©゙’ doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - MODERN PUBLICATION

ELECTROMAGNETIC INDUCTION

Example

1. A magnetic field of flux density 10 T acts
normal to a coil of 50 turns having $100 \mathrm{~cm}^{2}$
area. Find e.m.f. iduced, if the coil is removed from the magnetic field on 0.1 s .

D Watch Video Solution

2. A metre gauge train is runing due north with a constant speed of $90 k m h^{-1}$ on a horizontal track. If the vertical component of earth's magnetic ield is $3 \times 10^{-5} \mathrm{Wbm}^{-2}$, calculate the e.m.f. induced across the axle of the train of length 1.25 cm .
3. If a rate of change of current of $4 \mathrm{~A} s^{-1}$ induces an e.m.f. of 20 mV in a solenoid, what is the self-inductance of the solenoid?

D Watch Video Solution

4. Calculate the mutual inductance between
two coils, when a current of 4.0 A changes to
8.0 A in 0.5 s and induces an e.m.f. of 50 mV in
the secondary coil.
5. A flat coil of 500 turns each of area $50 \mathrm{~cm}^{2}$
rotates in a uniform magnetic field of
$0.14 \mathrm{~Wb} / \mathrm{m}^{2}$ at an angular speed of $150 \mathrm{rad} / \mathrm{sec}$. The coil has a resistance of 5

Omega. The induced e.m.f. is applied to an external resistance of 10 ohm. Calculate the peak current through the resistance.

- Watch Video Solution

6. The magnetic flux through a coil perpendicular to its plane and directed into paper is varying according to the relation $\phi=\left(5 t^{2}+10 t+5\right)$ milliweber. Calculate the e.m.f. induced in the loop at $t=2 s$, if the resistance of the coil is 5 ohm.

D Watch Video Solution

7. A magnetic field of flux density 10 T acts normal to a coil of 50 turns having $100 \mathrm{~cm}^{2}$
area. Find e.m.f. iduced, if the coil is removed from the magnetic field on 0.1 s .

D Watch Video Solution

8. A square loop of side 10 cm and resistance
0.70 ohm is placed vertically in the east -west
plane. A uniform magnetic field of 0.10 T is set
up across the plane in north-east direction.

The magnetic field is decreased to zero in 0.7
sec. at a steady rate. Determine the
magnitudes of induced e.m.f. and current during this time interval.

D Watch Video Solution

9. A circular coil of radius $10 \mathrm{~cm}, 500$ turns and resistance 2Ω is placed with its plane, perpendicular to the horizontal component of the earth's magnetic field. It is rotated about its vertical diameter through 180° in 0.25 s .

The induced e.m.f. in the coil is (Take

$$
\left.H_{E}=3.0 \times 10^{-5} T\right)
$$

10. A wire 40 cm long bent into a rectangular loop $15 \mathrm{~cm} \times 5 \mathrm{~cm}$ is placed perpendicular to the magnetic field whose flux density is $0.8 \mathrm{Wbm}^{-2}$. Within 1.0 second, the loop is changed into a 10 cm square and flux density increases to $1.4 \mathrm{Wbm}^{-2}$. Calculate the value of induced emf.
11. A coil containing 20 turns of average diameter 0.02 m is placed perpendicular to a magnetic field of intensity $1.6 \times 10^{4} T$. The magnetic field changes to $1.8 \times 10^{3} T$ in 4 s . A resistor of resistance 15 ohm is connected in
sereis with the coil. If the resistance of the coil
is 5 ohm, find the induced current passing through the resistor.

D Watch Video Solution

12. A 10Ω resistance coil has 1000 turns and at a certain time $5.5 \times 10^{-4} \mathrm{~Wb}$ of flux passes through it. If the flux falls to
$0.5 \times 10^{-4} W b \in 0.1$. second find the emf generated in volts and the charge flown through the coil in coulombs.

D Watch Video Solution

13. A metallic rod of length I is rotated at a constant angular speed ω, normal to a
uniform magnetic field B. Derive an expressions for the current induced in the rod, if the resistance of the rod is R.

D Watch Video Solution

14. A metal rod of length 1 m is rotated about one of its ends in a plane at right angles to a uniform magneic field of $2.5 \times 10^{-3} \mathrm{~Wb} \mathrm{~m}{ }^{-2}$. If its makes 30 r.p.s. Calculate the induced e.m.f. between its ends.
15. When a wheel with metal spokes 1.2 m long rotates in a magnetic field of flux density $5 \times 10^{-5} T$ normal to the plane of the wheel, an e.m.f. of $10^{-2} V$ is induced between the rim and the axle. Find the rate of rotation of the wheel.

- Watch Video Solution

16. A wheel with 10 metallic spokes each 0.5 m
long, is rotated with a speed of 120 rpm .

Please of the wheel is normal to earth's magnetic field at that place. If the magnitude of the field is 0.40 G , what is the induced emf between the axle and rim of the wheel?

- Watch Video Solution

17. A circular copper disc 10 cm in radius rotates at $20 \pi r a \frac{d}{s}$ about an axis through its centre and perpendicular to the disc. A uniform magnetic field of 0.2 T acts perpendicular to the disc.

Calculate the potential difference developed between the axis of the disc and the rim.

D Watch Video Solution

18. A circular copper disc 10 cm in radius rotates at $20 \pi r a \frac{d}{s}$ about an axis through its centre and perpendicular to the disc. A uniform magnetic field of 0.2 T acts perpendicular to the disc.

What is the induced current if the resistance of the disc is 2Ω ?

Watch Video Solution

19. A train is moving in the north-south direction with a speed of $108 \mathrm{kmh}^{-1}$. Find the e.m.f. generated between two wheels, if the length of the axle is 2 m . Assume that the vertical component of earth's field is $8.0 \times 10^{-5} \mathrm{Wbm}^{-2}$.

- Watch Video Solution

20. Figure shows a conducting rod $P Q$ in contact with metal rails RP and SQ, which are
0.25 m apart in a uniform magnetic field of flux density 0.4T acting perpendicular to the plane of the paper. Ends R and S are connected through a 5Ω resistance. What is the emf when the rod moves to the right with a velocity of $5 \mathrm{~ms}^{-1}$? What is the magnitude and direction of the current through the 5Ω resistance? If the rod $P Q$ moves to the left with the same speed, what will be the new
current and its direction?

- Watch Video Solution

21. A 0.5 m long metal rod $P Q$ completes the
circuit as shown in the figure. The area of the circuit is perpendicular to the magnetic field of flux density 0.15 T . If the resistance of the
total circuit is 3Ω calculate the force needed to move the rod in the direction as indicated with a constant speed of $2 m s^{-1}$

D Watch Video Solution

22. The self inductance of an inductor having

100 turns is 20 mH . Calculate the total magnetic flux linked with the coil and the
magnetic flux through the cross-section of the
inductor corresponding to a current of 4 mA .

D Watch Video Solution

23. Current in a 10 millihenry coil increases
uniformly for zero to oe ampere in 0.01
second. Find the direction and value of selfinduced e.m.f.
24. A solenoidal coil has 50 turns er cm along its length and a cross-sectional area of $4 \mathrm{~cm}^{2}$.

200 truns of another wire is wound round the first solenoid coaxially. The two coils are electrically insulated from each other.

Calculate the mutual inductance between the two coils. given that $\mu_{0}=4 \pi \times 10^{-7} N A^{-2}$

D Watch Video Solution

25. A toroidal solenoid with an air core has an
average radius of 15 cm , area of cross-section
$12 \mathrm{~cm}^{2}$ and 1200 turns . Ignoring the field variation across the cross-section of the toroid the self-inductance of the toroid .

- Watch Video Solution

26. A second coil of 300 turns is wound closely
on the toroid above. If the current in the primary coil is increased from zero to 2.0 A in
0.05 s , obtain the induced e.m.f. in the second coil.

D Watch Video Solution

27. Two circular coils, one of radius r and other of radius R are placed coxially with their centres coinciding. For $R \gg r$, obtain an expression for mutual inductance of the arrangement.

- Watch Video Solution

28. A circular loop of radius 0.3 cm lies parallel
to amuch bigger circular loop of radius 20 cm .
The centre of the small loop is on the axis of the bigger loop. The distance between their centres is 15 cm . If a current of 2.0 A flows through the smaller loop, then the flux linked with bigger loop

29. A circular loop of radius 0.3 cm lies parallel to amuch bigger circular loop of radius 20 cm .

The centre of the small loop is on the axis of the bigger loop. Obtain the mutual inductance of the two loops.

30. Two inductors L_{1} and L_{2} sufficient distance apart connected (i) in series (ii) in parallel. What is their equivalent inductance?

D Watch Video Solution

31. Two inductors L_{1} and L_{2} sufficient distance apart connected (i) in series (ii) in parallel. What is their equivalent inductance?
32. A 100 turn coil of area $0.1 m^{2}$ rotates at half a revolution per second. It is placed in a magnetic field of 0.01 T perpendicular to the axis of rotation of the coil. Calculate the maximum voltage generated in the coil.

- Watch Video Solution

33. A rectangular coil of dimensions
$0.1 m \times 0.5 m$ consisting of 2000 turns rotates about and axis parallel to its long side, making

2100 revolutions per minute in a field of 0.1 T .

What is the maximum emf indcuced in the coil? Also find the instantaneous emf, when the coil is 30° to the field.

- Watch Video Solution

34. An a.c. generator consists of a coil of 100
turns and cross sectional area of $3 m^{2}$,
rotating at a constant angular speed of $60 \mathrm{rad} / \mathrm{sec}$ in a uniform magnetic field of 0.04
T. The resistance of the coil is 500Ω. Calculate maximum current drawn from the generator.

D Watch Video Solution

35. An a.c. generator consists of a coil of 100 turns and cross sectional area of $3 m^{2}$, rotating at a constant angular speed of $60 \mathrm{rad} / \mathrm{sec}$ in a uniform magnetic field of 0.04 T. The resistance of the coil is 500Ω. Calculate max. power dissipation in the coil.
36. A circular coil of radius 8.0 cm and 20 turns
is rotated about its vertical diameter with an
angular speed of $50 \mathrm{rads}^{-1}$ in a uniform horizontal magnetic field of magnitude 3.0×10^{-2}. Obtain themaximum and average emf induced in the coil. If the coil forms a closed loop of resistance 10Ω, calculate the maximum value of current in the coil. Calculate the average power loss due to Joule heating. Where does this power come from?
37. An a.c. generator consists of a coil of 50 turns and area $2.5 \mathrm{~m}^{2}$ rotating att an angular speed of $60 \mathrm{rads}^{-1}$ in a uniform magnetic field $B=0.3 \mathrm{~T}$ between two fixed pole pieces. The resistance of the circuit including that of coil is 500Ω. Find the max. current drawn from the generator.

D
 Watch Video Solution

38. An a.c. generator consists of a coil of 50 turns and area $2.5 \mathrm{~m}^{2}$ rotating att an angular speed of $60 \mathrm{rads}^{-1}$ in a uniform magnetic field $B=0.3 \mathrm{~T}$ between two fixed pole pieces. The resistance of the circuit including that of coil is 500Ω. Find What will be the orientaiton of the coil w.r.t. the magnetic field to have (a) maximum (b) zero magnetic flux ?

D Watch Video Solution

39. An a.c. generator consists of a coil of 50 turns and area $2.5 m^{2}$ rotating att an angular speed of $60 \mathrm{rads}^{-1}$ in a uniform magnetic field $B=0.3 \mathrm{~T}$ between two fixed pole pieces. The resistance of the circuit including that of coil
is 500Ω. Find Would the generator work if the
coil were stationary and instead, the pole pieces rotated together with the same speed as above?

D Watch Video Solution

40. A very small circular loop of area $5 \times I 0^{-4} \mathrm{~m}^{2} \quad, \quad$ resistance 2 Omega and negligible inductance is initially coplanar and concentric with a much larger fixed circular loop of radius 0.1 m . A constant current of 1 A is passed in the bigger loop and the smaller loop is rotated with angular velocity $\omega \mathrm{rad} / \mathrm{sec}$ about a diameter. Calculate the flux limked with the smaller loop.

D Watch Video Solution

41. A very small circular loop of area
$5 \times I 0^{-4} \mathrm{~m}^{2} \quad, \quad$ resistance 2 Omega and negligible inductance is initially coplanar and concentric with a much larger fixed circular loop of radius 0.1 m . A constant current of 1 A is passed in the bigger loop and the smaller loop is rotated with angular velocity $\omega \mathrm{rad} / \mathrm{sec}$ about a diameter. Calculate indced emf.

D Watch Video Solution

42. A very small circular loop of area
$5 \times I 0^{-4} \mathrm{~m}^{2} \quad, \quad$ resistance 2 Omega and negligible inductance is initially coplanar and concentric with a much larger fixed circular loop of radius 0.1 m . A constant current of 1 A is passed in the bigger loop and the smaller loop is rotated with angular velocity $\omega \mathrm{rad} / \mathrm{sec}$ about a diameter. Calculate induced current in the smaller loop, as a function of time.
43. A current of 10 A is flowing in a long straight wire situated near a rectangular circuit whose two sides oflength 0.2 m are parallel to the wire. One of them is at a distance of0.05m and the other at a distance
of 0 . $10 m$ from the wire. The wire is in the
plane of the rectangle. Find the magnetic flux
through the rectangular circuit. If the current
decays uniformly to zero in 0.02 s , fmd the EMF
induced in the circuit and indicate the direction in which the induced current flows.
44. A pair of parallel horizontal conducting rails of negligible resistance shorted at one
end is fixed on a table. The distance between
the rails is L. A conducting massless rod of resistance R can slide on the rails frictionlessly.

The rod is tied to a massless string which passes over a pulley fixed to the edge of the table, A mass m, tied to the other end of the string hanges vertically. A constant magnetic field B exists perpendicular to the table. If the system is released from rest, calculate.
the terminal velocity achieved by the rod.

- Watch Video Solution

45. A pair of parallel horizontal conducting rails of negligible resistance shorted at one end is fixed on a table. The distance between
the rails is L. A conducting massless rod of resistance R can slide on the rails frictionlessly.

The rod is tied to a massless string which passes over a pulley fixed to the edge of the table, A mass m, tied to the other end of the string hanges vertically. A constant magnetic field B exists perpendicular to the table. If the
system is released from rest, calculate.
the acceleration of the mass at the instant when the velocity of the rod is half the terminal velocity.

D Watch Video Solution

46. Two parallel vertical metallic rails $A B$ and
$C D$ are separated by 1 m . They are connected at the two ends by resistances R_{1} and R_{2} as shown in the figure. A horizontal metallic bar 1 of mass 0.2 kg slides without friction, vertically
down the rails under the action of gravity.

There is a uniform horizontal magnetic field of
0.6 T perpendicular to the plane of the rails. It is observed that when the terminal velocity is
attained, the powers dissipated in R_{1} and R_{2}
are 0.76 W and 1.2 W respectively
$\left(g=9.8 m / s^{2}\right)$

The

value

of

D Watch Video Solution
47. A metal bar $A B$ can slide on two parallel
thick metallic rails separated by a distance I. A
resistance R and an inductance L are connected to the rails as shown in the figure.

A long straight wire carrying a constant
current I_{0} is placed in the plane of the rails
and perpendicular to them as shown. The bar

AB is held at rest at a distance x_{0} from the
long wire. At $\mathrm{t}=0$, it is made to slide on the rails away from wire. Answer the following questions.

Find a relation among $\mathrm{i}, \frac{d i}{d t}$ and $\frac{d \phi}{d t}$, where i
is the current in the circuit and phi is the flux of the megnetic field due to the long wire through the circuit.

D Watch Video Solution

48. A metal bar $A B$ can slide on two parallel
resistance R and an inductance L are connected to the rails as shown in the figure.

A long straight wire carrying a constant current I_{0} is placed in the plane of the rails
and perpendicular to them as shown. The bar

AB is held at rest at a distance x_{0} from the
long wire. At $t=0$, it is made to slide on the rails away from wire. Answer the following questions.

Find a relation among $\mathrm{i}, \frac{d i}{d t}$ and $\frac{d \phi}{d t}$, where i is the current in the circuit and phi is the flux of the megnetic field due to the long wire
through the circuit.

- Watch Video Solution

49. A metal bar $A B$ can slide on two parallel
thick metallic rails separated by a distance I. A
resistance R and an inductance L are connected to the rails as shown in the figure.

A long straight wire carrying a constant current I_{0} is placed in the plane of the rails and perpendicular to them as shown. The bar

AB is held at rest at a distance x_{0} from the long wire. At $\mathrm{t}=0$, it is made to slide on the rails away from wire. Answer the following questions.

Find a relation among $\mathrm{i}, \frac{d i}{d t}$ and $\frac{d \phi}{d t}$, where i is the current in the circuit and phi is the flux of the megnetic field due to the long wire
through the circuit.

D Watch Video Solution

50. A small square loop of wire of side I is placed inside a large square loop of wire of side $\mathrm{L}(\mathrm{L} \gg 1)$. The loops are coplanar and their centers coincide.The mutual inductance of the
system

- Watch Video Solution

51. A long solenoid has n turns per unit length
and radius a. A current $I=I_{0} \sin \omega$ t flows
through it. A cylindrical vessel of radius R,
length L , thickness $\mathrm{d}(d \ll R)$ and
resistivity ρ is kept coaxially shown int he
figure. Find the induced current in the outer
cylindrical vessel.

52. What is meant by magnetic flux? State its S.I. unit.

- Watch Video Solution

53. Weber is the unit of which physical quantity?

- Watch Video Solution

54. SI unit of magnetic flux is:

D Watch Video Solution

55. What is S.I.unit of magnetic induction?

D Watch Video Solution
56. SI unit of magnetic flux is :

- Watch Video Solution

57. What is the unit of magnetic field strength
in egs system and SI sysem ? State the relation between them.

D Watch Video Solution

58. What is electromagnetic induction ? State
its laws.

- Watch Video Solution

59. What is the basic cause of induced e.m.f.?

- Watch Video Solution

60. What factors govern the magnitude of the e.m.f. induced in an electric circuit.

- Watch Video Solution

61. The magnetic flux threading a coil changes
from to $12 x 10(-3) \mathrm{Wb}$ to $6 x 10(-3) \mathrm{Wb}$ in
0.015 .Calculate the induced e.m.f.

- Watch Video Solution

62. What is the magnitude of the induced
currents in circular loop KLMN of radius r if the straight wire PQ carries a steady current of magnitude i ampere?

- Watch Video Solution

63. A conducting loop is held stationary normal to the field between the NS poles of a
fiexed permanent magnet. By choosing a magnet sufficiently strong, can we hope to generate current in the loop?

D Watch Video Solution

64. Explain, whether an induced current will be developed in a conductor, if it is moved in a direction parallel to magnetic field.
65. A closed conducting loop moves normal to the electric field between the plates of a large capacitor. Is a current induced in the loop, when it is wholly inside the capacitor. The electric field is nromal to the plane of the loop.

D Watch Video Solution

66. A closed conducting loop moves normal to
the electric field between the plates of a large
capacitor. Is a current induced in the loop, when it is wholly inside the capacitor. The electric field is nromal to the plane of the loop.

D Watch Video Solution

67. A bar magnet is quickly moved towards a conducting loop having a capacitor. Predict the polarity of the plates A and B of the capacitor.

D Watch Video Solution

68. A straight conductor 1 meter long moves a
right angles to both, its length and a uniform magnetic field. If the speed of the conductor is
$2.0 \mathrm{~ms}^{-1}$ and the strength of the magnetic
field is 10^{4} gauss, find the value of induced emf in volt.

D Watch Video Solution

69. Metallic wire 1 m in length is moving normally across a field of 0.1 T with a speed of
$5 m s^{-1}$. Find the e.m.f between the ends of the wire.

D Watch Video Solution

70. A wire is cut across a flux of $0.2 x 10(-2)$
weber in 0.12 seconds. What is the e.m.f.
induced in the wire ?

D Watch Video Solution
71. State Lenz's law of electromagnetic induction.

D Watch Video Solution
72. What factors govern the direction of e.m.f.
?

D Watch Video Solution
73. State Lenz's law of electromagnetic induction.

D Watch Video Solution
74. What factors govern the direction of e.m.f.
?

D Watch Video Solution
75. Induced emf is called back emf, why?

- Watch Video Solution

76. An induced current has no direction of its own. Explain, why?

- Watch Video Solution

77. What are eddy currents ?

- Watch Video Solution

78. What are eddy currents ? How are these produced ? How eddy currents can be minimized in a transformer.

D Watch Video Solution

79. Why the oscillations of a copper disc in a magnetic field are highly damped?

- Watch Video Solution

80. Why does a metallic piece become very hot,
when it is surrounded by a coil carrying high
frequency alternating current?

D Watch Video Solution

81. Which of the following is not an application of eddy currents?

D Watch Video Solution
82. What is one henry?

- Watch Video Solution

83. What is self Inductance of a coil ? Define coefficient of self Induction.

D Watch Video Solution

84. Define S.I. unit of self inductance.
85. A magnetic flux of 5 microweber is linked with a coil when a current of 1 MA flows through it.What is the self inductance of the coil ?

D Watch Video Solution
86. Why conducting wires are made of copper?

- Watch Video Solution

87. A coil is wound on an iron core and looped back on itself so that the core has two sets of closely wound wires in series carrying current in the opposite senses. What do you expect about its self-inductance? Will it be large or small?

D Watch Video Solution

88. Explain why resistance coils are usually double wound.
89. Explain why resistance coils are usually double wound.

D Watch Video Solution

90. A lamp connected in parallel with a large inductor glows brilliantly before going off, when the swithc is put off. Why?
91. Why is a spark produced in the switch of a
fan when it is put off?

D Watch Video Solution

92. Why is a spark produced in the switch of a fan when it is put off?
93. If the self-inductance of an iron ore inductor increases from 0.01 m H to 10 mH on introducing the iron core into it, what is the relative permeability of the core used?

D Watch Video Solution

94. Define mutual inductance and explain it?

D Watch Video Solution
95. What is meant by mutual induction? Define coefficient of mutual induction. ALso define its S.I unit of mutual induction.

D Watch Video Solution

96. What will be the coefficient of mutual inductance of a pair of coil if a current of 3 ampere in one coil cause the flux in the second coil of 1000 turns to change by $10(-4) \mathrm{Wb}$ in each turn ?
97. What is meant by mutual induction? Define coefficient of mutual induction. ALso define its S.I unit of mutual induction.

D Watch Video Solution

98. Calculate the mutual inductance between
two coils, when a current of 4.0 A changes to
8.0 A in 0.5 s and induces an e.m.f. of 50 mV in
the secondary coil.

- Watch Video Solution

99. State the principle of electric generator

- Watch Video Solution

100. From where does the electric energy come in a generator?

- Watch Video Solution

101. At which position of the rotating coil in
the magnetic field, the induced e.m.f. is maximum?

D Watch Video Solution

102. How will you convert an a.c. generator into a d.c.generator?

D Watch Video Solution
103. What is the dimensional formula of magnetic flux?

- Watch Video Solution

104. State and explain Faraday's law of electromagnetic induction.

D Watch Video Solution
105. When primary coil P is moved towards secondary coil S (as shown in the Fig.) the galvanometer shows momentary deflection.

What can be done to have larger deflection in
the galvanometer with the same battery?

D Watch Video Solution

106. When primary coil P is moved towards secondary coil S (as shown in the Fig.) the galvanometer shows momentary deflection. State the related law.

- Watch Video Solution

107. State Lenz's law of electromagnetic induction.

D Watch Video Solution
108. Show that Lenz's law obeys the law of conservation of energy.

- Watch Video Solution

109. Is Lenz's law in accordance with the law of conservation of energy?

- Watch Video Solution

110. Lenz's law is a consequence of the law of conservation of:

D Watch Video Solution
111. Two spherical bobs, one metallic and the other of glass, of the same size are allowed to
fall freely from the same height above the ground. Which of the two would reach earlier and why?

D Watch Video Solution

112. The electron current in the direction from
B to A is decreasing. What is the direction of induced current in the metallic loop kept
above the wire as shown in the figure.

- Watch Video Solution

113. A conducting loop is held below a current carrying wire PQ. Predict the direction of the induced current in the loop, when the current in the wire is constantly increasing.
114. Give the direction in which the induced current flows in the coil mounted on an insulated stand, when a bar magnet is quickly moved along the axis of the coil from one side to the other as shown in the figure.

115. Predict the polarity of the capacitor when
the two magnets are quickly moved in the direction marked by arrows.

- Watch Video Solution

116. A cylindrical bar magnet is kept along the axis of a circular coil and near it as shown in
the figure. Will there by an y iduced e.m.f. at the terminal of the coil, when the magnet is rotated about an axis perpendicular to the length of the magnet?
117. Fig. below shows planer loops of different
shapes moving out or into a region of magnetic field, which is directed normal to the plane of the loop and away from the reader.

Determine the direction of induced current. in

each loop using Lenz's law.

- Watch Video Solution

118. An irregular shaped wire $P Q R S$ shown in the figure. placed in a uniform magnetic field
perpendicular to the plane of the paper changes into a circular shape. Show with reason the direction of the induced current in the loop. <
119. The closed loop PQRS is moving into a uniform magnetic field acting at right angles to the plane of the paper as shown in Fig 6.50
state the direction in which the induced current flows in the loop.

120. A copper ring is held horizontally and a bar magnetic is dropped through the ring with its length along the axis of the ring
(shown in the figure) will the acceleration of
the falling magnet be equal to, greater than
or less than that due to gravity?

$\stackrel{\downarrow}{\square}$

- Watch Video Solution

121. Why does the acceleration of a magnet falling through a long solenoid decrease?
122. An iron bar falling vertically thorugh the hollow region of a thick cylindrical shell made of copper expereinces a retarding force. What can you conclude about the iron bar?

- Watch Video Solution

123. A bar magnet M is dropped so that it falls
vertically through the coil C. (Show in the
figure). The graph obtained for voltage
produced across the coil versus time is shown
in the figure Why is the negative peak longer than the positive peak?

(a)

(b)

- Watch Video Solution

124. A bar magnet M is dropped so that it falls vertically through the coil C. (Show in the
figure). The graph obtained for voltage produced across the coil versus time is shown in the figure Why is the negative peak longer than the positive peak?

(a)

(b)

- Watch Video Solution

125. An induced current has no direction of its own. Explain, why?

D Watch Video Solution
126. What are eddy currents ?

- Watch Video Solution

127. The motion of copper plate is damped, when it is allowed to oscillate between the
two poles of a magnet. What is the cause of this damping?

D Watch Video Solution

128. Why is the coil of a dead beat galvanometer wound on a metal frame?

D Watch Video Solution

129. Why are the to and fro oscillations completely absent in better designed
galvanometer?

- Watch Video Solution

130. Consider a metal ring kept on the top of a
fixed solenoid (say on a cardboard) (Fig. EP
6.14). The centre of the ring coincides with the
axis of the solenoid. If the current is suddenly
switched on, the metal ring jumps up. Explain.

- Watch Video Solution

131. A coil A is connected to a voltmeter V and
the other coil B to an alternating current source. If a large copper sheet C is placed between the two coils, how does the induced e.m.f. in the coil A change due to current in coil B?

D Watch Video Solution

132. Define the term self-induction. Write its SI
unit. Write two factors on which the self-
inductance of a coil depends.

- Watch Video Solution

133. What is inductance ? What are its
dimensions and its SI unit?

D Watch Video Solution

134. Can one have inductance without a
resistance ? How about a resistance without an inductance?
135. How does the self inductance of an air coil change, when
the number of turns in the coil is decreased?

- Watch Video Solution

136. How does the self inductance of an air coil change, when
an iron rod is introduced in the coil?

Watch Video Solution

137. Derive expression for self inductance for a solenoid.

D Watch Video Solution
138. Self-induction is called inertia of electricity. Explain why.

- Watch Video Solution

139. How does the mutual inductacne of a pair of coils get affected when
distance between coils is increased? Explain your answer in each case?

D Watch Video Solution

140. How does the mutual inductacne of a pair of coils get affected when
the number of turns in each coil is decreased?

Explain your answer in each case?

D Watch Video Solution
141. A secondary coil of N_{2} turns is wound on a long solenoid of cross-section. A and having a primary coil n_{1} turns per unit length. What is mutual inductance of the two coils?

D Watch Video Solution

142. How does the mutual inductacne of a pair of coils get affected when
distance between coils is increased? Explain
your answer in each case?
143. How does the mutual inductacne of a pair of coils get affected when
the number of turns in each coil is decreased?

Explain your answer in each case?

- Watch Video Solution

144. How does the mutual inductacne of a pair of coils get affected when
distance between coils is increased? Explain

your answer in each case?

D Watch Video Solution

145. How does the mutual inductacne of a pair of coils get affected when
distance between coils is increased? Explain
your answer in each case?

D Watch Video Solution
146. How does the mutual inductacne of a pair of coils get affected when
a tahin iron sheet is placed between the two coils, other factors remaining the same?

- Watch Video Solution

147. An armature coil consists of 20 turns of
wire, each of area $A=0.09 m^{2}$ and total resistance 15 ohm . It rotates in a magnetic field of 0.5 T at a constant frequency of $150 / \pi$.

Calculate the value of maximum induced e.m.f. produced in the coil.

D Watch Video Solution

148. An armature coil consists of 20 turns of wire, each of area $A=0.09 m^{2}$ and total resistance 15 ohm. It rotates in a magnetic field of 0.5 T at a constant frequency of $150 / \pi$.

Calculate the value of average induced e.m.f. produced in the coil.
149. Making or breaking of current in a coil produces a momentary current in the neighbouring coil of another circuit. Why?

D Watch Video Solution
150. Define mutual inductance and explain it?

D Watch Video Solution

151. What is non-inductive wiring of coils?

D Watch Video Solution

152. A solenoid with an iron core and a bulb
are connected to a d.c. source. How does the
brightness of the bulb change, when the iron
core is removed from the solenoid?

D Watch Video Solution
153. State the factors on which induced e.m.f.
in a coil rotating in a uniform magnetic field depends.

D Watch Video Solution
154. Define Fleming's right hand rule.

D Watch Video Solution

155. Why is the e.m.f. zero, when maximum number of magnetic lines of force pass through the coil?

D Watch Video Solution

156. Two circular conductors are perpendicular to each other as shown in the figure.lf current in any one is changed, will there be induced

current in the other ?

D Watch Video Solution
157. A circular coil of radius r and of negligible resistance is connected to a resistor of resistor R through is connected to a resistor of resistance R rough a key. A time varying magnetic field $B(t)=B e^{-t} \quad$ established
inside the coil. After a time t of closing key, find the induced current in the circuit

- Watch Video Solution

158. A circular coil of radius r and of negligible resistance is connected to a resistor of resistor R through is connected to a resistor of resistance R rough a key. A time varying magnetic field $B(t)=B e^{-t} \quad$ established inside the coil. After a time t of closing key, the power dissipated across the resistor.

Watch Video Solution

159. A small coil is positionaed so that its axis
lies along the axis of a large bar agnet, as shown in the figure.

The coil
has a cross-sectional area of $0.40 \mathrm{~cm}^{2}$ and
contains 150 turns of wire. The average magnetic flux density B through the coil aries
with the distance x between the face of the
magnet and the plane of the coil as shown in
the figure.

The coil
is 5.0 cm from the face of the magnet to determine the magnetic flux density in the coil.
160. A thin semicircular conducting ring of radius R is falling with its plane vertical in a horizontal magnetic induction \vec{B}. At the position MNQ, the speed of the ring is v. What
is the potential difference developed across
the ring at the position MNQ?

161. You are provided with a coil of wire, a bar magnet and a sensitive ammeter. Outline an experiment to verify Lenz's law.

D Watch Video Solution

162. A metal disc is winging freely between the poles of an electromagnet, as shown in the
figure. When the electromagnet is switched on, the disc comes to rest after a few
oscillations. Use Faraday's law of electromagnetic induction to explain why an e.m.f. is induced in the disc.

- Watch Video Solution

163. A metal disc is winging freely between the poles of an electromagnet, as shown in the
figure. When the electromagnet is switched on, the disc comes to rest after a few oscillations. Explain why eddy currents are induced in the metal disc.

164. A metal disc is winging freely between the
poles of an electromagnet, as shown in the
figure. When the electromagnet is switched on, the disc comes to rest after a few oscillations. Explain why eddy currents are induced in the metal disc.
165. A small retangular coil ABCD contains 140
turns of wire. The sides $A B$ and $B C$ of the coil are of length 4.5 and 2.8 cm respectively, as
shown in the figure

The coil
is held between the poles of a large magnet so
that the coil can rotate about an axis thorugh
its centre. The magnet produces a uniform magnetic field of flux density B between its poles. When the current in the coil is 170 mA , the maximum torque produced in the coil is
$2.1 \times 10^{-3} \mathrm{Nm}$. For the coil in the position for maximum torque, state whether the plane of the coil is parallel to, or normal to , the direction of the magnetic field.
166. A small retangular coil $A B C D$ contains 140
turns of wire. The sides $A B$ and $B C$ of the coil
are of length 4.5 and 2.8 cm respectively, as
shown in the figure

The coil
is held between the poles of a large magnet so
that the coil can rotate about an axis thorugh
its centre. The magnet produces a uniform
magnetic field of flux density B between its poles. When the current in the coil is 170 mA , the maximum torque produced in the coil is
$2.1 \times 10^{-3} \mathrm{Nm}$. For the coil in the position shown in the figure. calculate the magnitude of the force on (i) side $A B$ of the coil and (ii) side $B C$ of the coil.

- Watch Video Solution

167. A small retangular coil $A B C D$ contains 140 turns of wire. The sides $A B$ and $B C$ of the coil
are of length 4.5 and 2.8 cm respectively, as
shown in the figure

The coil
is held between the poles of a large magnet so
that the coil can rotate about an axis thorugh
its centre. The magnet produces a uniform magnetic field of flux density B between its poles. When the current in the coil is 170 mA ,
the maximum torque produced in the coil is
$2.1 \times 10^{-3} \mathrm{Nm}$. Use your answer to show that the magnetic flux density B between the poles of the magnet is 70 mT .

D Watch Video Solution

168. A small retangular coil $A B C D$ contains 140
turns of wire. The sides $A B$ and $B C$ of the coil are of length 4.5 and 2.8 cm respectively, as shown in the figure

The coil
is held between the poles of a large magnet so
that the coil can rotate about an axis thorugh
its centre. The magnet produces a uniform magnetic field of flux density B between its poles. When the current in the coil is 170 mA , the maximum torque produced in the coil is
$2.1 \times 10^{-3} \mathrm{Nm}$. The current in the coil in (a) is
switched off and the coil s positioned as
shown in the figure. The coil is then turned thorugh an angle of 90° in a time of 0.14 s . Calculate the average e.m.f. induced in the coil.

D Watch Video Solution

169. A magnet is suspended vertically from a
fixed point by means of a spring, as shown in the figure.

One end of the
magnet hangs inside a coil of wire. The coil is
connected in series with a resistance R. The magnet is displaced vertically a small distance

D and the released. shown in the figure variation with time t of the vertical displacement d of the magnet from its equilibrium position.

State and explain, by reference to electromagnetic induction, the nature of the oscillations of the magnet.

Calculate the angular frequency ω_{0} of the oscillations.

- Watch Video Solution

170. An aircraft flies along the meridian. Will
the potentials of the ends of its wings be the same?

D Watch Video Solution

171. A copper coil L wound on a soft iron core and a $15 \mathrm{~W}-110 \mathrm{~V}$ lamp are connected to a 30

V battery through a tapping key as shown in
the figure. When the key is closed, the lamp glows dimly. But when the key is suddenly opend, the lamp flashes for an instant to much
greater brightness. Explain, why.

(D) Watch Video Solution

172. An ideal inductor of 1 H is connected
across a resistance of 100 ohm as shown in
the figure.
the current through the inductor as soon as key K is closed?

- Watch Video Solution

173. An ideal inductor of 1 H is connected across a resistance of 100 ohm as shown in
the figure.

What is
the potential difference across the 100 ohm resistance, when the current has attained a steady value?

D Watch Video Solution

174. A small resistor is usually put in a parallel
t the current carrying coil of an electromagnet
as shown in the figure. What purpose does it
serve?

- Watch Video Solution

175. An artificial satellite with a metal surface
has an orbit over the equator. Will the earth's magnetism induce a current in it?
176. Figure shows a short solenoid of length 4 cm , radius 2.0 cm and number of turns 100 .,
lying inside on the axis of a long solenoid, 80 cm long and number of turns 1,500 . What is
the flux through the long solenoid, if a current of 5.0 A flows through the short solenoid? Also
obtain the mutual inductance of the two

solenoids.

D Watch Video Solution

177. Figure shows three different orientations
of a circular coil rotating in the magnetic field between the poles of a horse shoe magnet.

Determine the direction of induced current in
the coil, if the rotation is anticlockwise as
viewed by
the
reader.

- Watch Video Solution

178. Figure shows three different orientations
of a circular coil rotating in the magnetic field
between the poles of a horse shoe magnet.

In which orientation during rotation with
uniform angular speed) is the induced e.m.f. greatest?

D Watch Video Solution

1. Explain the concept of magnetic flux linked with a surface.

D Watch Video Solution
2. What is electromagnetic induction ? State its laws.
3. What is electromagnetic induction ? State its laws.

- Watch Video Solution

4. What is electro-magnetic induction?

- Watch Video Solution

5. What is electromagnetic induction ? State
its laws.

- Watch Video Solution

6. State Lenz's law of electromagnetic induction.

- Watch Video Solution

7. State and explain Faraday's law of electromagnetic induction.
8. State and explain Faraday's law of electromagnetic induction.

D Watch Video Solution

9. Is Lenz's law in accordance with the law of conservation of energy?

D Watch Video Solution

10. State Lenz's law.Give one example to
illustrate it.

D Watch Video Solution
11. Show that Lenz's law obeys the law of conservation of energy.

- Watch Video Solution

12. State Lenz's law of electromagnetic induction.

D Watch Video Solution

13. Will an induced current be always produced whenever there is change of magnetic flux linked with a coil?

D Watch Video Solution
14. Derive an expression for induced e.m.f. developed in a conductor of length I moving with velocity v in transverse magnetic field of strength B.

- Watch Video Solution

15. Derivea expression for inducede.m.f. whenacoilrotates in a uniform magnetic field andprove it graphically that the e.m.f. induced is alternating in nature.
16. Derive an expression for induced current, when a coductor of length I is moved with a uniform velocity v normal to the uniform magnetic field B. Assume the resistance of the conductor to be R.

D Watch Video Solution

17. A straight conductor 1 meter long moves a right angles to both, its length and a uniform
magnetic field. If the speed of the conductor is
$2.0 \mathrm{~ms}^{-1}$ and the strength of the magnetic
field is 10^{4} gauss, find the value of induced emf in volt.

- Watch Video Solution

18. What is electromagnetic induction ? State
its Faraday's laws. Find an expression for the e.m.f. induced due to change in the area of a coil lying in a uniform magnetic field.
19. What is electromagnetic induction ? State its Faraday's laws. Find an expression for the e.m.f. induced due to change in the area of a coil lying in a uniform magnetic field.

D Watch Video Solution

20. A rectangular conductor LMNO is placed in
a uniform magnetic field \vec{B} directed perpendicular to the plane of conductor .

Obtain an expression for the e.m.f. induced in
the arm MN, when the arm is moved toward the left with a speed v.

D Watch Video Solution

21. A rectangular coil of N turns and ara of cross-section A is held in a time-varying field given by $B=B_{0} \cos \omega t$, with the plane of the coil noral to the magnetic field. Deduce an expression for the e.m.f. induced in the coil.

- Watch Video Solution

22. A circular coil of N turns and radius R is
kept normal to the magnetic field given by
$B=B_{0} \cos \omega t$. Deduce an expression for e.m.f.
induced in the coil. State the rule which helps to detect the direction of induced current.

D Watch Video Solution

23. A metallic rod of length I is rotated at a constant angular speed ω, normal to a
uniform magnetic field B. Derive an
expressions for the current induced in the rod, if the resistance of the rod is R.

D Watch Video Solution

24. A coil of number of turns N, area A, is rotated at a constant angular speed omega, in
a uniform magnetic field B, and connected to a resistor R. Deduce expressions for :
power dissipated in the coil.

D Watch Video Solution

25. In an a.c. generator, coil of N turns and area A is rotated at v revolutions per second in
a uniform magnetic field B. Write the expression for e.m.f. produced.

D Watch Video Solution

26. What are eddy currents ?

- Watch Video Solution

27. What are eddy currents ?

D Watch Video Solution

28. What are eddy currents ?

- Watch Video Solution

29. What are eddy currents ?
30. Which of the following is not an application of eddy currents?

D Watch Video Solution

31. What are eddy currents ? How are these produced ? How eddy currents can be minimized in a transformer.

D Watch Video Solution
32. How eddy currents are useful in induction
furnance

- Watch Video Solution

33. How eddy currents are useful in electric power meters?
34. What are eddy currents ? How are these produced ? How eddy currents can be minimized in a transformer.

D Watch Video Solution
35. What are eddy currents ?

D Watch Video Solution
36. What is self Inductance of a coil ? Define coefficient of self Induction.

D Watch Video Solution
37. Explain self induction of a coil and give its unit.

D Watch Video Solution
38. Define the term self-induction. Write its SI
unit. Write two factors on which the selfinductance of a coil depends.

D Watch Video Solution

39. Explain the phenomenon of self induction?

- Watch Video Solution

40. Derive expression for self inductance for a solenoid.

- Watch Video Solution

41. Derive expression for self inductance for a solenoid.

D Watch Video Solution
42. What is self Inductance of a coil ? Define coefficient of self Induction.

D Watch Video Solution

43. Derive expression for the coefficient of mutual inductance between two long solenoids.

D Watch Video Solution
44. Derive expression for self inductance for a solenoid.

D Watch Video Solution
45. Give the expression for the energy stored in a capacitor and an indicator.
(Watch Video Solution
46. Show that in an electric circuit consisting of inductance, the coefficient of self induction
is numerically equal to twice the work done in establishing the magnetic flux associated with unit current in the circuit.

D Watch Video Solution

47. How is energy stored in an inductor and where does this energy reside? Obtain an
expression for this energy and give an example, where this energy is made use of.

D Watch Video Solution

48. Define the term self-inductance of a solenoid. Obtain the expression for the magnetidc energy stored in an inductor of self-inductance L to build up a current I through it.

D Watch Video Solution

49. Define self-inductance of a coil. Show that magnetic energy required to build up the current I in a coil of self-inductance L is given
by $\frac{1}{2} L I^{2}$

- Watch Video Solution

50. Define self-inductance of a coil. Show that magnetic energy required to build up the current I in a coil of self-inductance L is given
by $\frac{1}{2} L I^{2}$
51. Show that energy stored in an inductor L, when a current is f established through it, is $1 / 2\left(\mathrm{LI}^{\wedge} 2\right)$.

D Watch Video Solution

52. Define self-inductance of a coil. Show that magnetic energy required to build up the current I in a coil of self-inductance L is given by $\frac{1}{2} L I^{2}$

- Watch Video Solution

53. The current flowing through an inductor of
self inductance L is continuously increasing.
Plot a graph showing the variation magnetic
flux versus the current

- Watch Video Solution

54. The current flowing through an inductor of self inductance L is continuously increasing.

Plot a graph showing the variation induced emf versus dl/dt

D Watch Video Solution

55. The current flowing through an inductor of self inductance L is continuously increasing. Plot a graph showing the variation magnetic potential energy stored versus the current.

56. Define mutual inductance and explain it?

D Watch Video Solution

57. What is meant by mutual induction? Define coefficient of mutual induction. ALso define its S.I unit of mutual induction.
58. What is meant by mutual induction? Define coefficient of mutual induction. ALso define its S.I unit of mutual induction.

- Watch Video Solution

59. Derive expression for the coefficient of mutual inductance between two long solenoids.
60. Derive expression for the coefficient of mutual inductance between two long solenoids.

- Watch Video Solution

61. Derive expression for self inductance for a solenoid.

- Watch Video Solution

62. Draw a labelled diagram of a.c.generator.

- Watch Video Solution

63. State the factors on which induced e.m.f. in
a coil rotating in a uniform magnetic field depends.

- Watch Video Solution

64. A conducting rod of 1 m length is rotated
with a frequency of $50 \mathrm{rev} / \mathrm{s}$, with one end
hinged at the centre and the other end at the
circumference of a circular metallic ring of
radius 1 m , about an axis passing through the
centre and perpendicular to the plane of the
ring. A constant and uniform magnetic field of

1 T parallel to the axis is present everywhere.

What is the emf between the centre and the metallic ring?

D Watch Video Solution
65. A rectangular coil of n turns and area A is
held in a uniform magnetic field B. If the coil is
rotated at a steady angular velocity ω,duduce an expression for induced emf in the coil at any instant of time

- Watch Video Solution

66. Draw a labelled diagram of a.c.generator.
67. What is electromagnetic induction ? State its laws.

- Watch Video Solution

68. Name the methods of producing induced emf.
69. State and explain Faraday's law of electromagnetic induction.

D Watch Video Solution
70. Explain Faraday's and lenz's law of electromagnetic induction by describing suitable experiments.

D Watch Video Solution
71. What is Lenz's law? prove that Lenz's law is
in accordance with the conservation of energy principle.

- Watch Video Solution

72. Figure shows a rectangular conductor PQRS in which the conductor PQ is free to move in a uniform magnetic field B perpendicular to the plane of the paper.The field extends from $x=0$ to $x=b$ and is zero for
x>b.Assume that only the arm PQ posses resistance r.When the arm PQ is pulled outward from $\mathrm{x}=0$ with constant speed v , obtain the expressions for the flux and the induced emf with distance $0 \leq x \leq 2 b$

D Watch Video Solution

73. What are eddy currents ?

D Watch Video Solution

74. What is self Inductance of a coil ? Define coefficient of self Induction.

D Watch Video Solution

75. Define self-inductance of a coil. Show that magnetic energy required to build up the
current I in a coil of self-inductance L is given
by $\frac{1}{2} L I^{2}$

D Watch Video Solution
76. Using Ampere's circuital law, obtain an expression for the magnetic field along the axis of a current carrying solenoid of lenth I and having N number of turns.

D Watch Video Solution

77. Derive expression for the coefficient of mutual inductance between two long solenoids.

- Watch Video Solution

78. Derive expression for the coefficient of mutual inductance between two long solenoids.
79. Derive expression for the coefficient of mutual inductance between two long solenoids.

- Watch Video Solution

80. What is meant by mutual induction? Define
coefficient of mutual induction. ALso define its
S.I unit of mutual induction.

- Watch Video Solution

81. Derive expression for the coefficient of mutual inductance between two long solenoids.

D Watch Video Solution

82. What is an a.c. generator? With the help of a labelled diagram, explain the construction and working of an a.c. generator.

D Watch Video Solution

83. What is an a.c. generator? With the help of
a labelled diagram, explain the construction
and working of an a.c. generator.

D Watch Video Solution

84. Draw a labelled diagram of a.c.generator.

- Watch Video Solution

85. Give the principle, construction and labelled diagram of AC generator.

D Watch Video Solution

86. What is an a.c. generator? With the help of
a labelled diagram, explain the construction
and working of an a.c. generator.

D Watch Video Solution

87. Give the principle, construction and working of an a.c. generator.

D Watch Video Solution

88. Draw a labelled diagram of a.c.generator.

D Watch Video Solution

89. Explain with the help of labelled diagram,
the construction, working and theory of ac
generator. Obtain an expression for induced e.m.f.

D Watch Video Solution

90. Explain with the help of labelled diagram,
the construction, working and theory of ac generator. Obtain an expression for induced e.m.f.

D Watch Video Solution

91. Explain with the help of labelled diagram,
the construction, working and theory of ac generator. Obtain an expression for induced e.m.f.

- Watch Video Solution

92. Explain with the help of labelled diagram,
the construction, working and theory of ac generator. Obtain an expression for induced e.m.f.
93. Give the principle, construction and working of an a.c. generator.

D Watch Video Solution

94. Draw a shematic sketch of an a.c. generator describing its basi elements. State briefly its working principle. Show a plot of variation of magnetic flux
95. Draw a shematric sketch of an a.c. generator describing its basic elements. State briefly its working principle. Show a plot of variation of alternating e.m.f. Versus time generated by a lopp of wire rotating in a magnetic field.

D Watch Video Solution

96. Explain principal,construction and working of D.C.generator.

D Watch Video Solution

97. Explain with the help of labelled diagram,
the construction, working and theory of ac generator. Obtain an expression for induced e.m.f.
98. State laws of electromagnetic induction. A
rectangular loop of N turns of length 'a' and
width ' b ' is rotated with an angular velocity ω
in a uniform magnetic field of induction B.
Show that induced e.m.f. is given by $e=\omega N b a B \sin \omega t$

D Watch Video Solution

99. The magnetic flux through a coil perpendicular to its plane is varying according to the relation $\phi=\left(4 t^{3}+5 t^{2}+8 t+5\right)$
weber Calculate the induced current through
the coil at $t=2 \mathrm{~s}$. if the resistance of the coil is
3.1 ohm.

D Watch Video Solution

100. A small piece of metal wire is dragged across the gap between the pole pieces of a magnet in 0.5 s . The amgnetic flux between the pole pieces is known to be $8 \times 10^{-4} W b$.

Estimate the e.m.f. induced in the wire.
101. A magnetic field of flux density $1.0 \mathrm{Wbm}^{-2}$ acts normal to a 80 turns coil of $0.01 m^{2}$ area. Find the e.m.f. induced in it. If this coil is removed form the field in 0.1 second

D Watch Video Solution

102. A magnetic field of flux density 10 T acts
normal to a coil of 50 turns having $100 \mathrm{~cm}^{2}$
area. Find e.m.f. iduced, if the coil is removed
from the magnetic field on 0.1 s .

- Watch Video Solution

103. Find the magnitude of e.m.f. induced in a

200 turn coil with cross-sectional area of
$0.16 \mathrm{~m}^{2}$, if the magnetic field through the coil changes from $0.10 \mathrm{Wbm}^{-2}$ to $0.30 \mathrm{Wbm}^{-2}$ at a uniform rate over a period of 0.05 s .

- Watch Video Solution

104. A rectangular coil having 200 turns and size $0.30 \times 0.05 m^{2}$ is placed perpendicular to
a magnetic field. The field changes from
$5 x 10^{-3} W b m^{-2}$ to $2 x 10(-3) W b m(-2)$ in
the time interval of 3 millisecond. Calculate
the e.m.f. induced in the coil. If the resistance of the coil is 15Ω, find the value of current flowing through it.

D Watch Video Solution

105. Find the e.m.f. induced in a coil of 20 turns
and cross-sectional area $0.2 m^{2}$, when a magnetic field perpendicular to the plane of the coil changes form $0.1 \mathrm{Wbm}^{-2}$ to $0.5 \mathrm{Wbm}^{-2}$ at a uniform rate over a period of 0.05 s.

D Watch Video Solution

106. A wire 88 cm long bent into a circular loop
is placed perpendicular to the magnetic field
of density $2.5 \mathrm{~Wb} \mathrm{~m}{ }^{-2}$. Within 0.5 s the loop is
changed into square of each side 22 cm and the density is increased to $3 W b m-2$. Calculate the value of e.m.f. induced.

D Watch Video Solution

107. A square copper coil of each side 8 cm consists of 100 turns. The coil is initially in vertical plane, such that the plane of the coil is normal to uniform magnetic field of induction
$0.4 \mathrm{Wbm}^{-2}$. The coil is turned throuugh 180°
about a horzontal axis in 0.2 s . Find the induced e.m.f.

D Watch Video Solution

108. A conducting rod of 1 m length is rotated with a frequency of $50 \mathrm{rev} / \mathrm{s}$, with one end hinged at the centre and the other end at the circumference of a circular metallic ring of radius 1 m , about an axis passing through the centre and perpendicular to the plane of the ring. A constant and uniform magnetic field of

1 T parallel to the axis is present everywhere.

What is the emf between the centre and the metallic ring?

D Watch Video Solution

109. A copper disc of radius 10 cm placed with
its plane normal to a uniform magneic field completes 1,200 rotations per minute. If induced e.m.f. between the centre and edge of
the disc in 6.284 mV , find the intensity of the magnetic field Take $\pi=3.142$
110. A copper rod of length 2 m fixed at one end is rotating with an angular speed $300 \mathrm{rads}^{-1}$ about an axis normal to the rod and passing thorugh its fixed end. The other end of the end. The other end of the rod is in contact with a circulr metallic ring. A constant magnetic field of 0.4 T parallel to the axis exists everywhere. calculate the e.m.f. developed between the centre and the ring.
111. A metal disc of radius 200 cm is rotated at a constant angular speed of $60 \mathrm{rads}^{-1}$ in a plane at right angles to an external field of magnetic induction $0.05 \mathrm{Wbm}^{-1}$. Find the e.m.f. induced between the centre and a point on the rim.

D Watch Video Solution

112. A metallic rod of length I is rotated at a
constant angular speed ω, normal to a
uniform magnetic field B. Derive an expressions for the current induced in the rod, if the resistance of the rod is R.

D Watch Video Solution

113. A wheel with 8 matallic spokes each 50 cm
long is rotated with a speed of120rev/min in
a plane normal to horizontal component of earth's magnetic field. Earth's magnetic field at
the phase is 0.4 G and angle of $\operatorname{dip} 60^{\circ}$.

Calculate the emf induced between the axle
and rim of the wheel. How is the emf affected if number of spokes is increased?

D Watch Video Solution

114. If a 10 m long metallic bar moves in a direction at right angle to the magnetic field with a speed of $5.0 \mathrm{~ms}^{-1} 25 \mathrm{~V}$ e.m.f. is induced in it. Find the value of magnetic field intensity.
115. A wire of length 0.1 m moves with a speed
of $10 \mathrm{~ms}^{-1}$ perpendicular to a magnetic field
of induction $1 \mathrm{Wbm}^{-2}$. What is the value of induced e.m.f.?

D Watch Video Solution

116. A conductor $2 m$ long moves in a magnetic
field of Ifux density 0.5×10^{-4} tesla with a speedof 36 km per hour. Calculate the e.m.f.
induced in it, if it is perpendicular to both its length and field.

D Watch Video Solution

117. A straight conductor 1 meter long moves a right angles to both, its length and a uniform magnetic field. If the speed of the conductor is
$2.0 m s^{-1}$ and the strength of the magnetic
field is 10^{4} gauss, find the value of induced emf in volt.
118. Calculate the e.m.f. induced between the ends of an axle 1.75 m long of a railway carriage travelling at the rate of $50 \mathrm{kmh}^{-1}$. The vertical component of the earth's magnetic field 0.5×10^{-4} weber m^{-2}

D Watch Video Solution

119. An aircraft with a wingspan of 40 m fies
with a speed of $1080 \mathrm{~km} / \mathrm{hr}$ in the eastward direction at a constant altitude in the
northern hemisphere, where the vertical component of the earth's magnetic field 1.75×10^{-5}. Then the emf developed between the tips of the wings is

- Watch Video Solution

120. A satellite with a 40 cm long copper wire
on its bottom is revolving around the earth at
7.8 km per second, such that the wire is perpendicular to the vertical component of earths' magnetic field. Determine the e.m.f.
induced across this wire, if the magnitude of the vertical component of magnetic field is 0.2 gauss.

D Watch Video Solution

121. A railway track running North South has
two parallel rails 1.0 m apart. Calculate the
value of induced e.m.f. between the rails when
a train passes at a speed of $90 \mathrm{kmh}(-1)$.
Horizontal component of earth's field at that
place is $0.3 \times 1 O(-4) \quad W b m(-2)$ and angle of dip is 60°.

D Watch Video Solution

122. A magnetic flux of 5 microweber is linked with a coil when a current of 1 MA flows through it.What is the self inductance of the coil ?
123. The self inductance of an inductor having

100 turns is 20 mH . Calculate the total magnetic flux linked with the coil and the magnetic flux through the cross-section of the inductor corresponding to a current of 4 mA .

D Watch Video Solution

124. A coil has an inductance of $1.5 \times 10^{-2} \mathrm{H}$.

Calculate the e.m.f. induced, when current in
the coil changes at the rate 200 ampere per second.

D Watch Video Solution

125. The current passing trhoguh a 20 H inductor changes form 9 A to 8 A in 20×10^{-3}
s. What will be the value fo self induced e.m.f.?

- Watch Video Solution

126. An e.m.f. of $250 \mu V$ is induced in a coil, when current in it changes from 10 A to 6 A in 0.4 s . What is the self inductance of the coil?

- Watch Video Solution

127. A 5 henry inductor carries a steady current of 2 ampere. How can a 50 volt self induced e.m.f. be made to appear in the inductor?

- Watch Video Solution

128. A coil has a self inductance of 10 mH . What
is the maximum magnitude of the induced
em.f. in the inductor, when a current $\mathrm{I}=0.1 \mathrm{sin}$
200 t A is sent through it?

- Watch Video Solution

129. A long solenoid of 10 turns / cm has a
small loop of area $1 \mathrm{sq} . \mathrm{cm}$ placed inside with
the normal of the loop parallel to the axis.
Calculate the placed across the small loop if
the current in the solenoid is changed from 1

A to 2 A in 0.1 s , during the duration of this change.

D Watch Video Solution

130. A coil has inductance of 5 henry and resistance 20 ohm. An e.m.f. of 100 volt is applied to it. What is the energy stored in the magnetic field, when the current has reached its final steady value?

D Watch Video Solution

131. What will be the coefficient of mutual inductance of a pair of coil if a current of 3 ampere in one coil cause the flux in the second coil of 1000 turns to change by $10(-4) \mathrm{Wb}$ in each turn ?

- Watch Video Solution

132. If the coefficient of mutual induction of primary and secondary of an induction coil is 6 henry and a current of 5 ampere is cut off in
$2 \times 10^{-4} \mathrm{~s}$, ind the induced e.m.f. in the secondary coil.

D Watch Video Solution

133. An e.m.f 0.5 V is developed in the secondary coil, when current in the primary coil changes from 5.0 A to 2.0 A in 300 millisecond. Calculate the mutual inductance of the two coils.

D Watch Video Solution

134. An e.m.f. of 50 millivolt is induced in a coil, when the current int eh neighbouring coil changes form 10 ampere to 5 ampere in 0.1 s . What is the mutual inductance of the coils?

D Watch Video Solution

135. A conducting wire of 100 turns is wound over 1 cm near the centre of a solenoid of 100 cm length and 2 cm radius having 1,00 turns.

Calculate coefficient of mutual inductance of the two solenoids.

- Watch Video Solution

136. An air-cored solenoid is of length 0.3 m area of cross-section $1.2 \times 10^{-3} m^{2}$ and has

2500 turns. Around tis central section, a coil of 350 turns is wound. The soelnoid and the coil are electrically insulated from each other.

Calculate the e.m.f. induced in the coil, if the intial current of 3 A in the solenoid is reversed in 0.25 s.
137. A closely wound rectangular coil of 200 turns and size $0.3 m \times 0.1 \mathrm{~m}$ is rotating in a magnetic field of induction $0.005 \mathrm{Wbm}^{-2}$ with
a frequency of 1,800 r.p.m. about an axis normal to the field. Calculate the maximum value of induced e.m.f.

D Watch Video Solution

138. A rectangular coil $25 \mathrm{~cm} \times 10 \mathrm{~cm}$ and
having 700 turns rotates about an axis at
right angles to a magnetic field of 20 gauss at

1,500revolutions per minute. Calculate the maximum vlaue of the e.m.f. generated in the coil.

D Watch Video Solution

139. A rectangular coil of dimensions $40 \mathrm{~cm} \times 25 \mathrm{~cm}$ having 1000 turns rotates in a uniform magnetic field of strength
$0.08 \mathrm{Wbm}^{-2}$ about an axis perpendicular to
the field. If the coil makes 300 revolution per
minute, find the instantaneous emf when the plane of the coil make and angle of 0°

D Watch Video Solution

140. A rectangular coil of dimensions $40 \mathrm{~cm} \times 25 \mathrm{~cm}$ having 1000 turns rotates in a uniform magnetic field of strength
$0.08 \mathrm{Wbm}^{-2}$ about an axis perpendicular to the field. If the coil makes 300 revolution per minute, find the instantaneous emf when the plane of the coil make and angle of 45°

Watch Video Solution

141. A rectangular coil of dimensions $40 \mathrm{~cm} \times 25 \mathrm{~cm}$ having 1000 turns rotates in a uniform magnetic field of strength $0.08 \mathrm{Wbm}^{-2}$ about an axis perpendicular to the field. If the coil makes 300 revolution per minute, find the instantaneous emf when the plane of the coil make and angle of 90° with the magnetic lines of force.
142. An a.c. generator consists of a coil of 2,000 turns each of area $80 \mathrm{~cm}^{2}$ and rotating at an angular speed of 200 r.p.m. in a uniform magnetic field of $4.8 \times 10^{-2} \mathrm{~T}$. Calculate the peak and r.m.s. value of e.m.f induced in the coil.

D Watch Video Solution

143. A metallic wire bent in the form of a semicircle of raidus 0.1 m is moved into magnetic field of 20 mT in a direction parallel
to its plane, but perpendicular to the magnetic field with a velocity of $10 \mathrm{~ms}^{-1}$. Find the e.m.f. induced in the wire.

D Watch Video Solution

144. A coil of wire of certain radius has 600 turns and a self inductance of 108 mH . What will be the self inductance of a similar coil, which has 500 turns?

D Watch Video Solution
145. The network shown in the figure is a part of complete circuit. What is the potential difference $V_{B}-V_{A}$ when the current I is 5 A and is decreasing at a rate of $10^{3} \mathrm{As}^{-1}$?

- Watch Video Solution

146. Three inductances are connected as
shown in the figure 1.107 . Find the resultant
inductance.

- Watch Video Solution

