

PHYSICS

BOOKS - MODERN PUBLICATION

Huygen's Principle

EXAMPLE

1. What is ether medium?

2. What is wavefront? State its relation with ray of light.

Watch Video Solution

3. Define wavefront and a ray.

Watch Video Solution

4. What do you understand by a wavefront?

5. Define a ray.

Watch Video Solution

6. What is a ray of light?

Watch Video Solution

7. Differentiate between a ray and a wavefront.

8. What type of wavefront will emerge from a point source?

Watch Video Solution

9. The shape of wave front emitted by a light source in the form of a narrow slit is

10. What type of wavefront will emerge from a point source?

Watch Video Solution

11. Name different types of wavefront.

Watch Video Solution

12. What is the shape of the wavefront in each of the following cases:Light diverging from a

point source.

Watch Video Solution

13. What is the shape of the wavefront in each of the following cases: Light emerging out of a convex lens when a point source is placed at its focus.

14. What is the shape of the wavefront in each of the following cases: The portion of the wavefront of light from a distant star intercepted by the Earth.

Watch Video Solution

15. Sketch the wavefronts corresponding to converging rays.

16. For light diverging from a point source.

17. Sketch the wavefronts corresponding to diverging rays.

18. How is a wavefront related to the direction of corresponding rays?

19. What is the phase difference between any two points on a wavefront?

Watch Video Solution

20. When a wave is reflected from a denser medium, the change in phase is:

21. When light undergoes refraction, what happens to its frequency?

22. Can the phenomenon of rectilinear propagation,reflection and refraction be explained on the basis of wave nature of light?

23. What are the drawbacks of wave theory of light?

Watch Video Solution

24. In what respect is Huygens' wave theory of ight similar to Maxwell's electromagnetic theory? In what respect are the two theories different?

25. Why ether was called a hypothetical medium?

Watch Video Solution

26. What type of wavefront will emerge from a point source?

27. What is the shape of wave front originating from a point source

Watch Video Solution

28. What is the shape of wavefront orginating fron

a line source?

29. What is meant by a wavefront? What is the shape of the wavefront of a beam of parallel rays?

Watch Video Solution

30. Is the speed of light in glass independent of the colour of light? If not, which of the two colours red and violet travels slower in a glass prism?

31. When monochromatic light is incident on a surface separating two media, the reflected and refracted light both have the same frequency as the incident frequency. Explain, why.

Watch Video Solution

32. When light travels from a rarer to denser medium, the speed decreases. Does the decrease in speed imply a decrease in the

energy carried by the light wave?Justify you answer.

Watch Video Solution

33. What is the shape of the wavefront in each of the following cases: Light emerging out of a convex lens when a point source is placed at its focus.

34. Explain how a parallel beam of light on reflection from a concave mirror gets converged.

Watch Video Solution

35. A plane wavefront is incident on a prism.Draw the shjape of the refracted wavefront.

36. Draw a diagram to show the refraction of a plane wavefront incident on a convex lens and hence draw the refacted wavefront.

Watch Video Solution

37. In the wave picture of light, intensity of light is determined by square of the amplitude of wave. What determines the intensity of light in the photon picture of light.

38. Why is the contribution of the wavelets lying on back of secondary wavefront zero?

Watch Video Solution

39. Explain how a parallel beam of light on reflection from a concave mirror gets converged.

40. Explain how a parallel beam of light on reflection from a convex mirror gets diverged.

Watch Video Solution

41. Explain how a ray of light passing through a prism is deviated towards the base of the prism.

42. Explain how a parallel beam of light on refraction from a convex lens gets converged.

Watch Video Solution

43. Explain how a parallel beam of light on refraction through a concave lens gets diverged.

1. What is Huygen's principle?

Watch Video Solution

2. Explain the term wavefront.Describe Huygens' construction for propagation of waverfronts in a medium.

3. With the help of a diagram, explain the Huygens' principle for the propagation of light in a medium.

Watch Video Solution

4. State and explain Huygen's principle.

5. What are the two assumptions on which Huygens' principle is based? Explain Huygen's geometrical construction for the wavefronts.

Watch Video Solution

6. State the postulates of Huygens' wave theory.

7. What is the shape of wavefront orginating fron

a line source?

Watch Video Solution

8. For light diverging from a point source.

9. State Huygen's principle of propagation of light and prove the laws (Snell's law) of refraction on its basis.

Watch Video Solution

10. State Hugen's principle and verify the laws of reflection of light using this principle.

11. State Hugen's principle and verify the laws of reflection of light using this principle.

Watch Video Solution

12. Using Huygens theory, verify the law of reflection?

13. Verify the laws of reflection using Huygen's wave principle.

Watch Video Solution

14. Using Huygens' principle and drawing the skteches of wavefront, show how a parallel beam of light is reflected from a polshed surface and hence verify that $\angle i = \angle r$.

15. Define wavefront and a ray.

Watch Video Solution

16. Verify the laws of reflection using Huygen's wave principle.

Watch Video Solution

17. State Hugen's principle and verify the laws of reflection of light using this principle.

Watch Video Solution

18. Describe the phenomenon of refraction from Huygens' wave theory.

19. State Huygen's principle of propagation of light and prove the laws (Snell's law) of refraction on its basis.

20. State Huygen's principle of propagation of light and prove the laws (Snell's law) of refraction on its basis.

Watch Video Solution

21. Verify the laws of reflection using Huygen's wave principle.

22. State Huygen's principle of propagation of light and prove the laws (Snell's law) of refraction on its basis.

Watch Video Solution

23. State Huygen's principle of propagation of light and prove the laws (Snell's law) of refraction on its basis.

24. State Huygen's principle of propagation of light and prove the laws (Snell's law) of refraction on its basis.

Watch Video Solution

25. How is a wavefront defined? Using Huygens' prniciple draw a figure showing the propagation of a plane wave refracting at a plane surface separating two media. Hence verify Snell's law of refraction.

26. Using Huygen's principle and drawing the sketches of wavefronts, show how a parallel beam of light is refrated from the surface of separation of a rarer medium to a denser medium. Verify Snell's law.

Watch Video Solution

27. State Huygen's principle of propagation of light and prove the laws (Snell's law) of

refraction on its basis.

Watch Video Solution

28. State the principle, which helps us to determine the shape of the wavefront at a later time from its given shape at any time. Apply this principle to

Show that a spherical/plane wavefront continues to propagate forward as a sherical/plane wave front.

29. State the principle, which helps us to determine the shape of the wavefront at a later time from its given shape at any time. Apply this principle to

Derive Snell's law of refraction by drwing the refracted wavefront corresponing to a plane wavefront incident on the boundary separating a rarer medium from a denser medium.

30. Explain the action of a prism, a convex lens and a concave mirror, when a plane wavefront is incident on it.

Watch Video Solution

31. State Huygens' principle and use it to describe the process of reflection of a parallel beam of light incident on a plane mirror obliquely with the help of a labelled diagram. Prove that the angle of incidence is equal to the angle of reflection.

32. How is a wavefront defined? Using Huygens' prniciple draw a figure showing the propagation of a plane wave refracting at a plane surface separating two media. Hence verify Snell's law of refraction.

33. How is a wavefront defined? Using Huygens' prniciple draw a figure showing the propagation of a plane wave refracting at a plane surface separating two media. Hence verify Snell's law of refraction.

Watch Video Solution

34. What is the shape of wave front originating from a point source

35. Using Huygens' principle and drawing the skteches of wavefront, show how a parallel beam of light is reflected from a polshed surface and hence verify that $\angle i = \angle r$.

Watch Video Solution

36. How is a wavefront defined? Using Huygens' prniciple draw a figure showing the propagation of a plane wave reflecting at the interface of the two media. Show that the

angle of incidence is equal to the angle of reflection.

Watch Video Solution

37. State Huygen's principle of propagation of light and prove the laws (Snell's law) of refraction on its basis.

38. State Huygen's principle of propagation of light and prove the laws (Snell's law) of refraction on its basis.

Watch Video Solution

39. How is a wavefront defined? Using Huygens' prniciple draw a figure showing the propagation of a plane wave refracting at a plane surface separating two media. Hence verify Snell's law of refraction.

Watch Video Solution

40. State Huygen's principle of propagation of light and prove the laws (Snell's law) of refraction on its basis.

Watch Video Solution

41. Verify the laws of reflection using Huygen's wave principle.

42. For light diverging from a point source.

Watch Video Solution

43. What is the shape of the wavefront in each of the following cases: Light emerging out of a convex lens when a point source is placed at its focus.

44. Verify the laws of reflection using Huygen's wave principle.

Watch Video Solution

45. State Huygen's principle of propagation of light and prove the laws (Snell's law) of refraction on its basis.

