© 'doubtnut

PHYSICS

BOOKS - MODERN PUBLICATION

GAUSS' THEOREM

EXAMPLE

1. If the electric field is given by $6 \hat{i}+3 \hat{j}+4 \hat{k}$, calculate the electric flux through a surface of area

20 units lying in YZ-plane.
2. A spherical gaussian surface encloses a charge of $8.85 \times 10^{-8} C$ Calculate the electric flux passing through the surface.

- Watch Video Solution

3. A spherical gaussian surface encloses a charge of
$8.85 \times 10^{-8} C$ if the radius of the gaussian surface is doubled, hwo would the flux change?

- Watch Video Solution

4. A rectangular surface of sides 10 cm and 15 cm is placed inside a uniform electric field of $25 \mathrm{Vm}{ }^{-1}$, suh that normal to the surface makes an angle of 60° with the direction of electric field. Find the flux of the electric field through the rectangular surface.

- Watch Video Solution

5. Consider a uniform electric field
$\vec{E}=3 \times 10^{3} \hat{i} N C^{-1}$ What is the flux through the same square, if the normal to its plane makes a 60°
angle with the X -axis?

- Watch Video Solution

6. Calculate the number of electric lines of force
originating from a charge of 1 C. Given

$$
\varepsilon_{0}=8.854 \times 10^{-12} C^{2} N^{-1} m^{-2}
$$

7. Careful measurement of the electric field at the surface of a black box indicates that the net outward flux through the surface of the box is $8.0 \times 10^{3} \mathrm{Nm}^{2} / C$. What is the net charge inside the box?

- Watch Video Solution

8. Careful measurement of the electric field at the
surface of a black box indicates that the net outward flux through the surface of the box is $8.0 \times 10^{3} \mathrm{Nm}^{2} / C$. If the net outward flux through the surface of the box were zero, could you
conclude that there were no charges inside the box? Why or Why not?

D Watch Video Solution

9. A point charge $+10 \mu C$ is at a distance 5 cm directly above the centre of a square of side 10 cm as shown in the figure

the magnitude of the surface flux through the square?

D Watch Video Solution

10. The electric field components due to a charge inside the cube of side 0.1 m are as shown in the figure.

$$
E_{X}=a x, \quad \text { where } \quad \text { a } \quad=\quad 500
$$

$N C^{-1} m^{-1} E_{y}=0$ and $E_{z}=0 \quad$ Calcualte the electric flux through the cube

- Watch Video Solution

11. The electric field components due to a charge inside the cube of side 0.1 m are as shown in the figure.

$$
E_{X}=a x, \quad \text { where } \quad \text { a } \quad=\quad 500
$$

$N C^{-1} m^{-1} E=0$ and $E_{2}=0 \quad$ Calcualte the charge inside the cube.

D Watch Video Solution

12. In figure

the
electric field is directed along positive X -direction
and given by $E_{x}=5 A x+2 B$ where E is in $N C^{-1}$
and x is in metre. A and B are constants with dimensions.
$A=10 N c^{-1} m^{-1}$ and $B=5 N C^{-1} \quad$ calculate the electric flux through the cube. and net charge enclosed within the cube.

- Watch Video Solution

13. An infinite line charge produces a field of $9 \times 10^{4} N C^{-1}$ at a distance of 4 cm . Calcualte the linear charge density.
14. A large plane sheet of charge having surface charge density $5.0 \times 10^{-16} \mathrm{C} \mathrm{m}^{\wedge}-2$ lies in the XY plane. Find the electric flux through a circular area of radius 0.1 m , if the normal to the circular area makes an angle of 60° with the Z-axis. Given that

$$
\varepsilon_{0}=8.85 \times 10^{-12} C^{2} N^{-m \wedge}-2
$$

- Watch Video Solution

15. Two large, thin metal plates are parallel and close to each other. On their inner faces, the plates have surface charge densities of opposite signs
and of magnitude $17.0 \times 10^{-22} \mathrm{C} / \mathrm{m}^{2}$. What is E: in the outer region of the first plate?

- Watch Video Solution

16. Two large, thin metal plates are parallel and close to each other. On their inner faces, the plates
have surface charge densities of opposite signs and of magnitude $17.0 \times 10^{-22} C / m^{2}$. What is E:
between the plates?
17. Two large, thin metal plates are parallel and close to each other. On their inner faces, the plates have surface charge densities of opposite signs and of magnitude $17.0 \times 10^{-22} \mathrm{C} / \mathrm{m}^{2}$. What is E: between the plates?

- Watch Video Solution

18. The electric field in a region is radially outward and varies with distance r as $E=250 \mathrm{rVm}^{-2}$

Calculate the charge contained in a sphere of radius 0.2 m centred at the origin.
19. The flux of the elements field, through the closed surface S, is found to be four times that through the closed spherical surface S'. Find the magnitude of the charge Q .

- Watch Video Solution

20. S_{1} and S_{2} are two parallel concentric spheres
enclosing charges Q and $2 Q$ respectively as shown in the figure.
the ratio of the electric flux through S_{1} and S_{2} ?

- Watch Video Solution

21. S_{1} and S_{2} are two parallel concentric spheres
enclosing charges Q and $2 Q$ respectively as shown in the figure.
the electric flux through the sphere S_{1} change, if a medium of dielectric constant 5 is introduced in the space inside S_{1} in plae at air?

- Watch Video Solution

22. It has been experimentally observed that the electric field in a large region of earth's
atmosphere is directed vertically down. At an altitude of 300 m , the electric field $60 \mathrm{Vm}^{-1}$. At an altitude of 200 m , the field is $100 \mathrm{Vm}^{-1}$, the field is $100 \mathrm{Vm}^{-1}$. Calculate the net amount of charge contained in the cube of 100 m edge, located between 200 and 300 m altitude.

- Watch Video Solution

23. Three infinitely long charge sheets are placed as shown in the figure

Find the
electric field at the point P.

- Watch Video Solution

24. A conducting sphere of radius 10 cm has an unknown charge. If the electric field 20 cm from the
centre of the sphere is $1.5 \times 10^{3} \mathrm{~N} / \mathrm{C}$ and points
radially inward, what is the net charge on the sphere?

- Watch Video Solution

25. Define electric flux.

- Watch Video Solution

26. Is electric flux a scalar or a vector? Give the SI
untis of electric flux.

- Watch Video Solution

27. An area S is held inside an electric field E, such that normal to the area S subtends angle θ with the direction of electric field. What is the electric flux linked with the surface area?

- Watch Video Solution

28. Write an expression for the flux $\Delta \phi$, of the electric field \vec{E} through an area of element $\vec{\Delta} S$

- Watch Video Solution

29. Define Gauss's theorem in electrostatics.

- Watch Video Solution

30. A charge q is placed at the centre of a cube of
side l. What is the electric flux passing through two
opposite faces of the cube?

- Watch Video Solution

31. A box enlcoses an electrical diple consisting of
charge $5 \mu C$ and $-5 \mu C$ and of length 10 cm .

What is the total electric flux through the box?

- Watch Video Solution

32. An electric dipole of dipole moment $20 \times 10^{-6} \mathrm{~cm}$ is enclosed by a closed surface. What is the net flux coming out of the surface?

- Watch Video Solution

33. Two charges of magntiudes $-2 Q$ and $+Q$ are
located at points $(a, 0)$ and $(4 a, 0)$ respectively. What
is the electric flux due to these charges through a sphere of radius 3 a with the centre at the origin?

- Watch Video Solution

34. What is the use of Gaussian surface in electrostatics ?

- Watch Video Solution

35. Does the strength of electric field due to an infinity long line charge depend upon the distance of the obervation point from the line charge?

- Watch Video Solution

36. Does the strength of electric field due to an infinite plane sheet of charge depend upon the distance of the osbervation point from the sheet of charge?

- Watch Video Solution

37. What is the difference between a sheet of charge and a plane conductor having charge?
38. How does electric field at a point change with distance r from an infinitely long charged wire?

- Watch Video Solution

39. How does electric field at a point change with distance r from an infinite thin sheet of charge?

- Watch Video Solution

40. What is the strength of the electric field inside a charged spherical shell?

Watch Video Solution

41. Define electric flux.

- Watch Video Solution

42. What is the importance of Gauss'theorem in electrostatics ?

- Watch Video Solution

43. Supose a gaussian surface does not include any net charge. Does it necessarily mean that E is equal to zero for all points on the surface?

- Watch Video Solution

44. A point charge causes an electric flux of $-1.0 \times 10^{3} \mathrm{Nm}^{2} / C$ to pass through a spherical

Gaussian surface of 10.0 cm radius centred on the charge - If the radius of the Gaussian surface were doubled, how much flux would pass through the surface?
45. A point charge causes an electric flux of $-1.0 \times 10^{3} \mathrm{Nm}^{2} / C$ to pass through a spherical

Gaussian surface of 10.0 cm radius centred on the charge - What is the value of the point charge?

- Watch Video Solution

46. An electric flux of $-5 \times 10^{3} \mathrm{Nm}^{2} \mathrm{C}^{-1}$ passes through a spherical gaussian surface of radius 20 cm due to the charge placed at its centre. Calculate the charge enclosed by the gaussian surface.
47. An electric flux of $-5 \times 10^{3} \mathrm{Nm}^{2} \mathrm{C}^{-1}$ passes through a spherical gaussian surface of radius 20 cm due to the charge placed at its centre. If the radius of the gaussian surface is doubled, how much flux would pass through the surface?

- Watch Video Solution

48. A uniformly charged conducting sphere of 2.4 m diameter has a surface charge density of $80.0 \mu C / m^{2}$ - Find the charge on the sphere.
49. A uniformly charged conducting sphere of 2.4 m diameter has a surface charge density of $80.0 \mu C / m^{2}$ - What is the total electric flux leaving the surface of the sphere?

- Watch Video Solution

50. Two infinite parallel planes have uniform charge densities $\pm \sigma$. What is the electric field in the region between the planes
51. Two infinite parallel planes have uniform charge densities $\pm \sigma$. What is the electric field outisde the plates? In what way does the infinite extension of the planes simplify your derivation?

D Watch Video Solution

52. A spherical conducting shell of inner radius r_{1} and outer radius r_{2} has a charge Q . A charge q is placed at the centre of the shell. What is the
surface charge density on the inner and outer surfaces of the shell?

- Watch Video Solution

53. A spherical conducting shell of inner radius r_{1} and outer radius r_{2} has a charge Q . A charge q is placed at the centre of the shell. What is the surface charge density on the inner and outer surfaces of the shell?
54. A spherical conduting shell of inner radius r_{1} and outer radius r_{2} has a charge Q . A charge q is placed at the centre of the shell. Write the expression for the electric field at a point $x>r_{2}$ from the centre of the spherical shell.

- Watch Video Solution

55. A and B are two conducting spheres of the same radii. A being solid and B hollow. Both are charged to the same potential. What will be the relation between the charges on the two spheres?
56. Explain the term electrostatic shelding.

- Watch Video Solution

57. What is the principle of electrostatic shielding?

- Watch Video Solution

58. The safest way to save yourself from lightening is to be inside a car. Comment?
59. A sensitive instrument is to be shielded from the strong electrostatic fields in its environment.

Suggest a possible way.

- Watch Video Solution

60. How can the whole charge of a conductor be transferred to another isolated conductor?
61. One mole of α-particles are trapped inside a closed box. Find the number of electric field lines emanating from the α-particles.

- Watch Video Solution

62. Two concentric spherical shells S_{1} and S_{2} enclose charge Q and $2 Q$ as shown in the figure

inside the tow shells, what is the ratio of electric flux through S_{1} and S_{2} ?

- Watch Video Solution

63. Two concentric spherical shells S_{1} and S_{2} enclose charge Q and $2 Q$ as shown in the figure

How will
the electric flux through the shells S_{1} change, if a
medium of dielectric constant 10 replaces air in the shell S_{1} ?

- Watch Video Solution

64. A thin straight rod of length I, has uniform
linear charge density λ. Moving at a constant speed v , the rod enters a cube of sides having length L through its left fae and leaves through the right face as shown in the figure

Find the
maximum electric flux through the cube.

- Watch Video Solution

65. A thin straight rod of length I, has uniform
linear charge density λ. Moving at a constant speed v , the rod enters a cube of sides having
length L through its left fae and leaves through the right face as shown in the figure

Find the
maximum electric flux through the cube.

- Watch Video Solution

66. A thin straight rod of length I, has uniform
linear charge density λ. Moving at a constant speed v , the rod enters a cube of sides having
length L through its left fae and leaves through the right face as shown in the figure

Find the
maximum electric flux through the cube.

D Watch Video Solution

67. A right circular cylinder of length L (in m) and of radius R (in m) has its center at the origin and its
length along the X-axis. A uniform electric field $\vec{E}=E_{x} \hat{I} N C^{-1} f$ or $x>0$ and $\vec{E}=-E_{x} \hat{i} N C^{-1}$
for $\mathrm{x}<0$ exists over the cylinder. Find net outward electric flux

- Watch Video Solution

68. A right circular cylinder of length L (in m) and of
radius R (in m) has its center at the origin and its
length along the X -axis. A uniform electric field $\vec{E}=E_{x} \hat{I} N C^{-1} f$ or $x>0$ and $\vec{E}=-E_{x} \hat{i} N C^{-1}$
for x < 0 exists over the cylinder. Find the net charge enclosed by the cylinder.
69. A conductor A with cavity as shown in the figure

a charge
Q. Show that the entire charge must appear on the outer surface of the conductor.

- Watch Video Solution

70. Two large flat parallel sheets A and B having uniform surface charge densities σ and $-\sigma$ are held as shown in the figure

graphically, represent the variation of electric field due to the two sheets as one move from the point

O to P.

- Watch Video Solution

71. Two large flat parallel sheets A and B having a uniform charge density + $\sigma a r e$ held as shown in the figure.

Graphically, represent the variation of electric field due to the two sheets as one moves from the point O to P.

D Watch Video Solution
72. A charge q is distributed unifromly on x ring of radius r. A sphere of equal radius r is centred at the circumference of the ring
. Find the
flux of the electric field through the surface of the sphere.

- Watch Video Solution

EXERCISE

1. What is electriG flux ? Explain how the electric
flux through a surface is related to electric field
intensity, when the surface is heldinside the electric
field.

- Watch Video Solution

2. State and prove Gauss's theorem in electrostatics.

- Watch Video Solution

3. State and prove Gauss's theorem in electrostatics.

4. State Gauss's theorem.How Coulomb's law can be

 derived from it ?
- Watch Video Solution

5. State and explain Coulomb's law of force in electrostatics. What are its limitations? Define one coulomb of charge using this law.
6. State Gauss' theorem in electrostatics. Hence obtain expression for the force between two point charges.

- Watch Video Solution

7. How does electric field at a point change with distance r from an infinitely long charged wire?

- Watch Video Solution

8. Find an expression for the electric field at a point
due to a line charge by using Gauss' theorem in electrostatics.

- Watch Video Solution

9. Use Gauss' law to derive the expression for the
electric field due to straight uniformally charged
infinite line of charge density $\lambda \mathrm{cm}^{-1}$.

- Watch Video Solution

10. How does electric field at a point change with distance r from an infinitely long charged wire?

- Watch Video Solution

11. State Gauss' theorem and using this theorem,
derive an expression for the electric field intensity
at a point due to an infinitely long wire having a uniform distribution of charge.

- Watch Video Solution

12. Use Gauss' law to derive the expression for the electric field due to straight uniformally charged infinite line of charge density $\lambda \mathrm{cm}^{-1}$.

- Watch Video Solution

13. What is electric flux? Write its SI units. Using

Gauss. Theorem, derive an expression for electric
theorem, derive an expression for electric field at a point due to uniformaly charged infinite plane sheet.
14. Derive an expression for electric field intensity at a distance r from a point charge q.

- Watch Video Solution

15. Find the Electric field due to two infinite plane
parallel sheet of charge.

D
 Watch Video Solution

16. How does electric field at a point change with distance r from an infinite thin sheet of charge?

D Watch Video Solution

17. Find the Electric field due to two infinite plane parallel sheet of charge.

- Watch Video Solution

18. Use Gauss' law to derive the expression for the
electric field due to straight uniformally charged infinite line of charge density $\lambda \mathrm{cm}^{-1}$.

- Watch Video Solution

19. State Gauss' theorem in electrostatics. Derive an expression for the electric field intensity at any point of to an infinite plane sheet of charge.

- Watch Video Solution

20. State Gauss's theorem with the help of diagram,
derive an expression for the electric field intensity
due to uniformly charged thin spherical shell at a point inside

-
 Watch Video Solution

21. Show that the electric field at the surface of a charged conductor is given bu $\vec{E}=\frac{\sigma}{\varepsilon_{0}} \widehat{n}$, where σ is the surface charge density and \widehat{n} is a unit vector normal to the surface in the outward direction.

- Watch Video Solution

22. How does electric field at a point change with
distance r from an infinite thin sheet of charge?

- Watch Video Solution

23. How is the field directed if the sheet is positively

charged

- Watch Video Solution

24. How is the field directed, if sheet is negativity charged.

- Watch Video Solution

25. Find the Electric field due to two infinite plane parallel sheet of charge.

D Watch Video Solution

26. What is the strength of the electric field inside a charged spherical shell?

D Watch Video Solution
27. State Gauss's theorem with the help of diagram,
derive an expression for the electric field intensity
due to uniformly charged thin spherical shell at a point on the surface of the spherical shell.
28. Why electric intensity at any point inside a charged conductor is zero?

- Watch Video Solution

29. Using Gauss's theorem, show mathematically
that for any point outside the shell, the field due to
a uniformly chargead thin spherical shell is the
same as if the entire charge is concentrated at the
centre. Why do you expect the electric field inside
the shell to be zero according to this theorem?

- Watch Video Solution

30. Inside a charged spherical shell, the electric field is zero.

- Watch Video Solution

31. What is the strength of the electric field inside a
charged spherical shell?

- Watch Video Solution

32. State Gauss's theorem with the help of diagram,
derive an expression for the electric field intensity
due to uniformly charged thin spherical shell at a point inside

- Watch Video Solution

33. State Gauss's theorem with the help of diagram,
derive an expression for the electric field intensity
due to uniformly charged thin spherical shell at a point outside
34. State Gauss's theorem with the help of diagram,
derive an expression for the electric field intensity
due to uniformly charged thin spherical shell at a point on the surface of the spherical shell.

- Watch Video Solution

35. Define the term electric flux. State its units.

- Watch Video Solution

36. A sphere S_{1} of radius r_{1} encloses a charge \mathbf{Q}. If there is another concentric sphere S_{2} of the radius
$r_{2}\left(r_{2}>r_{1}\right)$ and there be no additional charges
between S_{1} and S_{2} find the ratio of electric flux
through S_{1} and S_{2}

- Watch Video Solution

37. State and prove Gauss' theorem in electrostatics. Deduce Coulomb's law from Gauss' theorem.
38. State and prove Gauss' theorem in electrostatics. Deduce Coulomb's law from Gauss' theorem.

- Watch Video Solution

39. Using Gauss's law, determine the electric field intensity due to a long thin wire of uniform charge density.

- Watch Video Solution

40. State Gauss' theorem and using this theorem,
derive an expression for the electric field intensity
at a point due to an infinitely long wire having a uniform distribution of charge.

- Watch Video Solution

41. State and prove Gauss' theorem and by using it
deduce an expression for the electric field at a point due to a line charge.

D Watch Video Solution

42. State Gauss' law in electrostatics. Using this law, derive an expression for the electric field due to an infinitely long straight charged wire at a point distant r from it. Plot a graph showing the variation of electric field with r.

- Watch Video Solution

43. State Gauss' theorem in electrostatics. Derive an
expression for the electric field intensity at any point of to an infinite plane sheet of charge.
44. State Gauss' theorem in electrostatics. Using it, derive an expression for the electric charged thin spherical shell at a point inside

- Watch Video Solution

45. State Gauss' law and using this law, derive an expression for the electric field intensity due to a uniformly charged thin spherical shell at a point outside the shell.
46. Derive expression for the electric field due to a uniformly charged spherical shell at a point inside

- Watch Video Solution

47. Derive expression for the electric field due to a uniformly charged spherical shell at a point outside the shell.

- Watch Video Solution

48. State Gauss' law and using this law, derive an expression for the electric field intensity due to a
uniformly charged thin spherical shell at a point inside

- Watch Video Solution

49. State Gauss' law and using this law, derive an expression for the electric field intensity due to a
uniformly charged thin spherical shell at a point outside the shell.

- Watch Video Solution

50. Plot a graph shoing variation of electric field as
a function of $r>R$ and $r<R$ (being the distance from the centre of the shell)

- Watch Video Solution

51. Using Gauss' law, derive expression for the
electric field intensity at any point outside a uniformly charged shell Draw the field lines when
the charge density of the shell is positive

-
 Watch Video Solution

52. Using Gauss' law, derive expression for the electric field intensity at any point outside a uniformly charged shell Draw the field lines when the charge density of the shell is negative.

- Watch Video Solution

53. A spherical conduting shell of inner radius r_{1}
and outer radius r_{2} has a charge \mathbf{Q}. A charge q is
placed at the centre of the shell. Write the expression for the electric field at a point $x>r_{2}$
from the centre of the spherical shell.
54. Draw the electric field lines due to a uniformly charged thin spherical shell when charge on the shell is
negative?

- Watch Video Solution

55. Draw the electric field lines due to a uniformly
charged thin spherical shell when charge on the
shell is
positive?
56. State Gauss's theorem with the help of diagram,
derive an expression for the electric field intensity
due to uniformly charged thin spherical shell at a point inside

- Watch Video Solution

57. State Gauss's theorem with the help of diagram,
derive an expression for the electric field intensity
due to uniformly charged thin spherical shell at a point outside
58. State Gauss's theorem with the help of diagram, derive an expression for the electric field intensity due to uniformly charged thin spherical shell at a point on the surface of the spherical shell.

- Watch Video Solution

59. Find electric field due to solid sphere of charge at a point outside.

60. Find electric field due to solid sphere of charge

at a point

on the surface.

- Watch Video Solution

61. Find electric field due to solid sphere of charge
at a point
inside.

- Watch Video Solution

62. Consider an over all neutral sphere of radius R .

This sphere has a point charge $+Q$ at its centre and this positive charge is surrounded by a uniform density ρ of negative charge upto a radius R. Use Gauss' law to obtain expressions for the electric field of this at a point distant \mathbf{r} form its centre. where r < R. show that these two expressions give identical results for the elctric field at $\mathrm{r}=\mathrm{R}$.

- Watch Video Solution

63. Consider an over all neutral sphere of radius \mathbf{R}.

This sphere has a point charge $+Q$ at its centre and
this positive charge is surrounded by a uniform density ρ of negative charge upto a radius R. Use

Gauss' law to obtain expressions for the electric field of this at a point distant \mathbf{r} form tis centre. where r > R. show that these two expressions give identical results for the elctric field at $r=R$

- Watch Video Solution

64. A rectangular frame of wire of $25 \mathrm{~cm} \times 15 \mathrm{~cm}$ is
placed in a uniform electric field of strength $2 \times 10^{4} \frac{N}{C}$, such that the plane of the coil is
normal to field. Find the electric flux linked with the rectangular frame.

- Watch Video Solution

65. A rectangular frame of wire of $25 \mathrm{~cm} \times 15 \mathrm{~cm}$ is
placed in a uniform electric field of strength $2 \times$
$10^{\wedge} 4 \mathrm{~N} / \mathrm{C}$, such that the plane of the coil is normal
to field. Find the electric flux linked with the rectangular frame. Calcuate the electric flux linked with the frame, when it is converted into a square
66. A rectangular frame of wire of $25 \mathrm{~cm} \times 15 \mathrm{~cm}$ is
placed in a uniform electric field of strength $2 \times$
$10^{\wedge} 4 \mathrm{~N} / \mathrm{C}$, such that the plane of the coil is normal to field. Find the electric flux linked with the rectangular frame Calcuate the electric flux linked with the frame, when it is converted into a circular frame.

- Watch Video Solution

67. In which case is the electric flux maximum?

- Watch Video Solution

68. A plane surface having area of $0.5 \mathrm{~m}^{2}$ is placed inside a uniform electric field of strength $5 \times 10^{3} \mathrm{NC}^{-1}$. Calculate its flux makes an angle of 30° with the direction of electric field.

- Watch Video Solution

69. A plane surface having area of $0.5 m^{2}$ is placed
inside a uniform electric field of strength
$5 \times 10^{3} N C^{-1}$. Calculate its fluxplane makes an
angle of 60° with the direction of electric field.

D Watch Video Solution
70. A plane surface having area of $0.5 \mathrm{~m}^{2}$ is placed inside a uniform electric field of strength $5 \times 10^{3} \mathrm{NC}^{-1}$. Calculate its flux, plane makes an angle of 90° with the direction of electric field.

- Watch Video Solution

71. There is uniform electric field of $3 \times 10^{3} \hat{i} N c^{-1}$
what is the net flux of the uniform electric field
through a cube of ide 20 cm oriented so that its
faces are parallel to the co-ordinate planes?
72. A uniformly charged conducting sphere of 2.5 m in diameter has a surface charge density of $100 \mu \frac{C}{m^{2}}$. Calculate the charge on the sphere.

- Watch Video Solution

73. A uniformly charged conducting sphere of 2.5 m
in diameter has a surface charge density of
$100 \mu \frac{C}{m^{2}}$. Calculate the
total electric flux passing through the sphere.
74. A uniformly charged conducting sphere of 2.4 m diameter has a surface charge density of $80.0 \mu C / m^{2}$ - Find the charge on the sphere.

- Watch Video Solution

75. A uniformly charged conducting sphere of 2.4 m
diameter has a surface charge density of $80.0 \mu C / m^{2}$ - What is the total electric flux leaving the surface of the sphere?

D
 Watch Video Solution

76. A uniformly charged conducting sphere of 2.8 m in diameter has a surface charge density of $100 \mu \mathrm{Cm}^{-2}$. Find the charge on the sphere.

- Watch Video Solution

77. A uniformly charged conducting sphere of 2.4 m
diameter has a surface charge density of $80.0 \mu C / m^{2}$ - What is the total electric flux leaving the surface of the sphere?

- Watch Video Solution

78. Consider a uniform electric field
$E=3 \times 10^{3} \hat{1} N / C$. What is the flux of this field
through a square of 10 cm on a side whose plane is
parallel to the yz plane?

- Watch Video Solution

79. Given a uniform electric field
$\vec{E}=5 \times 10^{-3} \hat{i} N C^{-1}$ What would be the flux
through the same square, if the plane makes a 30°
angle with the X -axis?
80. A point charge of $10^{\wedge}-7^{`}$ colulomb is situated at
the centre of a cube of 1 m side. Calculate the electric flux through its surface.

- Watch Video Solution

81. A point charge of $5 \mu C$ is situated at the centre of a sphere of radius 0.2 m . Calculate the electric
flux through its surface. Given
$\varepsilon_{0}=8.854 \times 10^{-12} C^{2} N^{-1} m^{-2}$

- Watch Video Solution

82. Find the electric flux through each force of a hollow cube of side 10 cm , if a charge of $8.854 \mu C$ is placed at its centre.

- Watch Video Solution

83. A point charge of $12 \mu C$ is located at the centre of a cube of side 1 m . Calculate the electric flux through each face of the cube.

- Watch Video Solution

84. If the number of electric lines of force emerging
out of a closed surface are 10^{3}, calculate the charge
enclosed by the surface.

- Watch Video Solution

85. An electric flux of $-6 \times 10^{3} \mathrm{Nm}^{2} \mathrm{C}^{-1}$ passes
through a spherical gaussian surface of radius 10 cm due to a point charge placed at the centre.

What is the charge enclosed by the gaussian surface.
86. An electric flux of $-5 \times 10^{3} \mathrm{Nm}^{2} \mathrm{C}^{-1}$ passes
through a spherical gaussian surface of radius 20
cm due to the charge placed at its centre. If the radius of the gaussian surface is doubled, how much flux would pass through the surface?

- Watch Video Solution

87. A charged particle having a charge of $-3 \mu C$ is
placed close to a sheet of charge having a surface charge density $5 \times 10^{-6} \mathrm{Cm}^{-2}$. Find the force of
attraction between the particle and the sheet of charge.
88. A particle of mass $9 \times 10^{-5} \mathbf{g}$ is kept over a large horizontal sheet of charge having surface charge density $5 x 10^{-5} \mathrm{Cm}^{-2}$ What charge should be given to this particle so that if released, it does not fall down?

- Watch Video Solution

89. Assume that earth has a charge of surface density 1 electron per metre 3. Calculate the earth's
electric field

- Watch Video Solution

90. Assume that earth has a charge of surface density 1 electron per metre 2. Calculate the earth's
electric potential just outside the earth's surface.

- Watch Video Solution

91. The radius of gold nucleus ($Z=79$) is about
$7.0 \times 10^{-15} \mathrm{~m}$. Assuming that the positive charge is distributed uniformly througout the nuclear
volume, find the strength of the electric field at the surface of the nucelus

- Watch Video Solution

92. The radius of gold nucleus ($Z=79$) is about
$7.0 \times 10^{-15} \mathrm{~m}$. Assuming that the positive charge is distributed uniformly througout the nuclear
volume, find the strength of the electric field at the middle point of the radius.

- Watch Video Solution

93. A 1 mg ball carrying a charge of $2 \times 10^{-8} \mathrm{C}$ hangs from a thread. When a large conducting plate of charge is brought near the ball, the thread makes an angle of 30° with the plate. What is the surface charge density of the plate?

- Watch Video Solution

94. If a small sphere of mass m and charge q hangs
from a silk thread at angle θ with a charged coducting plate, show that the equilibrium of the sphere, the surface charge density for the plate is $\varepsilon_{0}=\frac{m g}{q} \tan \theta$

(D) Watch Video Solution

95. An electric dipole AB consists of charge ± 5 separated by a distance of $2 \times 10^{-3} \mathrm{~m}$ The dipole is placed near a long line charge having linear charge density $4.5 \times 10^{-4} \mathrm{Cm}^{-1}$, such that the negative charge is at a distance $O A=2.5 \mathrm{~cm}$ from the line charge. Find the force acting on the dipole.

\square
