©゙’doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - MODERN PUBLICATION

ELECTRIC FIELD

Example

1. Find the magnitude of electric field which
will jut balance a deutron of mass 3.2×10^{-27}
Take $g=10 m s^{-2}$
2. An electric dipole is formed by $+5 \mu C$ and $-5 \mu C$ charges at 4 mm distance.

Calculate the dipole moment and give tis direction.

- Watch Video Solution

3. Two charges of $+25 \times 10^{-9}$ coulomb and -25×10^{-9} coulomb are placed 6 m apart.

Find the electric field at a point 4 m from the centre of the electric dipole on axial line

D Watch Video Solution

4. Two charges of $+25 \times 10^{-9}$ coulomb and -25×10^{-9} coulomb are placed 6 m apart.

Find the electric field at a point 4 m from the centre of the electric dipole on equitorial line.
5. An electric dipole with dipole moment 4×10
${ }^{\wedge}-9 \mathrm{C} \mathrm{m}$ is aligned at $30^{\wedge} \circ$ with the direction
of a uniform electric field of magnitude 5×10
${ }^{\wedge} 4 \mathrm{~N} / \mathrm{C}$. Calculate the magnitude of the torque acting on the dipole.

D Watch Video Solution

6. Calculate the electric field strength required to just support a water drop of mass $10^{-7} \mathrm{~kg}$ and having a charge $1.6 \times 10^{19} \mathrm{C}$.
7. A particle of mass $10^{-3} \mathrm{~kg}$ and charge $5 \mu C$
is thrown at a speed $20 \mathrm{~ms}^{-1}$ against a uniform electric field of strength
$2 \times 10^{5} N C^{-1}$, How much distance will it travel before coming to rest momentarily?

- Watch Video Solution

8. An oil drop of 12 excess electrons is held stationary under a constant electric field of
$2.55 \times 10^{4} N C^{-} 1 \quad$ in Millikan's oil drop experiment. The density of the oil is $1.26 \mathrm{gcm}^{-3}$. Estimate the radius of the drop. $\left(g=9.81 m s^{-2}, e=1.60 \times 10^{-19} C\right)$.

D Watch Video Solution

9. A uniform electric field of strength $2 \times 10^{3} N C^{-1}$ is established between two parallel plates of length 0.1 m held horizontally at a distance 0.02 m apart. An electron is projected at a speed of $6 \times 10^{6} \mathrm{~ms}^{-1}$ making
an angle 45° as shown in the figure

The field
is directed vertically upwards. Will the electron
strike the either plate? If it strikes the plate, where does it do so?

- Watch Video Solution

10. A pendulum bob of mass 80 mg and carrying a charge of 2×10^{-8} coulomb is at
rest in a horizontal uniform electric field of $20,000 \mathrm{Vm}^{-1}$. Find the tension in thread of the pendulum and the angle it makes with the vertical.

- Watch Video Solution

11. The point charge of $2 \times 10^{-7} \mathrm{C}$ and 1.0×10^{-7} are 1 cm apart. What is the magnitude of the field produced by either charge at the site of the other? Use standard magnitude of the field produced by either
charge at the site of the other? Use standard
value of $\frac{1}{4 \pi \varepsilon_{0}}$.

D Watch Video Solution

12. Two point charges of $+5 \times 10^{-19} C$ and $+20 \times 10^{-19} \mathrm{C}$ are separated by a distance

2 m . Find the point on the line joining them at which electric field intensity is zero.
13. Two point charges $q_{A}=3 \mu C$ and
$q_{B}=-3 \mu C$ are located 20 cm apart in
vacuum. What is the electric field at the midpoint O of the line $A B$ joining the two charges?

D Watch Video Solution

14. Two point charges $q_{A}=3 \mu C$ and $q_{B}=-3 \mu C$ are located 20 cm apart in vacuum. If a negative test charge of
magnitude $1.5 \times 10^{-9} C$ is placed at this point, what is the force experienced by the test charge?

D Watch Video Solution

15. Two point charges of $+16 \mu C$ and $-9 \mu C$ are placed 8 cm apart in air. Determine the position of the point at which the resultant electric field is zero.

D Watch Video Solution

16. Four points charges, each having a charge q are placed on the four corners. A, B, C and D of a regular pentagon. $A B C D F$. The distance of eadch corner for the centre is a. Find the electric field at the centre of the pentagon.

D Watch Video Solution

17. Point charges $4 \times 10^{-6} C$ and $2 \times 10^{-6} \mathrm{C}$ are placed at the vertices A and B of a right angled triangle $A B C$ respectively. B is the right angle, $A C=2 \times 10^{-2} \mathrm{~m}$ and $\mathrm{BC}=10^{-2} \mathrm{~m}$.

Find the magnitude and direction of the resultant electric intensity at C .

D Watch Video Solution

18. A charge Q located at a point $\rightarrow r$ is in equilibrium under the combined electric field of three charges q_{1}, q_{2} and q_{3} if the charges q_{1}, q_{2} are located at the points $\rightarrow r_{1}$ and $\rightarrow r_{2}$ respectively, find the direction of the
force on Q, due to q_{3}, in term of $q_{1}, q_{2}, q_{3} \rightarrow r, \rightarrow r_{1}$, and $\rightarrow r_{2}$
19. A dipole of lenth 0.1 m consits of two charges of $\pm 500 \mu C$. What is its electric dipole moment? Calculate the electric field due to the dipole at a point on the axis distnat 0.2 m from one of the charges in air.

D Watch Video Solution

20. Two charges of $\pm 0.2 \mu \mu C$ and $-0.2 \mu \mu C$ are placed $10^{-6} \mathrm{~cm}$ apart. Calculate the
electric field at an axial point at a distance of

10 cm from their mid point. Use the standard
value of ε_{0}

D Watch Video Solution

21. Calculate the field due to an electric dipole
of length 10 cm and consisting of charges of
$\neq 100 \mu C$ at a point 20 cm from each charge.

D Watch Video Solution
22. An electric dipole, when held at 30° with respect to a uniform electrc field of $10^{4} N C^{-1}$ experienes a troque of $9 \times 10^{25} \mathrm{Nm}$. Calculate dipole moment of the dipole.

- Watch Video Solution

23. Four charges of $+4,-3,+2$ and +3 coulomb are placed at the corners of a square of each side 1 m . Find the electric field at the

centre

of
the

Given $=\varepsilon_{0}=8.85 \times 10^{-12} C^{2} N^{-1} m^{-2}$

D Watch Video Solution

24. An infinite number of charges, each equal to q are placed along X -axis at $\mathrm{x}=1, \mathrm{x}=2, \mathrm{x}=4$, $x=8, \ldots$. and so on. Find electric field at the point $x \neq 0$ due to this set of charges.
25. An infinite number of charges, each equal to q are placed along x -axis at $\mathrm{x}=1, \mathrm{x}=2, \mathrm{x}=4$, $x=8, \ldots$. and so on. Find electric field at the point $x \neq 0$ due to this set of charges.

- Watch Video Solution

26. A point particle of mass M is attached to one end of a massless rigid non-conducting rod of length L. Another point particle of the same mass is attached to the other end of the
rod. The two particles carry charges $+q$ and $-q$ respectively. This arrangement is held in a region of a uniform electric field E such that the rod makes a small angle theta (say of about 5 degree) with the field direction, fig.

Find an expression for the minimum time needed for the rod to become parrallel to the field after it is set free.

27. Is electric field intensity a scalar or a vector quantity. Give its SI units.

D Watch Video Solution

28. The test charge used to measure electric
field at a point should be vansihgly small.
Why?

D Watch Video Solution
29. Define electric field intensity at a point.

D Watch Video Solution

30. Does an electric charge experience a force due to the field, it produces itself?

- Watch Video Solution

31. A proton is placed in a uniform electric field along the positive X -axis. In which direction
will it tend to move?

D Watch Video Solution

32. What is the SI unit of electric field intensity?

- Watch Video Solution

33. Name the physical quantity, whose SI unit
is newton coulomb ^ -1

D Watch Video Solution
34. A point charge q is placed at the origin.

How does the electric field due to the charge
vary with distance r from the origin?

- Watch Video Solution

35. What is electric dipole moment?
36. Define the term electric dipole moment. Is
it a scalar or a vector quantity?

D Watch Video Solution
37. What is electric dipole moment?

- Watch Video Solution

38. What is the direction of electric dipole moment vector of an electric dipole?

- Watch Video Solution

39. Give the S.I unit of electric dipole moment.

- Watch Video Solution

40. Is it correct to write the unit of electric
dipole moment as mC ?

- Watch Video Solution

41. What is the direction of electric field at a point on axial line of an electric dipole?

- Watch Video Solution

42. What is the direction of electric field at a point on the equitorial line of an electric dipole?

- Watch Video Solution

43. Write a relation between electric field at a point and its distance from a short dipole.

D Watch Video Solution
44. What are electric lines of force?

- Watch Video Solution

45. Draw lines of force to represent a uniform electric field?

- Watch Video Solution

46. Two electric lines never cross each other.

Why?

- Watch Video Solution

47. Why do the electrostatic field lines not
form closed loops?

D Watch Video Solution
48. Does an electric dipole always experiene a torque, when placed in a uniform electric field?

- Watch Video Solution

49. When is the torque acting on an electric dipole maximum when placed in uniform electric field?

- Watch Video Solution

50. When is the torque acting on an electric dipole maximum when placed in uniform electric field?

- Watch Video Solution

51. An electric dipole of dipole moment $\rightarrow p$
is present in a uniform electric field $\rightarrow E$.
Write the value of the angle between
$\rightarrow p$ and $\rightarrow E$ for which the torque experienced by the dipole is minimum.
52. What orientation of an electric dipole in a uniform electric field corresponds to its stable equilibrium?

(Watch Video Solution

53. What orientation of an electric dipole in a uniform electric field corresponds to its stable equilibrium?
54. In which orientation, dipole placed in a uniform electric field is in unstable equilibrium?

- Watch Video Solution

55. The electric field E due to any point charge is defined as $E=\lim _{q \rightarrow 0} \frac{F}{q}$, while q is the test charge and F is the force acting on it. What is
the physical signification of $\lim _{q \rightarrow 0}$ in this expression?

D Watch Video Solution
56. Define electric field intensity due to point charger. Give is SI units.

- Watch Video Solution

57. Determine the magnitude of an electric field that will balance the weight of an
electron.

- Watch Video Solution

58. Figure shows tracks of three charged particles in a uniform electrostatic field. Give the signs of the three charges. Which particle has the highest charge to mass ratio?:

- Watch Video Solution

59. A distance of 2 m separates two point charges of $+5 \times 10^{-19} C$. Find the point on the line joining them at which electric field intensity is zero.

D Watch Video Solution

60. Two point electric charges of unknown magnitude and sign are placed a distance apart. The electric field intensity is zero at a point not between the charges but on the line
joining them. Write two essential conditions for this to happen.

D Watch Video Solution
61. Define a point electric dipole?

D Watch Video Solution

62. What is an ideal dipole?
63. What is the ratio of the strength of electric
field at a point on axial line and at a point at
same distance on equitorial line of an electric dipole of very small length?

- Watch Video Solution

64. What is the angle between the directions
of electric dipole moment and electric field at any axial point
65. What is the angle between the directions
of electric dipole moment and electric field at any equitorial point due to an electric dipole?

- Watch Video Solution

66. The distance of the field point on the equitorial plane of a small electric dipole is halved. By what fector will the electric field due to the dipole change?
67. Define intensity of electric field at a point at what points is the electric dipole field intensity parallel to the line joining the charges?

D Watch Video Solution

68. At what points is the electric dipole field intensity parallel to the line joining the charges?

Watch Video Solution

69. A system has two charges
$q_{A}=2.5 \times 10^{-7} \mathrm{C}$ and $q_{B}=-2.5 \times 10^{-7} C$
located at points A: ($0,0,-15 \mathrm{~cm}$) and B: (0,0 ,
+15 cm), respectively. What are the total
charge and electric dipole moment of the system?

D Watch Video Solution

70. An electric dipole of dipole moment \bar{p} is placed in a uniform electric field \vec{E}. Write the expression for the torque $\rightarrow r$ experienced by the dipole. Identify the two pairs of perpendicular vectors in the expression. Show diagramatically the orientation of the dipole in the field for which the torque is maximum

- Watch Video Solution

71. An electric dipole of dipole moment \bar{p} is placed in a uniform electric field \vec{E}. Write the expression for the torque $\rightarrow r$ experienced by the dipole. Identify the two pairs of perpendicular vectors in the expression. Show diagramatically the orientation of the dipole in the field for which the torque is half the maximum value

- Watch Video Solution

72. An electric dipole of dipole moment \bar{p} is placed in a uniform electric field \vec{E}. Write the expression for the torque $\rightarrow r$ experienced by the dipole. Identify the two pairs of perpendicular vectors in the expression. Show diagramatically the orientation of the dipole in the field for which the torque is half zero.

- Watch Video Solution

73. What is meant by the statement that the electric field of a point charge has spherical symmetry, whereas that f an electric dipole is cylindrically symmetrical?

- Watch Video Solution

74. Define electric lie of force and give its three important properties.

75. What are electric lines of force ?

D Watch Video Solution

76. Give important properties of electric lines of force.

- Watch Video Solution

77. Give important properties of electric lines of force.
78. Sketch the electric lines of force due to point charges $q>0$

D Watch Video Solution

79. Sketch the electric lines of force due to point charges $q<0$
80. sketch the pattern of electric field lines due to a conducting sphere having negative harge on it and an electric dipole.

D Watch Video Solution

81. Are the field lines a reality ?

D Watch Video Solution

82. A charged particle is free to move in as
electric field. Will it always move along an

D Watch Video Solution

83. Electric field itensity within a conductor is
always zero. Why?

D Watch Video Solution

Exercise

1. In defining electric field due to a point charge, the test charge has to be vanishingly small. How this condition can be justified, when we know that charge less than the on an electron or a proton is not possible?

D Watch Video Solution

2. A ball of charge q is plaed in a hollow conductive uncharged sphere. After this, the sphere is connected with earth for a short
time and the ball is then removed from the
sphere. The ball has not been brought into
contact with the sphere. What charge will the sphere have after these operations? Where and how will this charge the distributed?

D Watch Video Solution

3. A ball of charge q is plaed in a hollow conductive uncharged sphere. After this, the sphere is connected with earth for a short time and the ball is then removed from the
sphere. The ball has not been brought into contact with the sphere. What will be the nature of the field and how wil it be located?

D Watch Video Solution

4. A sphere of charge $+Q$ is fixed in position. A
smaller sphere of charge $+q$ is placed near the
larger sphere and released from rest. The small sphere will move away from the large sphere with decreasing velocity an inreasing acceleration, decreasing velocity and
increasing acceleration, decreasing velocity and constant acceleration, increasing velocity and increasing acceleration explain, which of the following statements is correct?

- Watch Video Solution

5. Graphically, represent the variation of electric field due to a point charge Q with magnitude of charge Q

D Watch Video Solution

6. Graphically, represent the variation of electric field due to a point charge Q with magnitude of charge Q

- Watch Video Solution

7. Graphically, represent the variation of electric field due to a point charge Q with $1 / r^{2}$ where r is the distance of the obervation point from the charge.
8. Three point charges, each having a charge +10 C are placed on the three cornes A, B and
C of a square $A B C D$ having each side of length
$\sqrt{8} \mathrm{~m}$. Find the electric field at the centre of the square.

D Watch Video Solution

9. Five point charges, each having a charge q are placed on the five croners A, B, C, D and E of a regular hexagon $A B C D E F$ having each side of
length a. Find the electric field at the centre of the hexagon.

D Watch Video Solution

10. A small metal ball of mass m is suspended
from a thread of length I between the plates
of a large plane capacitor. How will the period of oscillations of such a pendulum change, if a charge $+q$ is placed on the ball and the upper plate is positively charged
11. A small metal ball of mass m is suspended from a thread of length I between the plates of a large plane capacitor. How will the period of oscillations of such a pendulum change, if a charge +q is placed on the ball and the upper plate is negatively charged?

- Watch Video Solution

12. What is the use of the concept of electric field intensity?
13. Establish the relation between electric field strength and force.

- Watch Video Solution

14. Derive an expression for electric field intensity at a distance r from a point charge q.
15. Find the electric field intensity at any point on the axis of a uniformly charged ring or loop.

- Watch Video Solution

16. What is an electric dipole? Define electric dipole moment and give its unit.
17. Define the term electric dipole moment.

Give its units Derive an expression for the maximum torque acting on an electric dipole, when held in a uniform electric field.

- Watch Video Solution

18. Define electric field intensity at a point. Give
its S.I. units. Derive an expression for the electric field intensity at any point on the axial
line of an electric dipole.
19. Define electric field intensity at a point. Give its S.I. units. Derive an expression for the electric field intensity at any point on the axial line of an electric dipole.

D Watch Video Solution

20. Define electric field intensity at a point.

Give its S.I. units. Derive an expression for the
electric field intensity at any point on the axial line of an electric dipole.

D Watch Video Solution

21. Define electric field intensity at a point. Give its S.I. units. Derive an expression for the electric field intensity at any point on the axial line of an electric dipole.

D Watch Video Solution

22. Obtain an expression for electric field intensity at any point on equitorial line of electric dipole. What is the direction of electric field?

- Watch Video Solution

23. Define electric field intensity at a point.

D Watch Video Solution
24. What is the direction of electric field at a point on the equitorial line of an electric dipole?

D Watch Video Solution

25. What is the direction of electric field at a
point on the equitorial line of an electric dipole?
26. What is the direction of electric field at a point on the equitorial line of an electric dipole?

D Watch Video Solution

27. Find an expression for electric intensity
due to a short electric dipole at any point situated along a line inclined at an angle from the dipole axis.

28. Define electric field intensity at a point.

D Watch Video Solution

29. Find the electric field intensity at any point on the axis of a uniformly charged ring or loop.
(D) Watch Video Solution
30. Explain the3 properties of electric lines of force.

D Watch Video Solution

31. What is meant by electric lines of force represent ? Explain repulsion between two like charges on their basis.

D Watch Video Solution
32. Derive an expression for torque experiencedby electric dipole in a uniform electric field

D Watch Video Solution

33. Draw a labelled diagram showingt an electric dipole making an angle θ with a uniform electric field E. Derive an expression for the torque experienced by the dipole.
34. Dedce the expression for the torque acting ona dipole of dipole moment \vec{p} in the presence of a uniform electric field \vec{E}

D Watch Video Solution

35. An electric edipole is placed in a uniform field \vec{E}. Show that torque \vec{r} acting on the dipole is given by $\vec{r}=\vec{p} \times \vec{E}$ wehre \vec{p} is dipole strength of the dipole.
36. A dipole is placed in a uniform electric field.

What is the net force and torque acting on it?

D Watch Video Solution

37. Find an expression for the troque experienced by an electric dipole placed in a uniform electric field. Hence, define electric dipole moment.
38. Derive an expression for the torque acting on an electric dipole suspended freely in a uniform electric field. How will you determine the direction of torque?

D Watch Video Solution

39. An electric dipole free to move is placed in
a uniform electric field. Explain with a diagram.
Its motion, when it is placed parallel to the field.
40. An electric dipole free to move is placed in a uniform electric field. Explain with a diagram.

Its motion, when it is placed perpendicular to the field.

- Watch Video Solution

41. Derive an expression for electric field intensity at a distance r from a point charge q.

Watch Video Solution

42. Obtain expression for electric field due to a point charge

- Watch Video Solution

43. Obtain expression for electric field due to a continuous distribution of charges along a line.
44. Obtain expression for electric field due to a continuous distribution of charge over a surface

D Watch Video Solution

45. Obtain expression for electric field due to a continuous distribution of charge over a volume.
46. Explain the terms electric dipole and dipole moment. Derive a relation for the intensity of electric field at an equitorial point of a electric dipole.

- Watch Video Solution

47. Derive a relation for electric field of an electric dipole at a point on its equatorial line.
48. What is electric field intensity? Give its SI units. Derive an expression for it at a point on
the equitorial line of an electric dipole. What is
field, when dipole is short?

- Watch Video Solution

49. Define electric fied intensity and derive an
expression for it at a point on the neuttral axis
of a dipole. Also determine its direction.
50. Derive a relation for electric field of an electric dipole at a point on its equatorial line.

D Watch Video Solution

51. Prove that for a short dipoe, the intensity at a point on the axial line is twice that on the equitorial line.

D Watch Video Solution
52. Define electric field intensity at a point.

Give its S.I. units. Derive an expression for the electric field intensity at any point on the axial line of an electric dipole.

- Watch Video Solution

53. Obtain an expression for electric field intensity at any point on equitorial line of electric dipole. What is the direction of electric field?
54. Two point charges q and $-q$ is placed at a distance 2a apart.Calculate the electric field at a point P situated at a distance r along the perpendicular bisector of the line joining the charges. What is the electric field when $r \gg a$? Also, give the direction of electric field W.r.t. electric dipole moment? .

D Watch Video Solution

55. Deduce an expression for the electric field \vec{E} due to a system of two harges q_{1} and q_{2} with position vectors \vec{r}_{1} and \vec{r}_{2} at a oint \vec{r} w.r.t the common origin 0 .

D Watch Video Solution

56. Find the electric field intensity at any point on the axis of a uniformly charged ring or loop.
57. Find the electric field intensity at any point on the axis of a uniformly charged ring or loop.

- Watch Video Solution

58. A crcular loop of charge is placed in YZplane with its centre at the origin. Find expression for electric field at a point on X axis.
59. A thin circular ring of radius r is charged uniformaly so that its linear charge density becomes λ. Derive an expression for the electric for the electric field at a point P at a distance x from it along the axis of the ring. Hence, prove that at large distances ($x \gg r$), the ring behaves as a point charge.

- Watch Video Solution

60. Derive an expression for torque experiencedby electric dipole in a uniform electric field

D Watch Video Solution

61. Derive an expression for torque experiencedby electric dipole in a uniform electric field
62. Draw a labelled diagram showingt an electric dipole making an angle θ with a uniform electric field E. Derive an expression for the torque experienced by the dipole.

D Watch Video Solution

63. A dipole is placed in a uniform electric field.

What is the net force and torque acting on it?
64. An electric dipole is held in a uniform electric field. The dipole is aligned parallel to
the field. Find the work done in rotating it through the angle of 180°

D Watch Video Solution

65. An electric dipole is held in a uniform
electric field Using suitable diagram, show that
it does not udnergo any translatory motion
66. Draw a labelled diagram showingt an electric dipole making an angle θ with a uniform electric field E. Derive an expression for the torque experienced by the dipole.

- Watch Video Solution

67. In the electric field show in the figure

the
electric field lines on the left have twice the
separation as that between those on the right.
If the magnitudes of the fields at point A is
$40 N C^{\wedge}(-1)$, calculate the force experienced by a proton placed at point A. Also find the magnitude of electric field at the point B.

D Watch Video Solution

68. Calculate the magnitude and direction of
the electric field. Which keeps a proton just
floating. Give that mass of proton
$1.67 \times 10^{-27} \quad \mathrm{~kg}, \quad$ charge on proton $=1.6 \times 10^{-19} \mathrm{C}$ and $g=9.8 m s^{-2}$

D Watch Video Solution

69. A water particle of mass 10 mg and having
a charge of $1.5 \times 10^{-6} C$ stays suspended in a
room. What is the magnitude and direction of
the electric field in the room?
70. An electron above the earth is balanced by
the gravitational force and the electric field of the earth. Find the electric field of the earth.

D Watch Video Solution

71. How many electrons should be removed
from a coin of mass 1.6 g , so that it may float in an electric field of intensity $10^{9} N C^{-1}$ directed upward.
72. Find the time taken by a particle of mass $10^{-18} \mathrm{~kg}$ and carrying a charge $3.2 \times 10^{-19} \mathrm{C}$ to fall through a distance of 8 m in a uniform electric field of intensity $8 \times 10^{2} N C^{-1}$

- Watch Video Solution

73. An electron is released with a velocity of
$5 \times 10^{6} \mathrm{~ms}^{-1}$ in an electric field of $10^{3} \mathrm{NC}^{-1}$
which ahs been applied so as to oppose it
motion. What distance would the electron
travel and how much time could iyt take before it is brought to rest?

D Watch Video Solution

74. A charged particle of mass 1 g is suspended through a silk thread of length 40 cm in a horizontal electric field.fo
$4.0 \times 10^{4} N C^{-1}$. If the particle stays at a distane of 24 cm from the wall in equilirbium, find the charge on the particle.

75.
 Two
 points
 charges
 of

$+20 \mu C$ and $+80 \mu C$ are plaed 18 cm apart.

Find the position of the point where electric field is zero.

D Watch Video Solution

> 76. Two point charges of
> $-16 \mu C$ and $+80 \mu C$ are placed 8 cm apart.

Find the position of the point, where electric field is zero.

(D) Watch Video Solution

77. Shown in the figure

four
point charges at the corners of a square of side 2 cm . Find the magnitude and direction of
the electric field at the centre 0 of the square,
if $Q=0.02 \mu C$ Use $\frac{1}{4 \pi \varepsilon_{0}}=9 \times 10^{9} N m^{2} C^{-2}$
78. Three charges, each equal to q, are placed at the three corners of a square of side a. Find the electric field at the fourth corner of the square.

D Watch Video Solution

79. Four charges $+q^{\prime}+q^{\prime}-q$ and $-q$ are placed respe tively at the four croners A, B, C and D
respectively of a square of side a . Calcualte the force on a charge \mathbf{Q} placed at the centre of the square.

D Watch Video Solution

80. ABC is an equilateral triangle of side 5 cm .

Charges of +60 statC and -30 statCare placed at points A and B respectively. Calcualte completely the electric field at point C. Given

$$
1 C=3 \times 10^{9} \text { stat } C
$$

81. Two point charges of $2 \mu C$ but opposte in sign are placed 10 cm apart. Calculate the electric field at a point distant 10 cm from the mid point on the axial line of the dipole.

- Watch Video Solution

82. Two charges eacdh of $0.1 \mu C$ but opposite
in sign are 1 mm apart. What is the electric
field at a point on the line joining them at a distance of 10 cm from the mid-point?

- Watch Video Solution

83. Two charges $\pm 10 \mu C$ are placed 5.0 mm apart. Determine the electric field at a point on the axis of the dipole 15 cm away from its centre 0 on the side of the positive charge

D Watch Video Solution

84. Two charges $\pm 10 \mu C$ are placed 5.0 mm apart. Determine the electric field at a point 15
cm away from point O on a line passing through O and normal to the axis of the dipole.

D Watch Video Solution

85. The electric field at a point on the axial line
at a distance of 10 cm from te centre of an
electric dipole is $3.75 \times 10^{5} \mathrm{NC}^{-1}$ in air, while at a distance of 20 cm , the electric field is
$3 \times 10^{4} N C^{-1}$. Calculate the length of the electric dipole.

Watch Video Solution

86. An electric dipole of dipole moment
$4 \times 10^{-5} \mathrm{C} \mathrm{m}$ is placed in a uniform electric
field of $10^{-3} N C^{-1}$ makng an angle of 30°
with the direction of field. Determine the torque exerted y the electric fieldon the dipole.

- Watch Video Solution

87. An electric dipole with diple moment
$4 \times 10^{-9} \mathrm{C} \mathrm{m}$ is aligned at 30° with the direction of unifrom electric field of $5 \times 10^{-3} N C^{-1}$. Calculate magnitude of the torque acting on the dipole.

- Watch Video Solution

88. A dipole consisting of an electron and a proton separated by a distance $4 \times 10^{-10} \mathrm{~m}$ is situated in an electric field of intensity
$3 \times 10^{5} N C^{-1}$ at an angle orf 30° with the field. Calculate the dipole moment and the torque acting on it.

- Watch Video Solution

89. An electric dipole, when held at 30° with
respect to a uniform electrc field of
$3 \times 10^{4} N C^{-1} \quad$ experienes a troque of
$27 \times 10^{25} \mathrm{Nm}$. Calculate dipole moment of the dipole.

- Watch Video Solution

90. An electric diple is placed at angle of 60°
with an electric field of strength
$4 \times 10^{5} N C^{-1}$. It experiences a torque equal to $8 \sqrt{3} \times 10^{-5} \mathrm{Nm}$. Calculate the charge on the dipole, if dipole is of length 4 cm .

- Watch Video Solution

91. An electric dipoel consists of two equal and
opposite charges placed 2 cm apart. When the dipole is placed in a uniform electric field of
strength $10^{5} \mathrm{NC}^{-1}$, it experiences a maximum torque of $0.2 \times 10^{-3} \mathrm{Nm}$. Find the magnitude of each charge.

D Watch Video Solution

92. A copper ball of density $8.6 \mathrm{gcm}^{-3} \mathrm{~cm}$ in diameter is immersed in oil of density
$0.8 \mathrm{gcm}^{-3}$. If the ball remains suspended in oil in a uniform electric field of intensity $36,000 N C^{-1}$ acting in upward direction, what is the charge on the ball?

Watch Video Solution

93. A charge of $4 \times 10^{-9} \mathbf{C}$ is distributed uniformly over the circumference of a conducting ring of radius 0.3 m . Calculate the field intensity at a point on the axis of the ring at 0.4 m from its centre. Also, calculate the electri field at the centre of the ring.

- Watch Video Solution

94. A dipole consists of two charges
$+10 \mu C$ and $-10 \mu C$ separated by a certain distance. Let they be located at $x=6.0 \mathrm{~cm}, \mathrm{y}=0$ and $x=6.0 \mathrm{~cm}, y=0$ respectively. Calculate the field strength at a point $x=0, y=8 \mathrm{~cm}$.

- Watch Video Solution

95. An inclined plane making an angle of 30°
with the horizontal is placed in a uniform
horizontal electric of $100 \mathrm{Vm}{ }^{-1}$ as shown in
the figure

A
particle of mass 1 kg and charge 0.01 C is
allowed to slide down from rest from a height
of 1 m . If the coefficient of frictio nis 0.2 , find
the time it will take the particle to reach the bottom.

- Watch Video Solution

