# ©゙ doubtnut 

India's Number 1 Education App

## PHYSICS

## BOOKS - MODERN PUBLICATION

## ELECTRIC POTENTIAL

## Example

1. 5J work is done in moving a positive charge of
0.5 C between two points. What is the potential difference between these points?
2. Calculate the electric potential at the surface of a gold nucleus. Given radius of nucleus $=$ $6.6 \times 10^{-15} \mathrm{~m}$ and atomic wight of gold is 79 .

## D Watch Video Solution

3. Two parallel plates are 5 cm apart and a potential difference of $6-\mathrm{V}$ is set up across them.

Find the electric field intensily between the two plates.

## - Watch Video Solution

4. Find the electrostatic potential energy of the
configuration of four charges $+q,-q,+q$ and $-q$ placed at the four corner $A, B, C$ and $D$ of a square of side $r$.

## (D) Watch Video Solution

5. An electric dipole of length 2 cm is placed with its axis making an angle of $30^{\circ}$ to a uniform electric field of $10^{5} N C^{-1}$. If it experiences a
torque of $10 \sqrt{3} \mathrm{Nm}$, calculate the magnitude of the charge on the diple

## D Watch Video Solution

6. An electric dipole of length 2 cm is placed with its axis making an angle of $30^{\circ}$ to a uniform electric field of $10^{5} N C^{-1}$. If it experiences a torque of $10 \sqrt{3} \mathrm{Nm}$, calculate potential energy of the dipole.

## - Watch Video Solution

7. If 100 joule of work must be done to move electtric charge equal to 4C from a plae, where potential is -10 volt to another place, where potential is V volt, find the value of V .

## D Watch Video Solution

8. Calculate the potential at a point $P$ due to a charge of $4 \times 10^{-7} \mathrm{C}$ located 9 cm away as shown in the figure.
$7=4 \times 10^{-1} \mathrm{c}$
$\dot{0}$
14
$1=9 \mathrm{~cm}$
9. Calcualte the potential at a point $P$ due to a charge of $4 \mathrm{xx} 10^{\wedge}(-7)$ C located 9 cm away. Hence obtain the work done in bringing a charge of $2 \times 10^{-9} C$ from infinity to the point P. Does the answer depend on the path along which the charge is brought?
10. A charge of $20 \mu C$ produces an electric field.

Two points are 10 cm and 5 cm from this charge.
Find the vlaue of potentials at these points and
also find the amount of work doe to take an
electron from one point to the other.

## ( Watch Video Solution

11. At a point due to a point charge, the values of electric field intensity and potential are $32 N C^{-1}$ and $16 J C^{-1}$ respectively. Calculate
magnitude of charge and distance of the charge
from the point of observation.

## D Watch Video Solution

12. Calculate the potential at the centre of a square $A B C D$ of each side $\sqrt{2} \mathrm{~m}$ due to charges
$2,-2,-3$, and 6 muC ' at four corners of it.
13. A metal wire is bent into a circle of radius 10 cm . It is given a charge of $200 \mu C$, which spreads on it uniformly, Calculate the electric potential at its centre.

## D Watch Video Solution

14. Two charges $3 \times 10^{-8} C$ and $-2 \times 10^{-8} C$ are located 15 cm apart. At what point on the
line joining the two charges is the electrical potential zero? Take the potential at infinity to be zero.

## - Watch Video Solution

15. $A B C D$ is a square of side 0.2 m . Charges of
$2 \times 10^{-9}, 4 \times 10^{-9}, 8 \times 10^{-9} \quad$ coulomb are placed at the corners. $A, B$ and $C$ respectively.

Calculate the work required to transfer a charge of $2 \times 10^{-9}$ coulomb from corner $D$ to the centre of the square.
16. Calculate the voltage needed to balance an oil drop carrying 10 electrons, when located between plates of a capacitor, which are 5 mm apart. Given, mass of the drop $=3 \times 10^{-16} \mathrm{~kg}$, charge on electrno
$=1.6 \times 10^{-19} C$ and $g=9.8 m s^{-2}$

## D Watch Video Solution

17. Two points charges $+10 \mu C$ and $-10 \mu C$ are separated by a distance of 40 cm in air.

Calculate the electrostatic potential energy of
the system, assuming the zero of the potential energy to be at infinity.

## D Watch Video Solution

18. Two points charges $+10 \mu C$ and $-10 \mu C$ are separated by a distance of 40 cm in air. How much work is required to separated the two charges infinitely away from each other?
19. An electron is circulating around the nucleus of a hydrogen ato in a circular orbit of radius
$5.3 c \times 10^{-11} \mathrm{~m}$. Calculate the electric potential at this radius

## D Watch Video Solution

20. An electron is circulating around the nucleus
of a hydrogen ato in a circular orbit of radius
$5.3 c \times 10^{-11} \mathrm{~m}$. Calculate the electric potential
energy of the atom in eV . What would be the
electric potential due to a helium nucleus at the

$$
\left(4 \pi \varepsilon_{0}\right)^{-1}=9 \times 10^{9} m F^{-1} \text { and } e=1.6 \times 10^{-19} C
$$

## D Watch Video Solution

21. A molecule of a substance has a permanent electric dipole moment of magnitude $10^{-29} \mathrm{C}$ m.

A mole of this substance is polarized at low temperature by appling a strong elecrostatic field of magnitude $10^{6} \mathrm{Vm}^{-1}$. The direction of the field is suddenly changed by an angle of $60^{\circ}$. Estimate the heat released by the substance in
aligning its dipole along the new direction of the
field. For simplicity, assume 100\% polarisation of sample.

## D Watch Video Solution

22. A conducting bubble of radius $a$, thickness $t$ where t is very small than a has potential V . Now the bubble collapses into a droplet. Find the potential of the droplet.

## D Watch Video Solution

23. An electric dipole of length 4 cm , when placed with its axis making an angle of $60^{\circ}$ with
a uniform eletric field experiences a torque of
$4 \sqrt{3} \mathrm{~N} \mathrm{~m}$. Calculate the potential energy of the dipole, if the dipole has charges of $\pm 8 n C$.

## D Watch Video Solution

24. An electric dipole of length 4 cm , when placed with its axis making an angle of $60^{\circ}$ with
a uniform eletric field experiences a torque of
$4 \sqrt{3} \mathrm{~N}$ m. Calculate the potential energy of the dipole, if the dipole has charges of $\pm 8 n C$.

## (D) Watch Video Solution

25. An electric dipole consists of two opposite charges of magnitude $1 \mu \mathrm{C}$ (micro-coulomb) separated by a distance of 2 cm . The dipole is placed in an electric field of $10^{5} \mathrm{Vm}^{-1}$. What maximum torque does the field exert on the dipole?
26. An electric dipole consists of two opposite charges of magnitude $1 \mu \mathrm{C}$ (micro-coulomb) separated by a distance of 2 cm . The dipole is placed in an electric field of $10^{5} \mathrm{Vm}^{-1}$. How much work must an external agent do to turn the dipole end for end, starting from a position of alignment $\theta=0$ ?

## D Watch Video Solution

27. Three concentric spherical metal sheels $A, B$
and $C$ of radii $a, b$ and $c$ $a '<' b '<' c$ have surface
charge densities $+\sigma,-\sigma$ and $+\sigma$ respectively. Find the potentials of three sheels $A, B$ and $C$.

## D Watch Video Solution

28. Three concentric spherical metal sheels $A, B$
and $C$ of radii $a, b$ and $c \quad a^{\prime}<' b '<' c$ have surface charge densities $+\sigma,-\sigma$ and $+\sigma$ respectively. If the shells $A$ and $C$ are at the same potential, obtain the relation between the radii $\mathrm{a}, \mathrm{b}$ and c .
29. Three charges of +0.1 C each are placed at the
vertices of an equilateral triangle of each side

1 m . If the energy is supplied at the rate of 1.0 kw , how many hours would be required to move one of the charges on to the mid point of the line joining the other two?

Given $=\frac{1}{4 \pi \varepsilon_{0}}=9 \times 10^{9} N^{2} C^{-2}$
30. Three point charges $q, 2 q$ and $8 q$ are to be placed on a
. 9 cm long straight line. Find the
. positions where the charges shouldbe placed such that the potential energy
. of this sysrem is minimum. In this situation, what is the
. electric field at the charge $q$ due to the other two charges?
31. A drop of water of mass $18 \times 10^{-3} \mathrm{~g}$ falls away from the bottom of a charged conducting sphere of radius 20 cm , carrying with it a charge of $10^{-9} C$ and leaving on the sphere a uniformly distributed charge of $2.5 \times 10^{-6} C$. What is the speed of the drop after it has fallen 30 cm ?

$$
\left(4 \pi \varepsilon_{0}\right)^{-1}=9 \times 10^{9} J m C^{-2}
$$

## D Watch Video Solution

32. Two identical particles of mass $m$ carry a charge Q, each. Initially one is at rest on a
smooth horizontal plane and the other is projected along the plane directly towards first particle from a large distance with speed v . The closest distance of approach be .

## D Watch Video Solution

33. Two fixed, equal, positive charges, each of magnitude $5 \times x 10^{\wedge}-5$ coul are located at points $A$ and $B$ separated by a distance of 6 m . An equal and opposite charge moves towards them along the line COD, the perpendicular bisector of the line $A B$.

The moving charge, when it reaches the point $C$ at a distance of 4 m from O , has a kinetic energy of 4 joules. Calculate the distance of the farthest point $D$ which the negative charge will reach before returning towards C .


- Watch Video Solution

34. A circular ring of radius $R$ with uniform positive charge density $\lambda$ per unit length is located in the $y$ z plane with its center at the origin O. A particle of mass $m$ and positive charge q is projected from that point $p(-\sqrt{3} R, 0,0)$ on the negative x - axis directly toward O, with initial speed V. Find the smallest (nonzero) value of the speed such that the particle does not return to $P$ ?

## Watch Video Solution

35. Three charges each of value $q$ are placed the corers of an equilaterla triangle. A fourth charge
$Q$ is placed at the centre of the triangle.

If $Q=-q$, will the charges at the corners move towards the centre or fly away from it?

## D Watch Video Solution

36. Three charges each of value $q$ are placed the
corners of an equilaterla triangle. A fourth
charge $Q$ is placed at the centre of the triangle.
For what value of $Q$, will the charges remain
stationary? In this situation, how much work is done in removing the charges to infinity?

## ( Watch Video Solution

37. A conducting sphere $S_{1}$ of radius $r$ is attached
to an insulating handle. Another conduction sphere $S_{2}$ of radius R is mounted on an insulating stand. $S_{2}$ is initially uncharged. $S_{1}$ is given a charge Q brought into contact with $S_{2}$ and removed. $S_{1}$ is recharge such that the charge on it is again $Q$ and it is again brought into contact with $S_{2}$ and removed. This
procedure is repeated n times.
Find the electrostatic energy of $S_{2}$ after n such contacts with $S_{1}$.

## D Watch Video Solution

38. A conducting sphere $S_{1}$ of radius $r$ is attached
to an insulating handle. Another conduction sphere $S_{2}$ of radius R is mounted on an insulating stand. $S_{2}$ is initially uncharged. $S_{1}$ is
given a charge Q brought into contact with $S_{2}$ and removed. $S_{1}$ is recharge such that the charge on it is again $Q$ and it is again brought
into contact with $S_{2}$ and removed. This procedure is repeated n times.

What is the limiting value of this energy as $n \rightarrow \infty ?$

## D Watch Video Solution

39. A non-conducting disc of radius $a$ and uniform positive surface charge density sigma is placed on the ground, with its axis vertical. A particle of mass $m$ and positive charge $q$ is dropped, along the axis of the disc, from a height H with zero initial velocity. The particle
has $q / m=4 \in_{0} g / \sigma$
Find the value of H if the particle just reaches the disc.

## D Watch Video Solution

40. A charge $Q$ coulomb is uniformly distributed over a sphere volume of radius R metres. Obtain an expression for the energy of the system.
41. What will be the corresponding expression for the energy needed to completely diassemble the planet earth against the gravitational pull amongst its constituent particles? Assume the earth to be a sphere of uniform mass density.
calculate the energy, given that the product of the mass and the radius of the earth to be
$2.5 \times 10^{31} \mathrm{~kg}-m$

## D Watch Video Solution

42. If the same charge of $Q$ coulomb as in part above is given to a spherical conductor of the same radius $R$, what will be the energy of the system?

## - Watch Video Solution

43. A charge $5 \mu C$ is placed at a point. What is
the work required to carry 1 C of charge once round it in a cricle of 12 cm radius?
44. What would be the work done if a point charge $+q$ is taken from a point $A$ to the point on the circumference of a circle with another point charge +q at the centre?


## - Watch Video Solution

45. If a point charge $+q$ is taken first from $A$ to $C$ and then from $C$ to $B$ of a circle drawn with another point charge +q as centre as shown in the figure, then along which path more than will be done.

46. What is the work done in moving a $2 \mu C$ point charge from corner $A$ to corner $B$ of a square $A B C D$ as shown in the figure, when a $10 \mu C$ charge exists at the centre of the square?

47. A uniform field $E$ exists between two charged plates as shown in the figure. What would be the work done in moving a charge $q$ along the
closed rectagnualr path ABCDA?


- Watch Video Solution

48. A point charge $Q$ is placed at point $O$ as
shown in the figure.

is the
potential difference $V_{A}-V_{B}$ positive, negative or zero if Q is postive or negative?

## D Watch Video Solution

49. Name the physical quantity has its unit joule/coulomb. Is it scalar or vector?
50. Define potential difference between two points in an electric field. Derive the relationship between the electric field and the potential difference.
(D) Watch Video Solution
51. Electric potential at a point in an electric field.
52. Define the unit of electric potential.

## D Watch Video Solution

53. Name the physical quantity has its unit joule/coulomb. Is it scalar or vector?

## (D) Watch Video Solution

54. A charge of 2 C moves between two plates maintained at a potential difference of 1 volt.

What is the energy acquired by the charge?

## - Watch Video Solution

55. Give the dependence of electrostatic potential due to a small electric dipole at a far off point lying on the axial line

## - Watch Video Solution

56. Give the dependence of electrostatic potential due to a small electric dipole at a far off point lying on the equitorial line.
57. How is electric field at a point related to potential gradient?

## D Watch Video Solution

58. What is the dimensiona formula of potential gradient?
(D) Watch Video Solution
59. Potential difference between two given points $5, \mathrm{~cm}$ apart, is 20 V . What is the value of electric field?

## D Watch Video Solution

60. Name the physical quantity whose unit is

Volt metre ${ }^{-1}$.
61. In a certain $0.1 m^{3}$ of space, electric potential is found to be 5 V throughout. What is the electric field in this region?

## D Watch Video Solution

62. The electric potential is constant in a region.

What can you say about electric field there?

## D Watch Video Solution

63. If electrostatic field at a point is zero, must the electrostatic potential be also zero at that point?

## D Watch Video Solution

64. Two protons $A$ and $B$ are placed between two parallel plates having a potential difference V as shown in the figure.


Will these protons experience equal or unequal force?
(D) Watch Video Solution
65. What is equipotential surface?
66. What is the shape of equipotential surface for a given point charge?
(D) Watch Video Solution
67. What is the shape of equipotential surfaces
for a uniform electric field?
68. How much work is done in moving a $500 \mu C$
charge between two points on an equipotential surface?

## D Watch Video Solution

69. No work is done in moving a test charge over an equipotential surface. Explain, why.
70. A charge of +1 C is placed at the centre of a spherical shell of radius 10 cm . what will be the
work done in moving a charge of $+1 \mu C$ on its
surface through a distance of 5 cm ?

## D Watch Video Solution

71. Two charges $-q$ and $+q$ are located at points
( $0,0,-a$ ) and ( $0,0, a$ ), respectively. How much
work is done in moving a small test charge from the point $(5,0,0)$ to $(-7,0,0)$ along the $x$-axis? Does
the answer change if the path of the test charge between the same points is not along the $x$-axis?

## D Watch Video Solution

72. What is the direction of electric field w.r.t. and equipotential surface?

## D Watch Video Solution

73. Why does a configuration of charges possess potential energy?
74. When is the potential energy of an electric dipole maximum, when placed in uniform electric field?

## D Watch Video Solution

75. Name the physical quantity, represented by the expression $-\vec{p} \cdot \vec{E}$.
76. Show that work done in moving an electric charge is independent of the path followed?

## D Watch Video Solution

77. Define electric potential at a point. When kept in an electric field, does a proton move form lower to higher potential or from higher to lower potential region?
78. In figure, the two graphs show the variation of electrostatic potential (V) with $1 / r$ ( $r$ being distance of the field point form the point charge) for two point charges $q_{1}$ and $q_{2}$


What are
the signs of the two charges?

Watch Video Solution
79. In figure, the two graphs show the variation of electrostatic potential (V) with $1 / r$ ( $r$ being distance of the field point form the point charge) for two point charges $q_{1}$ and $q_{2}$

the two charges has a larger magnitude and why?
80. Is the electrostatic potential necessarily zero
at a point where the electric field strength is
zero? Give an example to illustrate your answer.

## D Watch Video Solution

81. A test charge $q$ is moved without acceleration
from $A$ to $C$ along the path from the point $A$ to $B$
and then from $B$ to $C$ in electric field as shown in
fig.

Calculate the potential difference between $A$ and C.

D Watch Video Solution
82. A test charge q is moved without acceleration from $A$ to $C$ along the path from the point $A$ to $B$ and then from $B$ to $C$ in electric field as shown in fig.
point( of the two) is the electric potential more and why?

## (D) Watch Video Solution

83. Two identical plane metallic surfaces $A$ and $B$
are parallel to each other in air separated by a distance of 1 cm as shown in the fig.


## Surface

A is given a postive potential 10 V and the outer
surface of $B$ is earthend What is the magnitude
and direction of the uniform electric field between points Y and Z ?
84. Draw a plot showing the variation of electric field E

## D Watch Video Solution

85. Draw a plot showin the variation of electric potential $V$ with distance $r$ due to a point charge q.
86. Derive an expression for the electric potential at a point along the axial line of an electric dipole.

## D Watch Video Solution

87. Show mathematically that the potential at a point on the equitorial line of an electic dipole is
zero.
88. Two point charge $+q$ and $-q$ are separated by a distance $d$. Where besides at infinity is the electric potential zero?

## D Watch Video Solution

89. A regular hexagon of side 10 cm has a charge $5 \mu C$ at each of its vertices. Calculate the potential at the centre of the hexagon.
90. Four point charges are placed at the four corners of a square in the two ways as shown in the fig.


Will the
electric field at the centre of the square, be the
same or different in the two configurations and why?
91. Four point charges are placed at the four corners of a square in the two ways as shown in the fig.

electric
potential at the centre of the square be the
same or difference in the two configurations and why?
92. Two charged spherical conductors of radii
$R_{1}$ and $R_{2}$ when connected by a conducting wire acquire cahrges $q_{1}$ and $q_{2}$ respectively. Find the ratio of their surface charge ensities in terms of their radii.

## D Watch Video Solution

93. The following data was obtained for the dependence of the magnitude of electric field
with distance from a reference point O , within
the charge distribution in the shaded region
show in the fig.


Identify
the charge distribution and justify your answer.

## ( Watch Video Solution

94. The following data was obtained for the dependence of the magnitude of electric field with distance from a reference point O , within
the charge distribution in the shaded region show in the fig.

If the potential due to this charge distribution has a value $V$ at the point $A$, what is its value at the point

95. What is equipotential surface?

## D Watch Video Solution

96. Show that electric field everywhere is normal to the equipotential surface.

## ( Watch Video Solution

97. Draw the equipotential surfaces due to an isolated point charge.
98. For any charge configuration, equipotential surface through a point is normal to the electric field Justify.
(D) Watch Video Solution
99. Draw the equipotential surfaces due to an isolated point charge.

D Watch Video Solution
100. Draw equipotential surfaces due to a point $q>0$.Are these surfaces equidistant from each.

Other? If not, explain why.

## (D) Watch Video Solution

101. Two point charges $+5 \mu C$ and $-5 \mu c$ are placed at a distance 5 cm apart. Draw the equipotential surfaces of the system.

## - Watch Video Solution

102. Two point charges $+5 \mu C$ and $-5 \mu c$ are placed at a distance 5 cm apart. Draw the equipotential surfaces of the system.

## D Watch Video Solution

103. Draw an equipotential surface in a uniform electric field?
104. What is the shape of equipotential surface for a given point charge?

## ( Watch Video Solution

105. The work done in moving a positive charge on an equipotential surface is:

## D Watch Video Solution

106. Show that electric field everywhere is normal
to the equipotential surface.

## - Watch Video Solution

107. Can two different equipotential surfaces intersect each other?

- Watch Video Solution

108. Can two different equipotential surfaces intersect each other?

- Watch Video Solution

109. A dipole, with its charges, $-q$ an $+q$, are located at the ponit ( $0,-\mathrm{b}, 0$ ) and ( $0,+\mathrm{b}, 0$ ), is present in uniform electric field $E$. the equipotential surfaces of this field are planes parallel to the YZ-planes. What is the direction of the electric field $E$ ?

## ( Watch Video Solution

110. A dipole, with its charges, $-q$ an $+q$, are located at the ponit ( $0,-\mathrm{b}, 0$ ) and ( $0,+\mathrm{b}, 0$ ), is present in uniform electric field $E$. the equipotential surfaces of this field are planes
parallel to the YZ-planes. How much torque would the dipole experience in this field?

## D Watch Video Solution

111. Distinguish between electric potential and
electric potential energy and state the relation between them.
112. What do you mean by potential eneryg fo an electric dipoel, when placed in electri field?

## (D) Watch Video Solution

113. What does the negative sign in the expression for potential energy
$(U=-p E \cos \theta)$ signify?

## D Watch Video Solution

114. State the significane of the Millikan experiment.

## D Watch Video Solution

115. The Millikan oil-drop experiment enabled the charge on the electron to be deterined. Two parallel metal plates $P$ and $Q$ are situated in a vaccum. The plates are horizontal and separated by a distance of 5.4 mm , as illustrated in fig.
lower plate $P$ is earthed. The potential difference
between the plates can be varied. An oil droplet of mass $7.7 \times 10^{-15} \mathrm{~kg}$ is oserved to remain stationary between the plates, when palte $Q$ is a $t$ a potential of +850 suggest why plates $p$ and $Q$ must be parallel and horizontal and calcualte the charge with its gin, on the oil droplet.
116. The procedure in was repeated for three
further oil droplets. The magnitude of the charge on each of the droplets was found to be $3.2 \times 10^{-19} C, 6.4 \times 10^{-19} C$ and $3.2 \times 10^{-19} C$
. Explain what value these data and your answer in would guggest for the charge on the electron.

## (D) Watch Video Solution

117. Following are two statements about the relationship between the electric field an electric potential. If the electric field at a certain point is
zero, the nthe electric potential at the same point is also zero.

## D Watch Video Solution

118. Following are two statements about the relationship between the electric field an electric potential. If the electric potential at a certain point is zero, then the electric field at the same point is also zero.
119. Following are two statements about the relationship between the electric field an electric potential. If the electric potential is constant in a region, then the electric field is zero in that region. Giving example, predict whether these statements are correct or false.

## (D) Watch Video Solution

120. Work done to move a charge along a closed path inside an electric field is always zero. Use
this fact to prove that it is impossible to produce an electric field in which all the lines of
force would be parallel straight lines and the density of their distribution would constantly increase in a direction perpendicular to the lines of force as shown in Figure.


## - Watch Video Solution

121. Show that if at some part of a field the lines
of force have the form of arcs of concentric
circles whose centres are at point O (Fig.), the field intensity at each point in this part of the field should be inversely proportional to the distance from the point to 0 .

122. Two small charged bodies interact in air with
a force F. what will be the force of interaction between these bodies be after they are placed in a dielectric of permittivity K , if their potentials are kept the same as they were in air?

## (D) Watch Video Solution

123. Two charged conducting spheres $A$ and $B$ having radii a and b connected to each other by a copper wire. Find the ratio of the electric fields at the surfaces of the two spheres.
124. In the electric field $\vec{E}=3 x \hat{i}-2 y \hat{j}+5 z \hat{k}$, find the potential difference between the ponts
$\mathrm{A}(1,3,5)$ and $\mathrm{B}(3,2,7)^{`}$

## - Watch Video Solution

125. The electric potential at a point is given by $V=3 x^{2} y+5 y^{2}+7 z^{2} X$. Find the magnitude of electric field at the point $(3,2,1)$.

# 126. A small charged metal sphere is situated in 

 an earthed metal box. Illustrates the electric field between the sphere and the metal box. The radius $r$ of the sphere is 2.4 cm . The magnitude of the charge $q$ on the sphere is 0.76 nC .
## D Watch Video Solution

127. In a particular experiment, a high vltage is created by charging an isolated metal sphereas shown in the fig.


The
sphere has diameter 42 cm and any charge on
its surface may be considered as if IT were concentrated at its centre. The air surrounding
the sphere loses its insultaing properties, causing a spark, when the electric field exceeds
$20 \mathrm{kVcm}^{-1}$ by reference to an atom in the air,
suggest the mechanism by which the electric
field causes the air to become conducting.
128. In a particular experiment, a high voltage is
created by charging an isolated metal sphere as
shown in the fig.
The sphere has diameter 42 cm and any charge on its surface may be considered as if it were
concentrated at its center. The air surrounding
the sphere loses its insulating properties,
causing a spark, when the electric field exceeds
$20 \mathrm{kVcm}^{-1}$. Calculate for the charged sphere
when a spark is about to occur the charge on
the sphere


## (D) Watch Video Solution

129. Two small charged metal sphere $A$ and $B$ are situated in a vaccum. The distance between the centres of the spheres is 12.0 cm , as shown in
the fig.

The charge on each sphere may be assumed to be a point charge at the centre of the sphere.

Point $P$ is a movable point that lies on the line
joining the centres of the sphere and is distance
$x$ fromt he centre of sphere $A$. The variation with
distance $x$ fo the electric field strength $E$ at point
$P$ as shown in the figure.


State the evidence provided by in the fig for the statement that the spheres are conductors, the charges on the spheres are either both positive or both negative.
130. Two small charged metal sphere $A$ and $B$ are situated in a vaccum. The distance between the centres of the spheres is 12.0 cm , as shown in
the fig.


The charge on each sphere may be assumed to be a point charge at the centre of the sphere.

Point $P$ is a movable point that lies on the line joining the centres of the sphere and is distance $x$ fromt he centre of sphere $A$. The variation with distance $x$ fo the electric field strength $E$ at point $P$ as shown in the figure.


Use fig to state and explain the distance $x$ at
which the rate of change of potential with distance is maximum and minimum.
(D) Watch Video Solution
131. Two charges of $10^{-9} \mathrm{C}$ each are placed at 1 m apart at two points $A$ and $B$, grpahically, represent the variation of electric potential due
to the two charges as one moves from the point A to $B$ ?

## D Watch Video Solution

132. A charge $Q$ coulomb is uniformly distributed over a sphere volume of radius R metres. Obtain an expression for the energy of the system.
133. The equipotential surfaces of a certain electric field are shown in the fig.


It is
known that $V_{1}>V_{2}$. Use this pattern to reproduce approximately the lines of force of this field. Also indicate the region in which the intensity of the electric field is highest.
134. A man inside an insulated metallic cage does not receive a shock, when the cage is highly charged. Explain, why.

## D Watch Video Solution

135. 60 J of work must be done to move electric charge equal to 5 C from a point, where potential is +20 V to another point, where potential is $V$ volt. Find the value of $V$.
136. 10 joule of work must be done to move a charge of -200 C from the point $A$ to point $B$.

Which of the two points is at higher potential?

## D Watch Video Solution

137. 100 joule of work must be done to move a charge of -200 C from the point $A$ to point $B$.

What is the potential difference.?
138. The potential at a point 0.1 m from an isolated point charge is +100 volt. Find the nature and magnitude of the point charge.

## D Watch Video Solution

139. What is the electric potential at the surface
of an iron nucleus? The radius of the nucelus is
$4.2 \times 10^{-15} \mathrm{~m}$ and the atomic number is 26 .
140. The electric field at a point due to a point
charge is $20 N C^{-1}$ and the electric potential at
the point is $10 J C^{-1}$ Calculate the distance of
the point from the charge and the magnitude of the charge.

## (D) Watch Video Solution

141. The potential at a certain distance from a point charge is 600 volt and the electric field is $200 N C^{-1}$ find the distance of the point from the charge.

## - Watch Video Solution

142. The potential at a certain distance from a point charge is 600 volt and the electric field is $200 N C^{-1}$ find the magnitude of the charge.

## - Watch Video Solution

143. A spherical oil drop of raiuds $10^{-4} \mathrm{~cm}$ has on it at a certain time a charge of 40 electrons.

Calculate the energy that would be required to
place an additional electron on the drop. Charge
on a electron $=1.6 \times 10^{-19} C$

## D Watch Video Solution

144. Two charges equal to $+20 \mu C$ and $-10 \mu C$
are placed at points 6 cm apart. Find the value of
the potential at a point distant 4 cm on the right bisector of the line joining the two charges.

## Watch Video Solution

145. Two tiny spheres carrying charges $1.5 \mu C$ and $2.5 \mu C$ are located 30 cm apart. Find the potential and electrical field at the mid-point of the line joining the two charges.

## D Watch Video Solution

146. Two charges of values $50 \mu C$ and $100 \mu C$ are placed at a distance of 6 cm apart. Find the field and potential at a distance of 6 cm apart. Find the field and potential at a point(between two charges) 2 cm from the charge of value $50 \mu C$.

# 147. Four point charges <br> $16 \mu C,-16 \mu C, 16 \mu C$ and $-16 \mu C$ are 

located at the corners of a square of each side
10 cm . Find the vlaue of electric field intensity and electric potential at the centre of the square.

## D Watch Video Solution

148. Two point charges each of $3 \times 10^{-9} \mathrm{C}$ located at the two vertices of an equilatera
triangle of side 20 cm . How much work must be done to bring a charge of $10^{-9} \mathrm{C}$ upto the thrid corner of the triangle from infinity?

## D Watch Video Solution

149. A small particle carrying a negative charge of $1.6 \times 10^{-19} \mathrm{C}$ is suspended in equilibrium between the horizontal metal plates 5 cm apart, having a potential difference of 3000 volt across them. Find the mass of the particle.
150. What is the potential gradient $\left(\in V m^{-1}\right)$ at a distance o $10^{-12} \mathrm{~m}$ from the centre fo the platinum nucleus? What is the potential gradient at the surface of nucleus? Atomic number of platinum is 78 and the radius of platinum nucleus may be taken as $5 \times 10^{-15} \mathrm{~m}$.

## D Watch Video Solution

151. The electric potential $\mathrm{V}(\mathrm{x})$ in a region along the X -axis varies with the distance x (in metre) according to the relation $V(x)=4 x^{2}$. Calculate
the force experienced by a $1 \mu C$ charge placed at point $x=1 \mathrm{~m}$.

## D Watch Video Solution

152. The electric potential $V(x)$ in a region along the X -axis varies with the distance x (in metre) according to the relation $V(x)=4 x^{2}$. Calculate the force experienced by a $1 \mu C$ charge placed at point $x=1 \mathrm{~m}$.

## D Watch Video Solution

153. In the nucleus of $-(92) U^{238}$, two porotns at a distance of $6 \times 10^{-1} \mathrm{~m}$. Calculate their electrostatic potential energy.

## (D) Watch Video Solution

$$
\begin{aligned}
& \text { 154. Two } \\
& q_{1}=10 \times 10^{-8} c \text { and } q_{2}=-2 \times 10^{-8} C \text { are }
\end{aligned}
$$

separated by a distance of 60 cm in air. Find at what distance form the charge, would the electric potential be zero.
155.
Two
points
charges
$q_{1}=10 \times 10^{-8} c$ and $q_{2}=-2 \times 10^{-8} C$ are separated by a distance of 60 cm in air. Also calulate the electrostatic potential energy of the system.

## D Watch Video Solution

156. Two point charges $4 Q$ and $Q$ are separated by a distance of 1 m in air. At what point on the
line joining the two charges is the electric field intensity zero?

## - Watch Video Solution

157. Two point charges $4 Q$ and $Q$ are separated by a distance of 1 m in air. Also calculate the electrostatic potential energy of the system of two charges, taking $Q=2 \times 10^{-7} C$.

## - Watch Video Solution

158. Determine the electrostaic energy of a
system containing two charges
$7 \mu C$ and $-2 \mu C$ separated by a distance of 18 cm.

## D Watch Video Solution

159. How much work is required to separate the two charges infinitely away from each other?

## D Watch Video Solution

160. 

Two point charges equal to $+10 \mu C$ and $+20 \mu C$ are 1 m apart. What is the
amount of work done to bring them clsoer to each other by 50 cm .

## - Watch Video Solution

161. Three charges $-q, Q$ and $-q$ are placed at equal distances on a striaght line. If the potential energy of the system of three charges is zero, then what is the ratio of $\mathrm{Q}: \mathrm{q}$ ?
162. Three points charges $+q,+2 q$ and $Q$ are placed at the three vertices of an equilateral triangle. Find the value of charge Q (in terms of
q), so that electric otential energy of the system is zero.

## D Watch Video Solution

163. Two isolated metallic solid spheres of radii $R$ and $2 R$ are charged, such that both of these have same charge density. The spheres are located far away from each other and connected
by a thin conducting wire. Find the new charge density on the bigger sphere.

## D Watch Video Solution

164. Two electrons are moving towards each other, each with a velocity of $10^{6} \mathrm{~ms}^{-1}$. What will be closest distance of approach between them?
165. Calculate the work done to dissociate the
system of three charges $\left(q=1.6 \times 10^{-10} C\right)$
placed on the vertices of a triangle as shown in
the fig


- Watch Video Solution

166. An electric dipoole, when placed at an angle $30^{\circ}$ with a uniform electric field of $10^{4} N C^{-1}$, expereinces a torque of $9 \times 10^{-26} \mathrm{~N}$ m. Calculate the dipole moment and electrostatic potential energy in this position.

## D Watch Video Solution

167. An electric dipole consists of two opposite charges each of magnitude $6 \times 10^{-8}$ coulomb separated by 6.0 cm . The dipole is placed in an external electric field of $5 \times 10^{-5} N C^{-1}$ What
maximum torque will the field exert on the dipole?

## D Watch Video Solution

168. An electric dipole consists of two opposite
charges each of magnitude $6 \times 10^{-8}$ coulomb separated by 6.0 cm . The dipole is placed in an external electric field of $5 \times 10^{-5} \mathrm{NC}^{-1}$ How much work will an external agent have to do in turning the dipole through $180^{\circ}$, starting from the position $\theta=0^{\circ}$ ?

## Exercise

1. Find an expression for line integral of electric intensity.

## D Watch Video Solution

2. The work done in moving a positive charge on an equipotential surface is:
3. Show that the work done in moving a unit charge along a closed path is zero.

## (D) Watch Video Solution

4. Derive an expression for electric potential at a point due to a point charge.

## D Watch Video Solution

5. Define electric potential. What is the SI unit of potential? Obtain an expression for electric
potential at a distance $r$ from isolated unit positive charge.

## D Watch Video Solution

6. Define electric potential at a point. Derive an expression for the potential at a point due to a point charge.
7. Derive an expression for the electric potential at a point along the axial line of an electric dipole.

## D Watch Video Solution

8. Derive an expression for electric field intensity
at a distance $r$ from a point charge $q$.

## D Watch Video Solution

9. Deduce an expression for electric potential due to an electric dipole at any point on its axis.

Mention one contrasting feature of electric potential of dipole at a point as compared to that due to a single charge.

## D Watch Video Solution

10. Deduce an expression for electric potential due to an electric dipole at any point on its axis.

Mention one contrasting feature of electric
potential of dipole at a point as compared to that due to a single charge.

## D Watch Video Solution

11. How is electric field at a point related to potential gradient?

## D Watch Video Solution

12. How is electric field at a point related to potential gradient?
13. What is the shape of equipotential surfaces
for a uniform electric field?

## D Watch Video Solution

14. Draw the equipotential surfaces due to an electric dipole. Locate the points, where the potential due to the dipole is zero.
15. Obtain an expression for potential energy of
the configuration of
three charges
Hence generalise the result for a system of $n$ point charges?

## D Watch Video Solution

16. Depict the equipotential surfaces for a system of two identical positive point charges
placed at a distance d apart.
17. Deduce the expression for the potential energy of a system of two point charges
$q_{1}$ and $q_{2}$ brought from infinity to the points
$\vec{r}_{1}$ and $\vec{r}_{2}$ respectively in the presence of electric field $\vec{E}$.

## D Watch Video Solution

18. Two uniformly large parallel thin plates
having charge densities $+\sigma$ and $-\sigma$ are kept in the X-Z plane at a distance ' $d$ ' apart. Sketch an
equipotential surface due to electric field between the plates. IF a particle of mass m and charge -q remains stationary between the plates, what is the magnitude and direction of this field?

## D Watch Video Solution

19. Two point charges $q_{1}$ and $q_{2}$ are kept at a distance of $r_{12}$ in air. Deduce the expression for the electrostatic potential energy of the system.
20. Derive an expression for potential at a point due to a group of point charges?

## D Watch Video Solution

21. Define electric potential energy. Give its units.

Calculate electric potential energy of system of $n$ point charges.
22. When is the torque acting on an electric dipole maximum when placed in uniform electric field?

## D Watch Video Solution

23. Derive an expression for torque experiencedby electric dipole in a uniform electric field
24. When is the potential energy of an electric dipole maximum, when placed in uniform electric field?

## D Watch Video Solution

25. Show that the line integral of electric field is independent of the path followed?
26. Show that work done in moving an electric charge is independent of the path followed?

## (D) Watch Video Solution

27. Define electric potential. What is the SI unit of potential? Obtain an expression for electric potential at a distance $r$ from isolated unit positive charge.
28. Define potential difference between two points in an electrostatic field. Find an expresion for it. Define its SI unit.

## D Watch Video Solution

29. Define potential difference between two points in an electrostatic field. Find an expresion for it. Define its SI unit.
30. Define potential difference between two points in an electric field. Derive the relationship between the electric field and the potential difference.

## D Watch Video Solution

31. Find an expression for line integral of electric intensity.
32. Derive an expression for electric potential at a point due to electric dipole. Hence find its value on
equatorial line?

## D Watch Video Solution

33. Derive an expression for electric potential at
a point due to electric dipole. Hence find its
value on
equatorial line?
34. Obtain an expression for potential energy of the configuration of three charges Hence generalise the result for a system of $n$ point charges?

## D Watch Video Solution

35. Find out the expression for the potential energy of a system of three point charges
$q_{1}, q_{2}$ and $q_{3}$ located at $\vec{r}_{1}, \vec{r}_{2}$ and $\vec{r}_{n}$ w.r.t the common origin 0 .

## D Watch Video Solution

36. When is the potential energy of an electric dipole maximum, when placed in uniform electric field?
37. Depict the orientation of the dipole in (a)stable and (b) unstable equilibrium in a uniform electric field.

## D Watch Video Solution

38. When is the potential energy of an electric dipole maximum, when placed in uniform electric field?
