. Is it diamagnetic
or paramagnetic or ferromagnetic?

D Watch Video Solution

36. State two properties of a paramagnetic substances.

- Watch Video Solution

37. Answer the following questions: Why does
a paramagnetic sample display greater
magnetisation (for the same magnetising field) when cooled?

D Watch Video Solution
38. State and explain Curie's law in magnetism.

D Watch Video Solution

39. What is Curie point?
(Watch Video Solution
40. How does the magnetic induction of a paramagnetic material vary with increasing applied magnetic field?

D Watch Video Solution

41. What are anti-ferromagnetic substances?

Give one example.

D Watch Video Solution
42. Write two properties of ferromagnetic substances.

D Watch Video Solution

43. Why do magnetic lines prefer to pass
through ferromagnetic substances (e.g. Fe)
than through oil?

D Watch Video Solution
44. Explain magnetic hysteresis.

D Watch Video Solution

45. Define retentitivity.

D Watch Video Solution
46. Define the term retentivity and coercivity.
47. What type of magnetic material is used in making permanent magnets?

- Watch Video Solution

48. What type of magnetic material is used in making permanent magnets?
49. Why should the material usesd for making permanent magnets have high coercivity?

D Watch Video Solution

50. Why should the high retentivity and low coercivity material used for making electromagnets?

D Watch Video Solution
51. What type of magnetic material is used in making permanent magnets?

- Watch Video Solution

52. What type of magnetic material is used in making permanent magnets?

- Watch Video Solution

53. Why do we prefer to use the alloy alnico
for making permanent magnets?

D Watch Video Solution
54. Name one metal each to make a permanent magnet and a temporary magnet.

D Watch Video Solution

55. Which material is used for making electromagnet and why?

D Watch Video Solution
56. Which material is used for making electromagnet and why?

D Watch Video Solution
57. Why the core of a transformer made of a magnetic material of high permeability?

D Watch Video Solution
58. Why soft iron is used in making the core of a transformer ?

- Watch Video Solution

59. Why soft iron is used in making the core of a transformer ?

D Watch Video Solution

60. Answer the following questions:The hysteresis loop of a soft iron piece has a much smaller area than that of a carbon steel piece.

If the material is to go through repeated
cycles of magnetisation, which piece will dissipate greater heat energy?
61. State two methods to destroys the magnetism of a magnet.

D Watch Video Solution

62. What is magnetic field intensity?
(Watch Video Solution
63. Define magnetic susceptibility.

- Watch Video Solution

64. What is relative permeability of a magnetic material? How is it related to the magnetic susceptibility?
65. What is the basic difference between the atom/molecule of a diamagnetic and a paramagnetic material?

D Watch Video Solution

66. Out of two materials ' A ' has relatiave permeability slightly greater than unity while
'B' has less than unity. Identify the nature of materials ' A ' and ' B '. Will their relative susceptibilities be positive or negative?
67. What do you infer from the large value of the susceptibility of the material? For example susceptibility of iron is more than that of copper. Explain?

D Watch Video Solution

68. Out of the following, identify the materials,
which can be classified as paramagnetic: Al, Bi ,
Cu, Na.
69. Out of the following, identify the materials,
which can be classified as diamagnetic :
Aluminium, bisuth, copper and sodium.

- Watch Video Solution

70. Differentiate between diamagnetic and paramagnetic substances.
71. What is the difference between
ferromagnetic and paramagnetic substances?

D Watch Video Solution

72. Differentiate between diamagnetic and paramagnetic substances.
73. Write two properties of diamagentic substances.

- Watch Video Solution

74. The susceptiblity of a magnetic material is
-2.6×10^{-5}. Identify the type of magnetic material and state its properties.

D Watch Video Solution

75. Draw diagrams to depict the behaviour of

 magnetic field lines near a bar of copper
D Watch Video Solution

76. Draw diagrams to depict the behaviour of magnetic field lines near a bar of aluminium

- Watch Video Solution

77. Draw diagrams to depict the behaviour of

 magnetic field lines near a bar of mercury, cooled to a very low temperature (4.2K)
- Watch Video Solution

78. Draw magnetic field lines, when a diamagnetic substance is placed in an external magnetic field

- Watch Video Solution

79. Draw magnetic field lines, when a paramagnetic substance is placed in an external magnetic field.

D Watch Video Solution

80. If a toroid used bismuth for its core, will
the field in the core be (slightly) greater or
(slightly) less than when the core is empty?
81. The susceptibility of a magnetic material is
0.085. Identify the magnetic type of the material. A speciman of this material is placed in a uniform magnetic field. Draw the modified field pattern.

D Watch Video Solution

82. Name two elements, one having positive
susceptibility and the other having negative susceptibility . What does negative susceptibility signify?

Watch Video Solution

83. State two properties of a paramagnetic substances.

D Watch Video Solution

84. Differentiate between diamagnetic and paramagnetic substances.
85. Out of two materials ' A ' has relatiave permeability slightly greater than unity while ' B ' has less than unity. Identify the nature of materials ' A ' and ' B '. Will their relative susceptibilities be positive or negative?

D Watch Video Solution

86. State two properties of a paramagnetic substances.
87. The susceptiblity of a magnetic material is
-2.6×10^{-5}. Identify the type of magnetic material and state its properties.

D Watch Video Solution

88. Does the magnetisation of a paramagnetic
salt dependon temperature ? Give reason for
your answer.

D Watch Video Solution

89. Differentiate between diamagnetic and paramagnetic substances.

- Watch Video Solution

90. Answer the following questions: Would the maximum possible magnetisation of a paramagnetic sample be of the same order of magnitude as the magnetisation of a ferromagnet?
91. The relative magnetic permeability of a magnetic material is 800 . Identify the type of magnetic material and state its properties.

D Watch Video Solution

92. An iron bar is heated to $1000^{\circ} \mathrm{C}$ and then
cooled in a magnetic field free space. Will it retain magnetism?

D Watch Video Solution
93. Answer the following questions: Is the permeability of a ferromagnetic material independent of the magnetic field? If not, is it more for lower or higher fields?

- Watch Video Solution

94. Steel si preferred for making permanent magnets, whereas soft iron is prefferred for making electromagnets. Give one reason.
95. Answer the following questions: What kind
of ferromagnetic material is used for coating
magnetic tapes in a cassette player, or for building 'memory stores' in a modern computer?

D Watch Video Solution
96. Compare magnetic properties of soft iron and steel.
97. What are the uses of studying hystersis curve of substance?

- Watch Video Solution

98. Why do we prefer to use the alloy alnico
for making permanent magnets?

- Watch Video Solution

99. State two most important properties of
the alloy used to design permanent magnets.

D Watch Video Solution
100. Why do we prefer to use the alloy alnico
for making permanent magnets?

- Watch Video Solution

101. Why soft iron is used in making the core of a transformer ?

D Watch Video Solution
102. Show that $B=\mu_{0}(H+I)$, where the symbols have their usual meanings.

D Watch Video Solution

103. Show that $I=\left(\mu_{r}-1\right) H$, where the symbols have their usual meanings.

D Watch Video Solution

104. An iron rod of length 0.5 m , radius 0.02 m having relative permeability 120 is placed inside a long solenoid carrying a current of 0.8
A. If the solenoid has 250 turns m^{-1}, find the intensity of magnetisation
105. An iron rod of length 0.5 m , radius 0.02 m
having relative permeability 120 is placed
inside a long solenoid carrying a current of 0.8
A. If the solenoid has 250 turns m^{-1}, find the magnetic dipole moment acquired by the iron rod.

D Watch Video Solution

106. Why are all pieces of iron not magnet even though iron is a ferromagnetic material?
107. Magnetic field lines are always nearly normal to the surface of a ferromagnet at every point.

- Watch Video Solution

108. Suppose a man proposes a theory that
the earth's magnetic field is due to permanent magnetisation field is due to permanent
magnetisation of molten iron core of earth.

Will you acceept this theory? Give reasons for your answer.

D Watch Video Solution

109. Answer the following questions: A certain
region of space is to be shielded from magnetic fields. Suggest a method.

D Watch Video Solution

110. A particle suspended from a fixed point, by
a light inextensible thread of length L is
projected horizontally from its lowest position
with velocity $\left(7 g \frac{L}{2}\right)^{\frac{1}{2}}$. The thread will slack after swinging through an angle θ, such that θ equal

D Watch Video Solution

111. Obtain the expression for the energy
stored per unit volume in a charged parallel
plate capacitor.

- Watch Video Solution

112. A transformer is working on 220 V .50 Hz a.c.
supply. The iron core of the transformer has a mass of 8.4 kg .. From the plot of B-H loop for
the core, it is found that area of hte loop is
$480 \mathrm{Jm}^{-3}$. If the density of iron is 7,500
kgm^{-3}, find the loss of energy in the core of transformer in 1 hour.
113. The area of B-H loop for a ferromagnetic material is $540 \mathrm{Jm}^{-3}$. If the absolute permeability of free space is
$4 \pi \times 10^{-7} J A^{-2} m^{-1}$, find the area of the $\mathrm{I}-\mathrm{H}$
loop of the ferrogmangnetic material.

- Watch Video Solution

114. A magnet weighs 75 g and its magnetic moment is $2 \times 10^{-4} A \mathrm{~m}^{2}$. If the density of the
material of the magnet is $7.5 \times 10^{3} \mathrm{kgm}^{-3}$, calculate the intensity of magnetisation.

D Watch Video Solution

115. The magnetic induction and magnetising field in a sample of magnetic material are $1.0 \mathrm{Wbm}^{-2}$ and $2 \times 10^{3} \mathrm{Am}^{-1}$ respectively.

Find magnetic permeability

D Watch Video Solution

116. The magnetic induction and magnetising
field in a sample of magnetic material are 1.0 Wbm^{-2} and $2 \times 10^{3} \mathrm{Am}^{-1}$ respectively. Find relative permeability of the material.

D Watch Video Solution

117. The magnetic induction and magnetising field in a sample of magnetic material are $1.0 \mathrm{Wbm}^{-2}$ and $2 \times 10^{3} \mathrm{Am}^{-1}$ respectively.

Find magnetic susceptibility
118. The magnetic induction and magnetising field in a sample of magnetic material are $1.0 \mathrm{Wbm}^{-2}$ and $2 \times 10^{3} \mathrm{Am}^{-1}$ respectively.

Find magnetic permeability

D Watch Video Solution

119. The amgnetising field of $1600 A m^{-1}$ produces a magnetic flux of 2.4×10^{-5} weber in a bar of iron of cross-section $0.2 \mathrm{~cm}^{2}$.

Calculate relative permeability, intensity of magnetisation and susceptibility of the bar.

D Watch Video Solution

120. The core of toroid having 3,000 turns has inner and outer radii of 11 cm and 12 cm respectively. The magnetic field in the core for a current of 0.70 A is 2.5 T . What is the relative permeability of the core?

D Watch Video Solution

121. A Rowland ring has 10^{3} turns per uit length. On passing a current of 2 A , magnetic induction is measured to be $1.5 W b m^{-2}$. Calculate relative permeability of the core.

D Watch Video Solution

122. A Rowland ring has 10^{3} turns per uit length. On passing a current of 2 A , magnetic induction is measured to be $1.5 \mathrm{Wbm}^{-2}$.

Calculate magnetic susceptibility
123. A Rowland ring has 10^{3} turns per uit length. On passing a current of 2 A , magnetic induction is measured to be $1.5 \mathrm{Wbm}^{-2}$.

Calculate magnetising field intensity.

D Watch Video Solution

124. A Rowland ring has 10^{3} turns per uit
length. On passing a current of 2 A , magnetic
induction is measured to be $1.5 W b m^{-2}$.

Calculate magnetisation.

D Watch Video Solution
125. The susceptibility of magnesium at 300 K
is 1.2×10^{-5}, At what temperature will the susceptibility equal to 1.44×10^{-5} ?

- Watch Video Solution

126. They hysteresis loss for a speciment of iron weighing 12 kg is equivalent to $300 \mathrm{Jm}^{-3} \mathrm{cyc}^{-1}$. Find the loss of energy per hour at 50 cycles s^{-1}. Given, density of iron $=7,500 \mathrm{kgm}^{-3}$

D Watch Video Solution

127. Assume that each iron atom has a permanent magnetic moment equal to 2 Bohr magneton. The number density of atoms in
iron is $8.52 \times 10^{28} \mathrm{~m}^{-3}$. Find the maximum value of intensity of magnetisation.

D Watch Video Solution

128. Assume that each iron atom has a permanent magnetic moment equal to 2 Bohr magneton. The number density of atoms in iron is $8.52 \times 10^{28} m^{-3}$. Find the maximum value of magnetic induction in an iron bar.

- Watch Video Solution

129. A paramagnetic gas consists of atoms each with a dipole moment of
$1.5 \times 10^{-23} j T^{-1}$. The temperature of the gas is $27^{\circ} \mathrm{C}$ and its number density is
$2 \times 10^{26} m^{-3}$. What is the maximum magnetisation of the sample possible, when it is placed in an external magnetic field?

D Watch Video Solution

130. A paramagnetic gas consists of atoms each with a dipole moment of
$1.5 \times 10^{-23} j T^{-1}$. The temperature of the gas is $27^{\circ} \mathrm{C}$ and its number density is $2 \times 10^{26} m^{-3}$. What is the maximum magnetisation of the sample possible, when it is placed in an external magnetic field?

D Watch Video Solution

Exercise

1. Explain the terms magnetic intensity. Give their SI units.

- Watch Video Solution

2. Explain the terms intensity of

 magnetisation. Give their SI units.D Watch Video Solution

3. Define the term magnetic flux.

4. Explain the terms magnetic induction. Give their SI units.

D Watch Video Solution
5. Define magnetic susceptibility.

D Watch Video Solution

6. Explain the terms magnetic permeability.

Give their SI units.

- Watch Video Solution

7. Show diagrammatically the behavoiur of magnetic field lines in the presence of paramagnetic. How does one explain this distinguishing feature?

- Watch Video Solution

8. Show diagrammatically the behavoiur of magnetic field lines in the presence of
diamagnetic substance. How does one explain this distinguishing feature?

D Watch Video Solution

9. What is the difference between
ferromagnetic, pawramagnetic and
diamagnetic substances ? Classify the
following materials in respect of the magnetic behaviour: Mercury
10. What is the difference between
ferromagnetic, pawramagnetic and
diamagnetic substances ? Classify the
following materials in respect of the magnetic behaviour: Water

D Watch Video Solution

11. What is the difference between
ferromagnetic, pawramagnetic and
diamagnetic substances ? Classify the
following materials in respect of the magnetic behaviour: Iron

D Watch Video Solution

12. What is the difference between
ferromagnetic, pawramagnetic and
diamagnetic substances ? Classify the
following materials in respect of the magnetic behaviour: Aluminium.

13. Differentiate between diamagnetic and

 paramagnetic substances.
D Watch Video Solution

14. How are magnetic materials classified?

- Watch Video Solution

15. What are dia, para and ferromagnetic substances? Give one example of each.

Watch Video Solution

16. Classify materials on the baiss of their behaviour in a magnetic field. Under which cateogry does iron come? How does the magnetic property of iron change with increase of temperature?

- Watch Video Solution

17. Explain the magnetism on the basis of atomic theory.

- Watch Video Solution

18. How are materials classified according to
their behaviour in a magnetic field? Why does
the magnetisation of a paramagnetic salt increase on cooling?

- Watch Video Solution

19. Two similar bars made from two different materials P and Q are placed one by one in a
non-uniform magnetic field. It is observed that
bar P tends to move from the weak to the
strong field region and d . What is the nature of the magnetic materials for making these two bars? Show with the help of a diagram, the behaviour of the field lines due to an external magneic field near each of these two bars.

D Watch Video Solution

20. Two similar bars made from two different materials P and Q are placed one by one in a non-uniform magnetic field. It is observed that bar P tends to move from the weak to the strong field region and d . What is the nature of the magnetic materials for making these two bars? Show with the help of a diagram, the behaviour of the field lines due to an external magneic field near each of these two bars.
21. What are ferromagnetic substances?

Explain briefly domain theory to explain
ferromagnetism?

D Watch Video Solution

22. Draw magnetic field lines, when a
diamagnetic substance is placed in an external magnetic field
23. Give six properties of diamagnetic substance.

(Watch Video Solution

24. Name any two paramagnetic substances.

D Watch Video Solution

25. Explain the magnetism on the basis of atomic theory.
26. What are dia and paramagnetic substances?

D Watch Video Solution

27. Distinguish between diamgnetic and
ferromagnetic materials in respect of behaviour of non-uniform magnetic field

28. State and explain Curie's law in magnetism.

D Watch Video Solution

29. Explain magnetic hysteresis.

D Watch Video Solution
30. Explain magnetic hysteresis.
31. Explain the phenomenon of self induction?

D Watch Video Solution

32. Explain briefly the importance of retentivity and coercivity for permanent magnets.

D Watch Video Solution

33. What are permanent magnets? Give one example.

- Watch Video Solution

34. What is the difference between an electromagnet and a permanent magnet? How is an electromagnet designed? Stable any two
factors on which the strength of an electromagnet depends.
35. Find an expression for the magnetic dipole moment of an atom.

- Watch Video Solution

36. Distinguish between diamgnetic and
ferromagnetic materials in respect of
intensity of magnetisation.

- Watch Video Solution

37. What are ferromagnetic substances?

Explain briefly domain theory to explain
ferromagnetism?

- Watch Video Solution

38. What are dia, para and ferromagnetic substances? Give one example of each.

D Watch Video Solution

39. Define coercivity and remanene. How are soft iron and hard steel distinguished by the values of these magnetic properties?

D Watch Video Solution

40. Define coercivity and remanene. How are soft iron and hard steel distinguished by the
values of these magnetic properties?
