びdoubtnut

India's Number 1 Education App

PHYSICS

BOOKS - MODERN PUBLICATION

ELECTRICAL MEASUREMENTS

Example

1. Two parallel resistors of 5 ohm nd 20 ohm are connected in left arm of a metre bridge. If the null point is at 40 cm from left end of the wire, calculate the value of resistance connected in right arm.

- Watch Video Solution

2. A cell of e.m.f. 4 V and of negligible internal resistance is connected in series with a potentiometer wire of length 400 cm . The e.m.f. of a

Leelanche cell is found to be balacned at 150 cm from the positive end of the potentiometer wire. What is the e.m.f. of the Leclanche cell ?

- Watch Video Solution

3. Two cells of emfs 1.5 V and 2.0 V internall resistance 1Ω and 2Ω are connected in parallel so as to send current in the same direction through an external resistance of 5Ω.

Draw the circuit diagram.

- Watch Video Solution

4. Two cells of emfs 1.5 V and 2.0 V internall resistance 1Ω and 2Ω are connected in parallel so as to send current in the same direction through an external resistance of 5Ω.

Draw the circuit diagram.

- Watch Video Solution

5. Two cells of emfs 1.5 V and 2.0 V internall resistance 1Ω and 2Ω are connected in parallel so as to send current in the same direction through an external resistance of 5Ω.

Using Kirchhoff's rules, calculate.
potential difference across the 5Ω resistance.

- Watch Video Solution

6. Three cells are connected in parallel with their like poles connected together with wires of negligible resistance. If the emfs of the cells are 2 , 1 an 4 V respectively and their internal resistances are 4,3 and 2Ω respectively, find the current through each cell.

- Watch Video Solution

7. Two cells of emf 2 V and 4 V and internal resistance 1Ω and 2Ω respectively are connected in parallel so as to send the current in the
same direction through an external resistance of 10Ω. Find the potential difference across 10Ω resistor.

- Watch Video Solution

8. Twelve wire, each having resistance r, are joined to form a cube.Find the equivalent resistance between the end of a face diagonal such as a and c.

- Watch Video Solution

9. 12 wires each of resistance r ohm are connected in the form of a skelton cube. Find the equivalent resistance of the cube, when a cell is joined across any one of the 12 wires forming the cube.

- Watch Video Solution

10. Four resistors of $150 \mathrm{ohm}, 12 \mathrm{ohm}, 4 \mathrm{ohm}$ and 10 ohm given in cyclic order to form a wheat stone bridge. What resistance (in ohm) should be
connected in parallel across the 100 hm resistor to balance the wheat stone bridge .

- Watch Video Solution

11. 4 resistance $P=50 h m, Q=6$ ohm, $R=50$ ohm \& $S=60$ ohm are connected in Four Arms of a wheatstone bridge. If a cell of EMF 1.5 v and negligible internal resistance is connected across the bridge, calculate he current in the arms of the Wheat stone bridge and the cell.

- Watch Video Solution

12. A wire connected in the left gap of a meter bridge balance a $10 \Omega r$ esistance in the right gap to a point, which divides the bridge wire in the ratio $3: 2$. If the length of the wire is 1 m . Calculate the length of one ohm wire.

- Watch Video Solution

13. In a metre bridge, the balance point is found to be at 39.5 cm from the end A, when the resistor Y is of 12.5Ω. Determine the resistance of X. Made of thick copper strips? Determine the balance point of the bridge above if X and Y are interchanged. What happens if the galvanometer and cell are interchanged at the balance point of the bridge ? Would the galvanometer show any current?

- Watch Video Solution

14. With two resistance R_{1} and $R_{2}\left(>R_{1}\right)$ in the two gaps of a metre bridge the balance was found to be $1 / 3 \mathrm{~m}$ from the zero end. When a6 Ω resistance is connected in series with the smaller of the two resistance, the point is shifted to $2 / 3 \mathrm{~m}$ from the same end, then R_{1} and R_{2} Find the resistance of the two wires.

- Watch Video Solution

15. A potentiometer wire of length 1 m has a resistance 10 ohm . It is connected to 6 V battery in series with a resistance of 5 ohm. Determine the emf of the primary cell which gives a balance point at 40 cm .

- Watch Video Solution

16. The resistance of a potentiometer wire of length 10 m is 25Ω. A resistance box and a 2 volt accumulator are connected in series with it. What resistance should be introduced in the box to have a potential drop of one microvolt per millimetre of the potentiometer wire?

- Watch Video Solution

17. A 10 meter long wire of uniform cross section of 20Ω resistance is used as a potentiometer wire. This wire is connected in series with a battery of 5 V along with an external resistance of 480 Omega if an unknown emf epsilon is balanced at 600 cm of this wire, calculate the potential gradient of the potentiometer wire.

- Watch Video Solution

18. A 10 meter long wire of uniform cross section of 20Ω resistance is used as a potentiometer wire. This wire is connected in series with a battery of 5 V along with an external resistance of 480 Omega if an unknown emf epsilon is balanced at 600 cm of this wire, calculate the value of the unknown emf.

- Watch Video Solution

19. With a certain cell, the balance point is obtained at 65 cm from the zero end of a potentiometer wire. With another cell, whose e.m.f. is less than that of the first by 0.1 V , the balance point is obtained at 60 cm . What is the e.m.f. of the first cell ?

- Watch Video Solution

20. A potentiometer has 10 wires each of 1 meter length and the total resistance is 20Ω. Find the resistance to be connected to the driving battery of emf 2 volts to produce a potential drop of $1 \mu V$ per millimeter.

- Watch Video Solution

21. Three resistors are connected to form the sides of a triangle $A B C$, the resistance of the sides $A B, B C$ and $C A$ are 40 ohms, 60 ohms and 100 ohms respectively. Find the effective resistance between the points A and B in ohms .

- Watch Video Solution

22. In the circuit show in the figure E,F,G and H are cells of e.m.f. 2,1,3 and 1 V and their internal resistances are $2,1,3$ and 1Ω respectively. Calculate the
potential difference across the terminals of each of the cells G and H .

(a)

- Watch Video Solution

23. In the circit show in the figure $E_{1}=3 V, E_{2}=2 V, E_{3}=1 V$ and the resistances $R=r_{1}=r_{2}=r_{3}=1 \Omega$. Find the potential difference
between the points A and B and the current through each branch.

- Watch Video Solution

24. In the circit show in the figure $E_{1}=3 V, E_{2}=2 V, E_{3}=1 V$ and the resistances $R=r_{1}=r_{2}=r_{3}=1 \Omega$. If r_{2} is short circuited and the point A is conneted to the point B, find the currents through E_{1}, E_{2} and E_{3} and the resistor R

25. An electrical circuit is shown in the Fig. Calculate the potential difference across the resistance of 400 ohm, as will be measured by the voltmeter V of resistance 400 ohm, either by applying Kirchhoff's rules or otherwise.

- Watch Video Solution

26. A part of a circuit in steady state along with the currents flowing in the branches, the values of resistances,etc, is shown in figure.Calculate the
energy stored in the capacitor.

- Watch Video Solution

27. In the circuit show in figure
$E_{2}=2 V, E_{1}=3 E_{3}=6 V, C=5 \mu F, R_{1}=2 R_{2}=6 O e g a, R_{3}=2 R_{4}=4 \mathrm{~s}$
. Find the current in R_{3} and the energy stored in the capacitor.

- Watch Video Solution

28. In the circuit show in \quad in \quad figure
$E_{2}=2 V, E_{1}=3 E_{3}=6 V, C=5 \mu F, R_{1}=2 R_{2}=6$ Oega,$R_{3}=2 R_{4}=4 \mathrm{~s}$
. Find the current in R_{3} and the energy stored in the capacitor.

- Watch Video Solution

29. In a wheatstone bridge, the resistance of the arms of the bridge are $A B=2 \Omega, B C=4 \Omega, A D=1 \Omega$ and $D C=3 \Omega$. a cell of emf 2volt the terminals of negligible resistance to A and C is connected. If a galvanometer of resistance 10Ω is connected between B and D, find the current in the galvanometer.
30. A potentiometer wire of length 100 cm has a resistance of 10Ω. It is connected in series with a resistance and an accumulator of emf 2 V and negligible internal resistance. A source of emf 10 mV is balanced against a length of 40 cm of the potentiometer wire. what is the value of the external resistance?

- Watch Video Solution

31. State the basic concept on which Kirchhoff's first law is based?
32. What is the loop rule?

- Watch Video Solution

33. Draw the circuit diagram of Wheatstone bridge. Under what condtion, no current flows through its galvanometer (balanced condition)?

- Watch Video Solution

34. Name two practical applications of Wheatstone bridge?

- Watch Video Solution

35. What is principle of a metre bridge?

- Watch Video Solution

36. Why is a slide wire bridge also called a metre bridge?

- Watch Video Solution

37. Why are the connections between the resistors in a meter bridge made of thick copper strips?

- Watch Video Solution

38. In a meter bridge, two unknown resistances R and S when connected in two gaps, give a null point at 40 cm from one end. What is the ratio of R and S ?

- Watch Video Solution

39. The resistance in the left gap of a metre bridge is 10Ω and the balance point is 40 cm form the left end. Calculate the value of the unknown resistance.
40. Name the device used for measuring the e.m.f. of a cell.

- Watch Video Solution

41. Why is a potentiometer named as potentiometer?

- Watch Video Solution

42. State the principle of a potentiometer.

- Watch Video Solution

43. Why should the potentionmeter wire be of uniform cross-section and composition?
44. By which material is a potentiometer wire normally made and why?

- Watch Video Solution

45. Of which material is a potentionmeter wire normally made and why?

- Watch Video Solution

46. What type of cell should be used in the main circuit of the potentiometer and why?

- Watch Video Solution

47. Why electric current should not be passed through potentiometer wire for a long time continuously?
48. Sometmes balance point may not be obtained on the potentiometer wire. Why?

- Watch Video Solution

49. The e.m.f. of the cell used in the main circuit of the potentiomter should be more than the potential diference to be measured. Why?

- Watch Video Solution

50. Name the device used for measuring the internal resistance of a secondfary cell.

- Watch Video Solution

51. Write down the relation between the e.m.f. of a cell and its internal resitance.
52. Define junction and loop. State Kirchoff's laws.

- Watch Video Solution

53. Explain the significance of Kirchhoff's law.

- Watch Video Solution

54. Using meter bridge, it is advised to obtain the null point in the middle of the wire. why?

- Watch Video Solution

55. Find out the magntude of resistance X in the circuit shown in the figure, when no current flows through the 5Ω resistor.

- Watch Video Solution

56. What is the resistance between points A and B in the circuit shown in the figure.

(D) Watch Video Solution

57. If each of the resistances in network shown in the figure is R, what is the resistance between terminals A and C ?

58. Draw a circuit diagram for determining the unknown resistance R using meter bridge. Explain briefly its working, giving the necessary formula used.

- Watch Video Solution

59. Why is a potentiometer preferred over a voltmeter for determining the e.m.f. of a cell?

- Watch Video Solution

60. The variation of potential difference V with length l in the case of two potentiometers, P and Q is as shown in the figure. Which of these two will
you prefer for comparing the emf's of the two primary cells?

- Watch Video Solution

61. How can you make a potentiometer of given wire length more sensitive using resistance box?

- Watch Video Solution

62. Draw circuit diagram for the comparison of e.m.fs of two cells with the help of a potentiometer.

- Watch Video Solution

63. How will you use potentiometer to determine internal resistances of a cell?

- Watch Video Solution

64. In a potentiometer experiment, the balancing with a cell is at length 240 cm . On shunting the cell with a resistance of 2Ω, the balancing length becomes 120 cm . Find the internal resistasnce of the cell.

- Watch Video Solution

65. In the circuit shown in the figure, $A B$ is a resistance wire of uniform cross-section in which a potential gradient of $0.01 V^{-1}$ exists.

If the
galvanometer G shows zero deflection what is the e.m.f. E_{1} of the cell used?

- Watch Video Solution

66. In the circuit shown in the figure, $A B$ is a resistance wire of uniform cross-section in which a potential gradient of $0.01 \mathrm{Vcm}^{-1}$ exists.

If the internal resistance of the deriver cell increases on some account, how will it change the balance point in the experiment?

- Watch Video Solution

67. A cell of e.m.f. 1 V gives a balance point at 40 cm length of a potentioeter wire. For another cell, the balance point shifts to 60 cm . Find the e.m.f. of the second cell.

- Watch Video Solution

68. Two students X and Y performs an experiment on potentiometer separately using the ciruit diagram shown in the fig keeping other things unchanged
X increases the value of resistance R.
How would these changes affect the position of null point in each case

and why?

- Watch Video Solution

69. Two students X and Y performs an experiment on potentiometer separately using the ciruit diagram shown in the fig keeping other things unchanged
Y decreases the value of resistance S in the set up.
How would these changes affect the position of null point in each case

and why?

- Watch Video Solution

70. Why do we prefer potentiometer of longer length for sensitive measurements?

- Watch Video Solution

71. Explain the principle on which the working of a potentiometer is based. Why is the use of potentiometer preferred over that of a voltmeter for measuring the e.m.f. of a cell.
72. Why is a potentiometer preferred over a voltmeter for determining the e.m.f. of a cell?

- Watch Video Solution

73. Figure shows a part of an electric circuit.The potentials at the points a, b and c are $30 \mathrm{~V}, 12 \mathrm{~V}$ and 2 V respectively.Find the currents through the three resistors.

74. Determine the values of currents I_{1}, I_{2} and I_{3} in the network shown in the figure.

Watch Video Solution
75. In the circuit shown in the figure, calculate the potential difference across the capacitor C .

Find the potential differnece across capacitor

- Watch Video Solution

76. Find the equivalent resistance between points A and B of the network of resistors shown in the figure. Each resistor is of resistance r.

77. Eight equal resistors, each of resistance r are connected along the edge of a pyramid $O A B C D$ having square base $A B C D$. Calculate the equivalent resistance of the network between the points A and D.

- Watch Video Solution

78. Find the equivalent resistance of the network of resistors shown in the figure between the points A and B.

[^0]79. A short circuit occurs in a telephone cable having a resistance of $0.45 \Omega m^{-1}$. The circuit is tested with a Wheat stone bridge network have values of 100Ω and $1,110 \Omega$ respectively. A balance condition is found when the variable resistor has a value of 400Ω. Calculate the distance down the cable, where the short has occured.

- Watch Video Solution

80. Two cells, E_{1} and E_{2} of emfs 4 V and 8 V having internal resistances 0.5Ω and 1.0Ω respectively are connected in opposition to each other. This combination is connected in opposition to with resistance of 4.5Ω and 3.0Ω. Another resistance of 6Ω is connected in parallel across the 3Ω resistor. Draw the circuit diagram

- Watch Video Solution

81. Two cells of e.m.f. 6 V and 12 V and internal resisatnce lohm and 20 hm respectively are connecetd in parallel so as to send current in the same
direction through an external resistance of 150 ohm . Draw the circuit diagram.

- Watch Video Solution

82. Two cells of e.m.f. 6 V and 12 V and internal resisatnce lohm and 20 hm respectively are connecetd in parallel so as to send current in the same direction through an external resistance of 150 hm . calculate current in each branch of the circuit (c) potential difference across the 15 ohm resistor.

- Watch Video Solution

83. Two cells of e.m.f. of 1.6 V and 2.4 V have internal resistance 2 and 4 respectively. The two resistance wires positive poles are connected to resistance of 6 and negative poles connected to 8 ohm. If another wire of 10 is connected between the mid-points of these wires, what is the potential difference across it.
84. A battery of 10 V and negligible internal resistance is connected across the diagonally opposite corners of a cubical network consisting of 12 resistors each of resistance 1Ω. Determine equivalent resistance of the network and the current through the battery.

- Watch Video Solution

85. Calculate the resistance between points X and Y in the circuit shown in the figure

[^1]86. In a Wheatstone's network, $P=2 \Omega, Q=2 \Omega, R=2 \Omega$ and $S=3 \Omega$.

The resistance with which S is to be shunted in order that the bridge may be balanced .

- Watch Video Solution

87. In a meter bridge when the resistance in the left gap is 2Ω and an unknown resistance in the right gap the balance point is obtained at 40 cm from the zero end. On shunting the unknown resistance with 2Ω, find the shift of the balance point on the bridge wire

- Watch Video Solution

88. In a meter-bridge experiment with a resistance R_{1} in left gap and a resistance X in a right gap. null point is obtained at 40 cm from the left emf. With a resistance R_{2} in the left gap, the null point is obtainned at 50 cm from left hand. Find the position of the left gap is containing R_{1} and R_{2} in series.
89. In a meter-bridge experiment with a resistance R_{1} in left gap and a resistance X in a right gap. null point is obtained at 40 cm from the left emf. With a resistance R_{2} in the left gap, the null point is obtainned at 50 cm from left hand. Find the position of the left gap is containing R_{1} and R_{2} in parallel.

- Watch Video Solution

90. In comparing the resistance of two cells P and Q with a sides wire bridge, a balance point is obtained when the sliding contact is 30 cm from the zero end of the wire. The resistances P and Q are interchanged and the balance is obtained at 120 cm from the same emf. Find the ratio of the resistance P and Q and the length of the bridge wire

- Watch Video Solution

91. A cell gives a balance with 85 cm of a potentiometer wire. When the terminals of the cell are shorted through a resistance of 7.5Ω, the balance is obtained at 75 cm . Find the internal resistance of the cell.

- Watch Video Solution

92. It is found that 125 cm length of a potentiometer wire is required to balance the e.m.f. of a Daniel cell but that only 100 cm of the wire is required for the balance, if the poles of the ell are joined to a resistance of 2 ohm. Calculate the internal resistance of the cell.

- Watch Video Solution

93. A cell can be balanced against 110 cm and 100 cm of potentiometer wire respectively, when open icrcuited and when short circuited through a resistance of 10 ohm. Find the internal resistance of the cell.
94. The potentiometer wire of length 100 cm has a resistance of 10Ω. It is connected in series with a resistance of 5Ω and an accumulat or emf 3 V having negligible resistance. A source 1.2 V is balanced against a length 'L' of the potentionmeter wire. find the value of L .

- Watch Video Solution

95. In an experiment to determine the internal resistance of a cell, the null point is obtained at 2 cm , when the cell is shnted by a resistance of 5Ω. When the cell is shunted by a resistance of 20Ω, the null point is obtained at 3 cm . Find the internal resistance of the cell.

- Watch Video Solution

96. In a potentiometer, a standard cell of emf 5 V and of negligible resistance maintains a steady current through the galvanometer wire of length 5 m . Two primary cells of emfs ε_{1} and ε_{2} are joined in series with
(i) same polarity and (ii) apposite polarity.The combination is connected
through it galvanometer and a joined to the potentiometer. The balancing length is the two cases are found to be 350 cm and 50 cm respectively

Draw the necessary circuit diagram.

- Watch Video Solution

97. In a potentiometer, a standard cell of emf 5 V and of negligible resistance maintains a steady current through the galvanometer wire of length 5 m . Two primary cells of emfs ε_{1} and ε_{2} are joined in series with
(i) same polarity and (ii) apposite polarity.The combination is connected through it galvanometer and a joined to the potentiometer. The balancing length is the two cases are found to be 350 cm and 50 cm respectively

Find the value of emfs of the two cells

- Watch Video Solution

98. Two cells of emfs E_{1} and $\left(E_{2}\left(E_{1}>E_{2}\right)\right.$ are connected as shows in figure

When a potentiometer is connected between A and B , the balancing length of the potentiometer wire is 300 cm . On connecting the same potentiometer between A and C , the balancing length is 100 cm . The ratio E_{1} / E_{2}

- Watch Video Solution

99. A cell of e.m.f. 2 V and negligible internal resistance is connected to a potentiometer wire of resistance 10 Omega and length 4 m . The potential difference per unit length (potential gradient) of the wire is

- Watch Video Solution

100. A standerd cell emf 1.08 V is balance by the potential difference across 91 cm of a meter long wire applied by a cell of emf 2 V through a series resistor of resistance 2Ω. The internal resistance of the cell is zero.

Find the resistance per unit length of the potentiometer wire.

- Watch Video Solution

101. A potentiometer wire carries current. The potential difference across

70 cm of its balances the potential difference across a 2 ohm coil supllied by a cell of e.m.f. 2 volt. When a 1 ohm coil is placed in parallel with the 2 ohm coil, a length equal to 50 cm of the potentiometer wire is required to balance the potential difference across the parallel combination. What is the internal resistance of the 2 V cell?

- Watch Video Solution

102. A certain unknown resistance is connected in the left gap and a resistance box in the right gap of a metre bridge. By introducing a
resistance of 10Ω with the help of resistance box, the balance point is determined. If the balance point shift by 20 cm on increasing the resistance from the resistance box by 12.5Ω Find the value of unknown resistance.

- Watch Video Solution

103. A standerd cell emf 1.08 V is balance by the potential difference across 91 cm of a meter long wire applied by a cell of emf 2 V through a series resistor of resistance 2Ω. The internal resistance of the cell is zero.

Find the resistance per unit length of the potentiometer wire.

- Watch Video Solution

104. There is a potentiometer wire of length 1200 cm and 60 mA current is flowing in it. A battery of emf 5 V and internal resistance of 20 ohm is balanced on potentiometer wire with balancing length 1000 cm . find the resistance of the potentiometer wire
105. There is a potentiometer wire of length 1200 cm and 60 mA current is flowing in it. A battery of emf 5 V and internal resistance of 20 ohm is balanced on potentiometer wire with balancing length 1000 cm . if a voltmeter is connected across the cell, the balancing length decreasing by 20 cm find reading of the voltmeter

- Watch Video Solution

106. There is a potentiometer wire of length 1200 cm and 60 mA current is flowing in it. A battery of emf 5 V and internal resistance of 20 ohm is balanced on potentiometer wire with balancing length 1000 cm . if a voltmeter is connected across the cell, the balancing length decreasing by 20 cm find reading of the voltmeter

- Watch Video Solution

107. Derive the expression for internal resistance of a cell.

- Watch Video Solution

108. What is the principle of a potentiometer? With the help pf circuit diagram, explain the use of potentiometer to measure internal resistance of a given primary cell.

- Watch Video Solution

109. Using Kirchoff's law, derive the condition for the balance of a Wheatstone bridge circuit.

- Watch Video Solution

110. Using Kirchoff's law, derive the condition for the balance of a Wheatstone bridge circuit.
111. State and explain Kirchhoff's laws.

- Watch Video Solution

112. State Wheatstone bridge principle. Use kirchoff'slaws to obtain the relation bteween the resistance in four arms of the Wheatstone bridge by drawing circuit diagram.

- Watch Video Solution

113. What is the principle of a metre bridge ? With a circuit diagram, explain how a metre bridge can be used to determine an unknown resistance of a given wire.

- Watch Video Solution

114. Deduce the conditions for balance in a wheatstone bridge. Using the principle of Wheatstone bridge, describe the method to determine the specific resistane of a wire in the laboratory. Draw the circuit diagram and write the formula used. Write any two important precautions you would observe, while performing the experiment.

- Watch Video Solution

115. What is Wheatstone bridge? Deduce the condition for which Wheatstone bridge is balanced.

- Watch Video Solution

Exercise

1. State and explain Kirchhoff's laws.
2. State and explain Kirchhoff's laws.

- Watch Video Solution

3. State and explain Kirchhoff's laws.

- Watch Video Solution

4. Derieve condition of a balanced wheatstone's bridge.

- Watch Video Solution

5. Using Kirchoff's law, derive the condition for the balance of a Wheatstone bridge circuit.
6. Using Kirchoff's law, derive the condition for the balance of a Wheatstone bridge circuit.

Watch Video Solution

7. State Wheatstone bridge principle. Use kirchoff'slaws to obtain the relation bteween the resistance in four arms of the Wheatstone bridge by drawing circuit diagram.

- Watch Video Solution

8. State Wheatstone bridge principle. Use kirchoff'slaws to obtain the relation bteween the resistance in four arms of the Wheatstone bridge by drawing circuit diagram.

- Watch Video Solution

9. Draw the circuit diagram of Wheatstone bridge. Under what condtion, no current flows through its galvanometer (balanced condition)?

- Watch Video Solution

10. Draw the circuit diagram of Wheatstone bridge. Under what condtion, no current flows through its galvanometer (balanced condition)?

- Watch Video Solution

11. With help of circuit diagram, explain how a meter bridge can be used to find unknown resistance of a given wire.

- Watch Video Solution

12. Explain the principle of Wheatstone bridge for determining and unknown resistance. How is it realised in actual practice in the
laboratory?

- Watch Video Solution

13. What is a slide wire bridge? How can you find unknown resistance by it?

- Watch Video Solution

14. With help of circuit diagram, explain how a meter bridge can be used to find unknown resistance of a given wire.

- Watch Video Solution

15. Draw a circuit diagram for determining the unknown resistance R using meter bridge. Explain briefly its working, giving the necessary formula used.
16. Draw a circuit diagram of a meter bridge and write the necessary mathematical relation used to determine the value of unknown resistance. Why cannot such arrangement be used for measuring very low resistances?

- Watch Video Solution

17. Draw a cricuit diagram of a metre bridge arranged to find the value of an unknown resistance. Write the formula used.

- Watch Video Solution

18. Draw a cricuit diagram of a metre bridge arranged to find the value of an unknown resistance. Write the formula used.

- Watch Video Solution

19. Draw a neatly labelled diagram of a potentionmeter and explain its principle.

Watch Video Solution

20. Explain the principle on which the working of a potentiometer is based. Why is the use of potentiometer preferred over that of a voltmeter for measuring the e.m.f. of a cell.

- Watch Video Solution

21. What is potentiometer? With the help of circuit diagram, explain how a potentiometer can be used to compare the emf of two primary cells.

- Watch Video Solution

22. Define e.m.f of a cell. How can you compare the e.m.f of the cells using potentiometer.
23. State the principle of a potentiometer.

- Watch Video Solution

24. What is potentiometer? With the help of circuit diagram, explain how a potentiometer can be used to compare the emf of two primary cells.

- Watch Video Solution

25. Explain the principle of a potentiometer. How will you compare the e.m.f. of two primary cells by using potentiometer? Explain with proper circuit diagram.
26. Define e.m.f of a cell. How can you compare the e.m.f of the cells using potentiometer.

- Watch Video Solution

27. Define internal resistances of a cell. explain how the internal resistance of a aprimary celle can be determined using a Potentiometer.

- Watch Video Solution

28. What is the principle of a potentiometer? With the help pf circuit diagram, explain the use of potentiometer to measure internal resistance of a given primary cell.

- Watch Video Solution

29. What is the principle of a potentiometer? With the help pf circuit diagram, explain the use of potentiometer to measure internal resistance of a given primary cell.

- Watch Video Solution

30. How will you use potentiometer to determine internal resistances of a cell?

- Watch Video Solution

31. What is the principle of a potentiometer? With the help pf circuit diagram, explain the use of potentiometer to measure internal resistance of a given primary cell.

- Watch Video Solution

32. Using Kirchoff's law, derive the condition for the balance of a Wheatstone bridge circuit.

Watch Video Solution

33. Using Kirchoff's law, derive the condition for the balance of a Wheatstone bridge circuit.

- Watch Video Solution

34. Using Kirchoff's law, derive the condition for the balance of a Wheatstone bridge circuit.

- Watch Video Solution

35. Derieve condition of a balanced wheatstone's bridge.
36. With help of circuit diagram, explain how a meter bridge can be used to find unknown resistance of a given wire.

- Watch Video Solution

37. Explain the principle of Wheatstone bridge for determining and unknown resistance. How is it realised in actual practice in the laboratory?

- Watch Video Solution

38. What is Wheatstone bridge? Deduce the condition for which Wheatstone bridge is balanced.

- Watch Video Solution

39. What is potentiometer? With the help of circuit diagram, explain how a potentiometer can be used to compare the emf of two primary cells.

Watch Video Solution

40. Explain the principle of a potentiometer. How will you compare the e.m.f. of two primary cells by using potentiometer? Explain with proper circuit diagram.

- Watch Video Solution

41. Explain the principle of a potentiometer. How will you compare the e.m.f. of two primary cells by using potentiometer? Explain with proper circuit diagram.

- Watch Video Solution

42. Draw circuit diagram for the comparison of e.m.fs of two cells with the help of a potentiometer.

- Watch Video Solution

43. How will you use potentiometer to determine internal resistances of a cell?

- Watch Video Solution

44. Explain the principle of a potentiometer. How will you compare the e.m.f. of two primary cells by using potentiometer? Explain with proper circuit diagram.

- Watch Video Solution

[^0]: - Watch Video Solution

[^1]: - Watch Video Solution

