© 'doubtnut

PHYSICS

BOOKS - MODERN PUBLICATION

REFRACTION OF LIGHT

Example

1. The refractive index of glass is 1.5 . What is
the speed of light in glass? (Speed of light in
vacuum is $3.0 \times 10^{8} \mathrm{~ms}$)
2. Velocity of light in glass in $2 \times 10^{8} \mathrm{~ms}^{-1}$ and that in air is $3 \times 10^{8} \mathrm{~ms}^{-1}$. By how much would an ink dot appear to be raised,when covered by a glass plate 6.0 cm thick?

- Watch Video Solution

3. Refractive index of glass is 1.5 find critical angle for glass.

Watch Video Solution

4. A small point object is placed in air at a distance of 60 cm from the convex spherical refracting surface of refractive index 1.5.If radius of curvatrure of the spherical surface is 25 cm ,calculate the power of the refracting surface.

D
 Watch Video Solution

5. A binoconves lens with both faces of the same radius of curvature is to be manufatured
from a glass of refractive index 1.55. What should be the radius of curvature for the focal length of the lens to be 20 cm ?

- Watch Video Solution

6. A beam of light converges at a point P. Now
a lens is placed in the path of the convergent
beam 12 cm from P. At what point does the
beam converge if the lens is: a convex lens of

focal length 20 cm ?

D Watch Video Solution

7. A beam of light converges at a point P. Now
a lens is placed in the path of the convergent
beam 12 cm from P. At what point does
thebeam converge if the lens is: a concave lens
of focal length 16 cm ?

- Watch Video Solution

8. A convex lens of focal length 0.12 m produces an inverted image, which is three times as long as the object.Find the distance between the object and the lens for a real image.

- Watch Video Solution

9. Two thin converging lenses of focal lenths 15
cm and 30 cm are held in contact with each
other.Calculate power and focal length of the combination.

- Watch Video Solution

10. The refractive index of glass is 1.5 and that of water is 1.3.If the speed of light in water is $2.25 \times 10^{8} \mathrm{~ms}^{-1}$,what is the speed of light in glass?

- Watch Video Solution

11. A light of wavelength $6,000 \AA$ in air, enters
a medium with refractive index 1.5 . What will be
frequency and wavelength of light in the medium?

D Watch Video Solution
12. Monochromatic light of wavelength 589 nm
is incident from air on a water surface. What
are the wavelength, frequency and speed of reflected?

D Watch Video Solution
13. Monochromatic light of wavelength 589 nm
is incident from air on a water surface. What
are the wavelength, frequency and speed ofrefracted light. Refractive index of water is 1.33

D Watch Video Solution

14. A pile 4 m high stands in the lake,such that
it protrudes y 1m above the surface of water.Determine th elength of the shadow of
the pile on the botton of lake,when the
sunrays make an angle of 45° with the water
surface.Tke refractive index of water, $\mu=4 / 3$.

- Watch Video Solution

15. A ray of light is incident at an angle of 60° on one face of a rectangular glass slab of thichness 0.1 m and refractive index 1.5.Calculate the lateral shift produced.

- Watch Video Solution

16. Refractive indices of water and glass are
$4 / 3$ and $3 / 2$ respectively.A ray of light travelling in water is incident on the water-
glass interface at 30°.Calculate the angle of refraction.

D Watch Video Solution

17. A mark is made at the bottom of a beaker and a microscope is focussed on it.the microscope is then raised through 0.015 m.To what height water must be poured into the beaker to bring the mark again into focus?

Given $a^{\mu}-w=4 / 3$.
18. What is the apparent position of an object below a rectangular block of glass 6 cm thick ,if a layer of water 4 cm thick is on top of the glass?Given that $\quad a^{\mu}{ }_{-} g=3 / 2 \quad$ and $a^{\mu}{ }_{-} w=4 / 3$.

- Watch Video Solution

19. A transparent cube of side 210 mm contains a small air bubble. Its apparent distance, when viewed through one face of the cube is 100 mm and when viewed through the opposite face is 40 mm . What is the actual distance of the bubble from the second face and what is the refractive index of the material of the cube?
20. One face of a glass cube of side 0.06 m is
silvered.An object is placed at a distance of
0.07 m from the face opposite to the silvered face.Looking from the object side,the image of the object appears to be 0.11 m behind the silvered face.Calclate the refrative index of the material of glass.

- Watch Video Solution

21. Find the critical angle for a glass-water interface, if refractive index of glass3/2 and that of water is $4 / 3$.

D Watch Video Solution

22. A glass slab is immersed in water.Find the critical angle at glass-water interface.Given,
$\mu^{a}-g=1.5$ and $\mu^{a}-w=1.33$.
23. Calculate the critical angle for a glass-air surface, if a ray of light which is incident in air on the surface is deviated through 15°, when its angle of incidence is 40°.

D Watch Video Solution

24. A ray of light incident on the horizontal
surface of a glass slab t 70° just grazes the adjacent vertical surface after refraction.

Compute the critical angle and refractive index of the glass.

- Watch Video Solution

25. A liquid of refractive index 1.5 is poured into a cylindrical jar of radius 20 cm upto a height of $20 \mathrm{~cm} . A$ small bulb is lighted at he centre of the bottom of the jar.Find the area of the liqud surface throug which the light of the bulb passes into air.

-
 Watch Video Solution

26. A narrow beam of light is incident normally
on one face of a glass prism having refractive
index 1.48. Find the angle of prism if the ray makes a grazing emergence along the other face. Draw a diagram showing the path of rays.

- Watch Video Solution

27. A beam of light of wavelength 400 nm is incident normally on a right angled prism as shown in fir.2.45.
the surface AC after falling on it.Give that
there fractive index of the material of the prism varies with the wavelength as per the relation.
$\mu=1.2+\frac{b}{\gamma^{2}}$
Calculate the value of b and the refractive
index of the prism material for a wavelength
$\gamma=500 \mathrm{~nm}$.Given $\theta=\sin ^{-1} 0.625$.

D Watch Video Solution

28. What curvature must be given to the bounding surface of a refracting medium
($\mu=1.5$) for the virtual image of an object in the adjacent medium $(\mu=1)$ at 10 cm to be formed at a distance of 40 cm ?
29. A spherical surface radius of curvatue R seprates air (refractive index 1.0) from glass

9refractive index 1.5).The centre of curvature is
in the glass.A point object P is placed in air is
found to have a real image Q in the glass.The
line $P Q$ cuts the surface at a point O and $P O=$

OQ[Fig.2.47].Find the distance of object from
the shperical surface.

D Watch Video Solution

30. A small piece of paper stuck on a glass shpere of 5 cm radius is viewed through the glass from the position directly opposite .Find the position of the image .Refractie index of glass is 1.5.

D Watch Video Solution

31. Fig.2.49 shows a solid glass sphere of radius 5 cm that has a small air bubble O
trapped at a distance 2 cm from the centre
C.Th refractive index of the material of glass is
1.5.Find the apparent position of the bubble where it will appear ,when seen throught the
surface from an ougtside point E .

(D) Watch Video Solution

32. A small air bubble within a glass sphere of radius 0.02 m appears to be 0.01 m below the surface,when looked along a diameter containing the buble.Find the real depth of the bubble along the line of sight.Given, $\mu=1.54$.

D Watch Video Solution

33. A beam of light strikes a glass sphere of 20
cm diameter converging towards a point 40
cm behind the pole of the spherical surface.Fnd the position of the image, if the refractive index of glass is 1.5 .

D Watch Video Solution

34. An empty spherical flask of diameter 15 cm
is placed in water of refractive index $4 / 3$. A parallel beam of light strikes the flask.Where does it get focussed,when obsrved from within the flask?
35. Find the radius of curvature of the convex
surface of a plano convex lens, whose focal length is 0.3 m and the refractive index of the material of the lens is $1.5 /$

D Watch Video Solution

36. The radius of curvature of eithr face of a conex lens is equal to ts focal length. What is the refractive index of its material?
37. A double convex lens has radii 20 cm .The refractive index of glass is 1.5.Compure the
focal length of this lens in air and when immersed in carbon disulphide of refractive index $=1.63$.

- Watch Video Solution

38. A convex lens of focal length 0.2 m and made of glass $9 \mu=1.50$) is immersed in
water $9 \mu=1.33$). Find the chajnge in the focal
length of the lens.

- Watch Video Solution

39. Explain what happens ,when a convex lens of refractive index 1.2 is immersed in a liquid of refractive index 1.3.

D Watch Video Solution
40. A convex lens made up of glass of refractive index 1.5 is dipped, in turn ,in
medium A of refractive index 1.65 . will it behave as converging or diverging lens?

D Watch Video Solution

41. A convex lens made up of glass of refractive index 1.5 is dipped, in turn ,in
medum B of refractive index 1.33 . whether it
will behave as a converging lens or a diverging

lens?

D Watch Video Solution

42. A double convex lens has 10 cm and 15 cm
as its two radii of curvature.The image of an
object,placed 30 cm from the lens, is formed at

20 cm from the lens on the other side.Find the refractive index of the material of the
lens.Whgat will be the focal length ?What will
be the focal length of the lens,if it is immersed in water of refractive index 1.33?

- Watch Video Solution

43. An equiconvex lens with radii of curvature of magnitude R each, is put over a liquid layer poured on top of a plane mirror.A small needle ,with its tip on the principal axis of the lens,is moved along the axis until its inverted real image coincides with the needle itself.The distance of the needle from the lens is
measured to be a as shown in Fig.2.53.

On removing the liquid layer and repeating the ezperiment, the distance is found to be b as shown in Fig. 254 .Gien that tow values of distances meeawured reepresent the focal length values in the two cases, obtain a formula for the refractive index of the liquid.

44. Calculate the distance d,so that a real image of an object at $0,15 \mathrm{~cm}$ in front of a convex lens of focl length 10 cm be formed at
the same point O as sohwn in Fig.2.45. te radius of cuvature of the mirro is 20 cm .Will the image be inverted or erect?

45. In Fig. 2.56 ,the direct image formed by the
lens $(\mathrm{f}=10 \mathrm{~cm})$ of an object placed of O and that
formed after reflection from the spherical mirror are formed at same point.What is the radius of curvature of the mirror?

46. A convergent beam of light passes through
a diverging lens of focal length 0.2 m and comes to focus at distance 0.3 m behind the
lens.Find the position of the point at which the beam would converge in the absence of the lens.

D Watch Video Solution

47. A beam of light converges at a point P. Now
a lens is placed in the path of the convergent
beam 12 cm from P . At what point does the
beam converge if the lens is: a convex lens of focal length 20 cm ?

D Watch Video Solution

48. A beam of light converges at a point P.

Now a lens is placed in the path of the convergent beam 12 cm from P. At what point does thebeam converge if the lens is: a concave lens of focal length 16 cm ?
49. A camera lens of focal length 5 cm is mounted on a fine screw thread for adjusting the focus.What range of movement is neede,if the amer ais to be able to take sharp photographs at 1 m as well as from great distances?

D Watch Video Solution

50. A 5 cm long needle lies along the principal axis axis of a concave miror of focal length 20
cm in such a way that the end closer to the
pole is 40 cm from it.Find the length of the image of the needle formed by the mirror.

D Watch Video Solution

51. A double convex lens made of glass of refactive index 1.56 has both radii of curvature of magnitude 20 cm .If an object is placed at a distance of 10 cm from this lens,find the positiojn of the image formed.
52. A convex lens of focal lenght 20 cm is placed coaxially with a concave mirror of focal length 10 cm at a distance of 50 cm apart from each other.A beam of ligh coming parallel to the principal axis is incident on the convex lens.Find the position diagram showing the formation of the imge.

- Watch Video Solution

53. A convex lens of focal lenght 20 cm is placed coaxially wih a convex mirror of radius
of curvature 20 cm .the two are kept at 15 cm apart.A point object lies 60 cm in front of the convex lens.Draw a ray diagram to show the formation of the image by the combination.Determine the nature and position of the image formed.

D Watch Video Solution

54. A convex lens is used to obtain a magnified
image of an object on a screen 10 m from the
lens .If the magnification is 19 ,find the foal length of the lens.

D Watch Video Solution

55. The image obtained with a convex lens is erect and its lenth is four times the length of the object.If the focal length of the lens is 20 cm,calculate the object and image distance.
56. A needle placed 40 cm from a lens forms
an image on a screen placed 80 cm on the other side of the lens. Identify the type of lens and determine its focal length. What is the size of the image, if the size of needle is 15 cm ?

- Watch Video Solution

57. A needle placed 40 cm from a lens forms an
image on a screen placed 80 cm on the other
side of the lens. Identify the type of lens and
determine its focal length. What is the size of the image, if the size of needle is 15 cm ?

D Watch Video Solution

58. An object is placed at a distance of 1.5 m
from a screen and a convex lens is interosed between them .the magnification produced is 4.What is the focal length of the lens?

D Watch Video Solution

59. A convex lens is made of glass of refractive index 1.5.If radius of curvature of the each of its twosurfaces is 20 cm ,find the ratio of the power of the lens,when placed in air to its power , when immersed inside a liquid of refractive index 1.25.

D Watch Video Solution

60. Show that a convex lens produces an N
times magnified image,when the object distances from the lens have magnitude
$(f \pm f / N)$.Here,f is the magnitude of the focal length of the lens.Hene,find the two values of object distance,for which a convex lens of power 2.5 D will produce an image that is four times as large as the object.

- Watch Video Solution

61. Two lenses f powers-1.5 and +2.75 D are kept in contact.Find the focal length of the combination.
62. A converging and a diverging lens of equal focal lengths are placed co-axially in contact.

Find the power and the focal length of the combination.

- Watch Video Solution

63. $A B$ and $C D$ are two slabs[Fig.2.61.].The medium between the slabs has refractive index 2.Find the minimum angle of incidence at Q, so that the ray is totally reflected by both
the slabs.

- Watch Video Solution

64. An object is placed 21 cm in front of a concave mirror of radius of curvature $10 \mathrm{~cm} . \mathrm{A}$ glass slab of thickness 3 cm and refractive index 1.5 is then placed close to the irror in the space between the object and mirror as shown
in Fig.2.62.Find the position of the final image
formed.You may take the distacne of the near
surface of the slab from the mirror to be 1 cm .

- Watch Video Solution

65. A rectangular glass block of thickness 10
cm and refractive index 1.5 is placed over a
small coin.A beaker is filled with water of refractive index $4 / 3$ to a height of 10 cm and is placed over a small block.

Find the apparent position of jthe object,when
it is viewed at normal incidence.

D Watch Video Solution
66. A rectangular glass block of thickness 10
cm and refractive index 1.5 is placed over a small coin.A beaker is filled with water of refractive index $4 / 3$ to a height of 10 cm and is placed over a small block.

If the eye is slowly moved away from the normal at a certain position,the coin is found to diappear due to total internal reflection.At
what surface does it happen and why?

- Watch Video Solution

67. Fig.2.64 shown an irregular block of material of refractive index sqr2.A ray of light strikes the face AB.After refraction,it is
incident on a spherical surface CD of radius of
curvature 0.4 m and neters a medium of refractive index 1.514 to meet PQ at E.Find the distnce OE up to two decimal.

D Watch Video Solution

68. A quater cylinder of radius R and refractive index 1.5 is placed on a table .A point object P
is kept at a distance of $\mathrm{m} R$ from it. Find the value of m for which a ray from P will emerge parallel to the table as shown in fir.2.65.

- Watch Video Solution

69. A point object is placed at a distance of 0.3
m from a convex lens(focal length 0.2 m) cut into two halves,each of which is displaced by
0.5 mm as shown in Fig.2.67 . Find the positio of the image.If more than one image is
formed,find their number nd the distance between them.

$$
\text { Fig. } 2.67
$$

- Watch Video Solution

70. Light is incident on a thin lents a shown in

Fig.2.68.The radius of curvature for both the
surfaces is R.Determine the focal length of this
system.

- Watch Video Solution

71. What is the relation between refractive indicises μ, μ_{1} and μ_{2}, if the behaviour of light rays is as shown in Figs.2.69 and 2.70?

D Watch Video Solution

72. A plano - convex lens has thickness 4 cm.When placed on a horizontal table with the
curved surface in contact with it,the apparent
depth of the bottom-most point of the lens is
found to be 3 cm .If the lens is inverted, such
that the plane face is in contact with the table,the apparent depth of the centre of plane face of the lens is found to be $25 / 8$ cm.Find the focal length of the lens.

D Watch Video Solution

73. The distance between two sources of light is 24 cm .Find out where would you place a
converging lens of focal length 9 cm ,so that
the images of both sources are formed at the same point.

D Watch Video Solution

74. An object is approaching a thin convex lens of focal length 0.3 m with a speed of 0.01 $m s^{-1}$. Find the magnitudes of the rates of change of position and lateral magnification of image,when the object is at distacne of 0.4 m from the lens.

Watch Video Solution

75. A pin is placed 10 cm in front of convex lens of focal lenth 20 cm made of material of refractive index 1.5 .the surface of the lens farther away from the pin is silvered and has a radius curvature 22 cm .Detrermine the position of the final image.Is the image real or

virtual?

- Watch Video Solution

76. The radius of curvture of the convex face of
a plano-covex lens is 12 cm and its refractive index is 1.5 .

Find the focal length of the lens.

- Watch Video Solution

77. The radius of curvture of the convex face of
a plano-covex lens is 12 cm and its refractive index is 1.5 .

Find the focal length of the lens.

- Watch Video Solution

78. The radius of curvture of the convex face of
a plano-covex lens is 12 cm and its refractive index is 1.5 .

Calculate the image distance, when a point object is paced on the axis 20 cm from the lens.

D Watch Video Solution

79. Two thin lenses, when in contact, produce a combinatin of power+10 dioptres. When they are 0.25 m apart,the power reduces to +6 dipotres.Find the power of the two lenses.

D Watch Video Solution

80. What is refraction of light?

- Watch Video Solution

81. What is the basic cause of refraction of light?

- Watch Video Solution

82. What is refraction of light?

D Watch Video Solution
83. When light travels from a rarer to denser medium,the speed decreases.Does the decrease in speed imply a decrease in the energy carried by the light wave? Justify you answer.

- Watch Video Solution

84. Give the ratio of velocities of light waves of wavelengths 4000λ and 8000λ in vacumm.
85. How the speed of light in vacuum is affected by the change of wavelength of light?

D Watch Video Solution

86. Is the ratio of frequencies of ultraviolet
rays and infrared rays in glass more than, less than or equal to 1 ?

D Watch Video Solution

87. Out of speed,frequency and

wavelength,name the parameters which remain same after reflectrion?

- Watch Video Solution

88. How does the frequency of a beam of ultraviolt light change when it goes from air to glass?

D Watch Video Solution

89. Define refractive index of a medium w.r.t. another medium.

D Watch Video Solution

90. Can absolute refractive index of any material be less than one? Why?

D Watch Video Solution

91. State Snell's law of refraction of light.

92. Write down two formulas for μ.

D Watch Video Solution

93. Can relative refractive index of a medium
w.r.t another be less than unity?

D Watch Video Solution
94. For what angle of incidenc e,the lateral shift produces by a parallel sided glass plate is zero?

- Watch Video Solution

95. For what angle of incidence, the lateral shift
produced by a parallel sided glass plate is maximum?
96. What are the factors on which the normal shift depends?

- Watch Video Solution

97. Explain total internal reflection. What are its conditions?

- Watch Video Solution

98. Write the conditions for total internal reflection to takeplace?

- Watch Video Solution

99. Give illustrative examples for total internal reflection.

D Watch Video Solution
100. Define critical angle for total internal reflection.

- Watch Video Solution

101. Define critical angle for total internal reflection.

D Watch Video Solution
102. Define critical angle for total internal reflection.

D Watch Video Solution

103. What is the relation between critical angle and refractive index? What is critical angle for diamond?

D Watch Video Solution
104. What is the critical angle for materail of refractive index $\sqrt{2}$?

- Watch Video Solution

105. A substance has critical angle 45° for yellow light. What is its refractive index?

- Watch Video Solution

106. For glass-air interface,the critical angle is
C.Will the critical angle for glass-water interface be greater or less than C?

D Watch Video Solution

107. Can total inrternal reflection take
place,when light travesl from rarer to denser medium?

D Watch Video Solution

108. What is potical figbre?

D Watch Video Solution

109. Which of the main parts of an optical fibre
has a higher value of refractiv index?

D Watch Video Solution
110. State the principle of optical pipe.
111. Name the physical principle on which th eworking of potical fibres is bases.
(D) Watch Video Solution
112. What is lens?

- Watch Video Solution

113. Define the principal axis of a lens.
114. Define focus and principal focus.

- Watch Video Solution

115. A glass lens of refractive index 1.5 is placed
in a trough of liquid. What must to be the refractive index of the liquid in order to make the lens diappear.
116. A lens when immersed in a transparent
liquid becomes invisible. Under what condition does it happen?

- Watch Video Solution

117. Can a lens be used in the medium of which
is is made of?

D Watch Video Solution
118. under what condition does a biconvex lens
of glass having a certain refractive index act as
a plane glass sheet,when immersed in a liquid?

D Watch Video Solution

119. Converging lens of refractive index 1.5 is
kept in a liquid medium having the same refractive index what would be the focal length of the lens in this medium?
120. How can a convex lens behavae like a diverging lens?

D Watch Video Solution

121. A double convex lens made from a material of refractive index μ_{1} is immersed in a
liquid of refactive index μ_{2} where $\mu_{2}>\mu_{1}$. What change, if any, would occur in the nature of the lens?
122. A biconvex lens of a transparent material of refractive index 1.25 is immersed in water of refractive index 1.33 will the lens behave as a converging or a diverging lens?Give reason.

D Watch Video Solution

123. A convex lens made up of glass of refractive index 1.5 is dipped, in turn, in
medum B of refractive index 1.33 . whether it
will behave as a converging lens or a diverging

lens?

D Watch Video Solution

124. A biconvex lens of a transparent material
of refractive index 1.25 is immersed in water of
refractive index 1.33 will the lens behave as a
converging or a diverging lens?Give reason.

D Watch Video Solution
125. A biconvex lens of a transparent material
of refractive index 1.25 is immersed in water of
refractive index 1.33 will the lens behave as a
converging or a diverging lens?Give reason.

D Watch Video Solution

126. What type of lens is an air bubble inside water?
127. What happens to be focal length of convex lens when it is immersed in water?

- Watch Video Solution

128. An object is held at the principal focus of
a concave lens of focal length F. where is the
image formed?

- Watch Video Solution

129. A converging and a diverging lens of equal
focal lengths are placed co-axially in contact.

Find the power and the focal length of the combination.

D Watch Video Solution

130. A converging and a diverging lens of equal focal lengths are placed co-axially in contact. Find the power and the focal length of the combination.
131. The image of an object formed by a lens
on the screen is not in sharp focus.Suggest a method to get a clear focussing of the image on the screen without distrubing the position of the object, the lens or the screen.

D Watch Video Solution

132. A portion of a lens is broken. Will we get a complete image of an object with such a lens?
133. ...is the unit of power of the lens

- Watch Video Solution

134. Define power of a lens

D Watch Video Solution
135. Define power of a lens
136. A glass lens is immersed in water. How is
power of the lens affected? Justify your answer.

- Watch Video Solution

137. Write expression for the focal length and power of a lens combination.

- Watch Video Solution

138. When monochromatic light travels from one medium to another, its wavelength changes but its frequency remains the same. Why?

D Watch Video Solution

139. The refractive index of water is $4 / 3$.How much time will light take to travel through a water column of length 500 m ?
140. The refractive index of air w.r.t glass is
$2 / 3$.The refractive index of diamond w.r.t. air is
$12 / 5$.What is the refrative index of glass w.r.t. diamond?

D Watch Video Solution

141. For the same angle of incidence, the angles
of refraction in three different media A, B and C
are $15^{\circ}, 25^{\circ}$ and 35° respectively.In which medium will the velocity of light be minimum?

D Watch Video Solution

142. A ray of light of frequency of $5 \times 10^{14} \mathrm{~Hz}$ is passed through a liquid.the wavelength of
light measured inside the liquid is found to be
$450 \times 10^{-9} \mathrm{~m}$.Calculate refractive index of the liquid.

- Watch Video Solution

143. A ray of monochromatic light travelling in
vacuum with speed c ,wavelength γ and frequency v,enters into a medium of refrative index 1.5 .What will be its new speed ,wavelength and frequency?

- Watch Video Solution

144. When does snell's law in refraction fails?
145. Answer the following questions: A diver under water, looks obliquely at a fisherman
standing on the bank of a lake. Would the fisherman look taller or shorter tothe diver than what he actually is?

- Watch Video Solution

146. Write the conditions for total internal reflection to takeplace?

147. How will you explain twinkling of stars?

- Watch Video Solution

148. Watching the sunset on a beach, one can see for several minutes after it has 'actually set'. Explain.

D Watch Video Solution
149. Watching the sunset on a beach, one can see for several minutes after it has 'actually set'. Explain.

- Watch Video Solution

150. How does refraction of light affect the
length of the day?

- Watch Video Solution

151. Discuss refraction through a glass slab and show that emergent ray is parallel to incident ray but displaced?

D Watch Video Solution

152. A glass-slab is placed over a page,over which letters are printed in different colours.Will the image of all the letters lie in the same plane?Explain.
153. A glass-slab is placed over a page,over which letters are printed in different colours.Will the image of all the letters lie in the same plane?Explain.

D Watch Video Solution

154. A coin placed at the bottom of a tank appears to be raised,when water is poured into the tank.Why?
155. Why does a tank filled with water appear shallow?

D Watch Video Solution

156. Answer the following questions: Does the apparent depth of a tank of water change if viewed obliquely? If so, does the apparent depth increase or decrease?
157. A stick partially immersed obliquely under water appears to be bent.Explain,why.

D Watch Video Solution

158. Explain total internal reflection. What are
its conditions?

D Watch Video Solution
159. Explain total internal reflection. What are
its conditions?

D Watch Video Solution
160. Define critical angle for total internal reflection.
(Watch Video Solution
161. Write the conditions for total internal reflection to takeplace?

- Watch Video Solution

162. Prove that $\mu=\frac{1}{\sin C}$ where C is the critical angle?

D Watch Video Solution
163. What is the relation between critical angle and refractive index? What is critical angle for diamond?

D Watch Video Solution

164. State the condition of total internal reflectoin to take place at an interface separating two transparent media. Hence derive the expression for the critical angle in terms of speed of light in two media.
165. State the condition of total internal reflection. Calculate the speed of light in the medium whose critical angle of 45°.

- Watch Video Solution

166. An empty test tube is placed slanting in
the water and viewed from above, what will you observe?
167. Two monochromatic rays of light are incident normally on the face $A B$ of an isosceles right-angled prism $A B C$.The refractive indices of the glass prism for the two rays 1 and 2 are respectively 1.35 and
1.45[Fig.2.76]Trace the path of these rays after
entering through the prism

- Watch Video Solution

168. A right angled isosceles glass prism is
made from glass of refractive index 1.5.Show
that a ray of light incident normally on
one of the equal sides of this prism is deviated through 90°.

D Watch Video Solution

169. A right angled isosceles glass prism is made from glass of refractive index 1.5.Show that a ray of light incident normally on
the hypotneuse of this prism is deviated through 180°.
170. Fig. 2.68 shows object $P Q$ in front of a right angled $\left(45^{\circ}-90^{\circ}-45^{\circ}\right)$ glass prism.the
critical angle of glass is 42°.Redrw this figure tracing the complete path of rays from P and

Q into and out of the prism.

171. Show with a ray diagram,how an image is
produced in total reflecting prism.

172. Draw ray diagrams to show how specially designed prisms make use of total internal reflection to obtain inverted image of the object by deviating rays
through 180° ?

D Watch Video Solution

173. Draw ray diagram to show how a right angeld isosceles prism can be used to deviate the ray through 180°
174. Draw ray diagram to show how a right angled isosceles prism can be used to deviate the ray through 90°.

- Watch Video Solution

175. Draw ray diagram to show how a right angled isosceles prism can be used to deviate the ray through 90°.

Watch Video Solution

176. What are the advantage of total reflecting prism over a plane mirror?

D Watch Video Solution

177. How do you explain the mirage effect produced in very hot deserts?

- Watch Video Solution

178. Explain the formation of mirage.

- Watch Video Solution

179. On a hot summer day in desert ,one sees
the relected image of the distant objects.Explain,why.

D Watch Video Solution

180. Explain the formation of mirage.
181. Explain the brilliance of a diamond.

D Watch Video Solution
182. Why does a diamond sparkle?

- Watch Video Solution

183. Why does a diamond sparkle?
184. Give the principle and two applications of optical fibres.

- Watch Video Solution

185. What is an optical fibre?

- Watch Video Solution

186. What is an optical fibre?
187. What is the major use of optical fibres?

D Watch Video Solution

188. Explain with a ray diagram,how optical
fibres transmit signals.

D Watch Video Solution
189. A luminous object is paced just below a glass slab of thickness t. A circular opaque disc is placed vertically above on the surface of the glass-slab. If C is critical angle for glass-air interface, then predict the minimum radius of the opaque disc so that the object cannot be seen from any uncovered portion of the glassslab.

D Watch Video Solution

190. When observed from under water, all the objects above the surface can be seen within a cone of 97°. Why? Explain.

D Watch Video Solution

191. A fish in tank sees the outside world as if it
is at the vertex of a cone such that the circular
base of the cone is at the surface of the water.lf the depth of the fish is d and the
critical angle for water-air interface is C,what is
the radius of circle?

D Watch Video Solution

192. A convex lens is placed in contact with a plane mirror.A point object at a distance of 20 cm on the axis f this combinatin has its image coinciding with itself.What is the focal length of the lens?
193. For a spherical surface,when refraction
takes place from a rarer medium $\left(\mu_{1}\right)$ to a denser medium $\left(\mu_{2}\right)$, we write
$-\frac{\mu_{1}}{u}+\frac{\mu_{2}}{v}=\frac{\mu_{2}-\mu_{1}}{R}$
where the symbols have their usual meanings.

Now suppose that the object is placed in the denser to the rarer medium . Then, rewrite the above equation.

- Watch Video Solution

194. What is a lens maker's formula? Why is it called so? Derive it for a thin convex lens.

D Watch Video Solution

195. What is a lens maker's formula? Why is it called so? Derive it for a thin convex lens.

D Watch Video Solution

196. What is the focal length of a convex lens
($\mu=1 \cdot 5$) with radii of curvature R ?

D Watch Video Solution

197. The radii of curvature of he two surfaces
of a lens are not the same .It forms image of
an object.The surfaces of the lens facing the
object and image are interchanged .Will the position of the image change?
198. Briefly explain,how the focal length of a convex lens changes with increase in wavelength of incident light.

D Watch Video Solution

199. Red light is incident on a think converging
lens of focal length f. Briefly explain how the focal length of the lens will change,if red light is replaced with blue light.
200. What changes in the focal length of a concave mirror when the incident violet light on them is replaced by red light?

D Watch Video Solution

201. What changes in the focal length of a convex lens occur,when the incident violet light on them is replaced by red light?
202. How does the power of a convex lens
vary,if the incident violet light is replaced by red light?

D Watch Video Solution

203. A thin converging lens has a focal length f in air. If it is completely immersed in a liquid, briefly explain how the focal length of the lens will vary?
204. Can a convergent lens in one medium behave as a divergent lens in some other medium?

D Watch Video Solution

205. A concave mirror and a convex lens are held separetly in water. What changes, if any, do you except in the focal length of either?
206. A convex lens(refractive index μ_{L}) is immersed in a medium (refractive index μ_{M}
).Will it behave as a convergent or divergent
lens,if
$\mu_{L}>\mu_{M}$.

- Watch Video Solution

207. A convex lens made up of glass of refractive index 1.5 is dipped, in turn, in
medium A of refractive index 1.65 . will it behave as converging or diverging lens?

D Watch Video Solution

208. Explain,why an air bubble inside a transparent liquid behaves like a diverging lens.

D Watch Video Solution

209. A convex lens made of material of refractive index n_{1} is kept in a medium of refractive index n_{2}. Parallel rays of light are incident on the lens. Complete the path of light emerging from the convex lens, if $n_{1}<n_{2}$

D Watch Video Solution

210. A convex lens made of material of refractive index n_{1} is kept in a medium of
refractive index n_{1}. Parallel rays of light are incident on the lens. Complete the path of light emerging from the convex lens, if $n_{1}=n_{2}$

D Watch Video Solution

211. A convex lens made of material of refractive index n_{1} is kept in a medium of refractive index n_{2}. Parallel rays of light are incident on the lens. Complete the path of
light emerging from the convex lens, if $n_{1}<n_{2}$

D Watch Video Solution

212. A concave lens made of a material of refractive index μ_{g} is immersed in a medium of refractive index μ_{l}, greater than,A paprallel beam of light is incident on the lens. Trace the path of emerged rays
213. A concave lens made of a material of refractive index μ_{g} is immersed in a medium of refractive index μ_{l}, equal to and

D Watch Video Solution

214. The refractive index of a material of a
concave lens is n_{1}. It is immersed in medium of refractive index n_{2}. A parallel beam of light if incident on the lens. Trace the path of the
emergent lays when
$n_{2}=n_{1}$

- Watch Video Solution

215. The refractive index of a material of a concave lens is n_{1}. It is immersed in medium of refractive index n_{2}. A parallel beam of light if incident on the lens. Trace the path of the emergent lays when $n_{2}<n_{1}$.
216. You are given three lenses L_{1}, L_{2} and L_{3}
each of focal lenth 15 cm .An object is kept at

20 cm in front of L_{1} as shown in Fig.2.87.

The real image is formed at the focus I of L_{3}
.Find the separations between L_{1}, L_{2} and L_{3}.

217. The image of a candle is formed by a convex lens on a screen. The lower half of the
lens is painted black to make it completely opaque. Draw the ray diargram to show the image formation. How will this image be different from the one obtained when the lens is not painted black?

D Watch Video Solution

218. Describe the formation of image by a concave lens.

D Watch Video Solution

219. Use the mirror equation to deduce that: a convex mirror always produces a virtual image independent of the location of the object.

- Watch Video Solution

220. Define power of a lens

- Watch Video Solution

221. Define 1 dioptre of power of a lens

- Watch Video Solution

222. Define power of a lens
223. The following data was recorded for values of object distance and the corresponding values of image distance in the experiment on study of real image formation by a convex lens of power +5 D.One of these observations is incorrect.Identify this observation and give reason for your choice: | S. No | Object distance (cm) | Image distance (cm) |
| :---: | :---: | :---: |
| 1. | 25 | 47 |
| 2. | 30 | 61 |
| 3. | 35 | 37 |
| 4. | 45 | 35 |
| 5. | 50 | 32 |
| 6. | 55 | 30 |

Watch Video Solution

224. Although the surfaces of a goggle lens are curved,it does not have any power.Explain,why.

- Watch Video Solution

225. What are the uses of putting two lenses in contact with each other?
226. Draw a diagram to illustrate spherical aberration in a convex lens.

- Watch Video Solution

227. What happens to the image if aperature of a spherical mirror is large?

- Watch Video Solution

228. Explain,how spherical aberration can be minimised.

D Watch Video Solution

229. A beam of light is converging towards a point on a screen.A plane parallel plate of glass is introduced in the path of this converging beam.How will the point of convergence be shited ?Draw the ray diagram.
230. A container is filled with water ($\mu=1.33$)
upto a height of 33.25 cm .a concave miror is
placed 15 cm above the water level and the image of an object placed at the bottom is
formed 25 cm below the water leverl[Fig.2.90].Find the focal length of the concave mirror.

- Watch Video Solution

231. A concve mirror of radius of curvature 1 m
is placed at the bottom of a tank of water.The mirror forms an image of the sun,when it is directly overhead.Calculate the distance of the images from the mirror for different depths, 80 cm and 40 cm of the water in the tank.

- Watch Video Solution

232. A fish swims in a glass tank.A person,whose eye is above the level of water
,sees two fishes.Draw a ray diagram to
illustrate this.

D Watch Video Solution

233. The moon moves across the sky at approximately 0.5° per hour.

What you would see,if the moon had an atmosphere like the earth?

D Watch Video Solution

234. The moon moves across the sky at approximately 0.5° per hour.

What you would see,if the moon had an atmosphere like the earth?

D Watch Video Solution

235. A convex and concave lens having focal
lengths of 30 cm and j 10 cm respectively are placed at a distance 20 cm from each other.Whre should a source of light be placed
so that the system of the two lenses will produce a beam of parallel rays?

D Watch Video Solution

236. A lens shown in the figure VSAQ 9.73 is made of two different materials. A point object
is placed on its axis. How many images will it
form?

- Watch Video Solution

237. The greatest thickness of a Plano-convex
lens ,when viewed normally through its plane
surface, appears to be $8 / 300 \mathrm{~m}$ and when
viewed normally through its curved surface,appears to be $16 / 500 \mathrm{~m}$. If the actual thickness is 0.04 m,find its refractive index,

D Watch Video Solution

238. The greatest thickness of a plano-convex
lens, when viewed normally through its plane
surface,appears to be $8 / 300 \mathrm{~m}$ and when
viewed normally through its curved
surface,appers to be $16 / 500 \mathrm{~m}$. If the actual
thickness is 0.04 m ,find its

radius of cruature

D Watch Video Solution

239. The greatest thickness of a Plano-convex lens, when viewed normally through its plane surface, appears to be $8 / 300 \mathrm{~m}$ and when viewed normally through its curved surface,appears to be $16 / 500 \mathrm{~m}$. If the actual thickness is 0.04 m ,find its refractive index,
240. What is minimum distance between an
object and the real image formed by a convex lens?

- Watch Video Solution

241. An ant is approaching a convex lens with a uniform speed upto first focus. How would the speed of the image of the ant formed by lens change?

Exercise

1. Explain the phenomenon of refraction at a plane surface separating two transparent media and show that $\mu=c / v$ where letters
have their usual meanings.

2. Define refractive index in terms of velocity of

 light?- Watch Video Solution

3. Prove the Relation : ${ }^{a} \mu_{b}=\frac{1}{{ }^{b} \mu_{a}}$

- Watch Video Solution

4. When a ray of light passes through a parallel slab of transport medium, then show
that angle of incidence is equal to angle of emergence.

D Watch Video Solution

5. What is meant by lateral shift ?Explain for a given slab,what is the quantity that determines lateral shift?Obtain the expression
for lateral shift for refracion throug a parallel sided glasss slab.
6. Discuss refraction through a glass slab and
show that emergent ray is parallel to incident ray but displaced?

D Watch Video Solution

7. State generalized Snell's law for refration through multiple parallel media.Prove the relation: $a^{\mu}{ }_{-} c=a^{\mu}{ }_{-} b \times b^{\mu}{ }_{-} c$.
8. Show that apparent depth of a water tank is less than real depth.

D Watch Video Solution

9. Find relation for refractive index in terms of real depth and apparent depth.

- Watch Video Solution

10. What is normal shift?Explain.Obtain he expression for normal shift .Indicate,how this
helps to determine refractie index of a medium.

D Watch Video Solution
11. Write the conditions for total internal reflection to takeplace?

D Watch Video Solution

12. Obtain a relation between a critical angle and refractive index of medium.
13. Obtain a relation between a critical angle and refractive index of medium.

- Watch Video Solution

14. Obtain a relation between a critical angle and refractive index of medium.
15. Obtain a relation between a critical angle and refractive index of medium.

- Watch Video Solution

16. Write the conditions for total internal reflection to takeplace?

- Watch Video Solution

17. Explain total internal reflection. What are its conditions?

- Watch Video Solution

18. Obtain a relation between a critical angle and refractive index of medium.
19. State the condition of total internal reflectoin to take place at an interface separating two transparent media. Hence derive the expression for the critical angle in terms of speed of light in two media.

D Watch Video Solution

20. Define critical angle for total internal reflection.
21. What are the uses of optical fibre?

- Watch Video Solution

22. Explain briefly the phenomenon of total internal reflection used in fibre optics.

- Watch Video Solution

23. Sparkling Brilliance of Diamond

The total internal reflection of light is used in polishing diamonds to create a sparking briliance. By polishing the diamond with specific cuts, it is adjusted so that most of the
light rays approaching the surface are incident with an angle of incidence more than critical
angle. hence they suffer multiple reflections
and ultimatley come out of the diamond from
the top. This gives the diamond a sparkling brilliance.

The following diagram shows the same diamond cut in two different shapes.

The brilliance of diamond in the second diamond will be:

D Watch Video Solution

24. Which optical phenomenon is used to explain the working of an optical fibre?

25. Explain total internal reflection. What are

 its conditions?- Watch Video Solution

26. What are the uses of optical fibre?

- Watch Video Solution

27. What are fibres?

- Watch Video Solution

28. What is lens formula ? Give its sign conventions

D Watch Video Solution

29. Obtain lens makers formula using the expression
$\frac{\mu_{1}}{u}+\frac{\mu_{2}}{v}=\frac{\mu_{2}-\mu_{1}}{R}$
Here the ray of light propagating from a rare r medium of rerfracitve index $\left(\mu_{1}\right)$ to a dneser medium of refractive indes $\left(\mu_{2}\right)$ is incident on
the convex side of spherical refracting surface of radius of curvature R.

D Watch Video Solution

30. Prove the following formula when refraction takes place at a convex spherical refracting surface and source of light lies in
the rarer medium and image formed is real $\frac{\mu_{2}}{v}-\frac{\mu_{1}}{u}=\frac{\mu_{2}-\mu_{1}}{R}$ Where the terms have their usual meanings.

D Watch Video Solution

31. The image of a candle is formed by a convex lens on a screen. The lower half of the lens is painted black to make it completely opaque. Draw the ray diargram to show the image formation. How will this image be different from the one obtained when the lens
is not painted black?

D Watch Video Solution
32. By giving sign-conventions, derive the lens formula relating object distance, image distance and focal length for a thin convex lens. Draw a ray diagram to show the formation of image of an object placed between optical centre and focus of a convex lens.
33. By giving sign-conventions, derive the lens formula relating object distance, image distance and focal length for a thin convex lens. Draw a ray diagram to show the formation of image of an object placed between optical centre and focus of a convex lens.
34. Derive lens formula $\left[\frac{1}{v}-\frac{1}{u}=\frac{1}{f}\right]$ for a
thin convex lens, using diagram for the formation of a real image by convex Lens.

D Watch Video Solution

35. Draw a ray diagram to show how the image
is formed when the object is placed between f and 2 f distances from a convex lens.Deduce
the relation between the distances of he oject
and the image from the lens and the focal length of the lens under this condition.

D Watch Video Solution

36. Define linear magnification produced by a lens.Hence derive expression for it also define the power of a lence and its unit.

- Watch Video Solution

37. What do you mean by linear magnification produced by a lens? Derive its various expressions.

- Watch Video Solution

38. What is meant by linear magnification of a spherical mirror? Derive expressions for it.

- Watch Video Solution

39. What do you mean by linear magnification produced by a lens? Derive its various expressions.

- Watch Video Solution

40. By giving sign-conventions, derive the lens
formula relating object distance, image distance and focal length for a thin convex lens. Draw a ray diagram to show the formation of image of an object placed
between optical centre and focus of a convex lens.

D Watch Video Solution

41. Give the position and nature of image of an extended object for different distances from a concave mmirror.

D Watch Video Solution
42. Define power of a lens
43. Derive the expression for the power of two
thin lenses placed in contact with each other.

- Watch Video Solution

44. Derive the expression for the power of two thin lenses placed in contact with each other.
45. Derive the expression for the power of two
thin lenses placed in contact with each other.

- Watch Video Solution

46. Explain total internal reflection. What are
its conditions?

- Watch Video Solution

47. Define critical angle for total internal reflection.

D Watch Video Solution
48. Obtain a relation between a critical angle and refractive index of medium.

- Watch Video Solution

49. How do you explain the mirage effect produced in very hot deserts?

D Watch Video Solution

50. Describe with ray diagrams,the applications of total reflection prisms.

D Watch Video Solution

51. For a ray of light travelling from a denser medium of refractive index μ_{1} to a rarer medium of refractive index μ_{2}, prove that $\frac{\mu_{2}}{\mu_{1}}=\sin C$, μ_{1}
where C is the critical angle of incidence for the media.

D Watch Video Solution

52. Prove the following formula when refraction takes place at a convex spherical
refracting surface and source of light lies in
the rarer medium and image formed is real $\frac{\mu_{2}}{v}-\frac{\mu_{1}}{u}=\frac{\mu_{2}-\mu_{1}}{R}$ Where the terms have their usual meanings.

D Watch Video Solution

53. Starting new cartesian sign conventions, derive the relation. $-\frac{\mu_{1}}{u}+\frac{\mu_{2}}{v}=\frac{\mu_{2}-\mu_{1}}{R}$, when refraction occurs from rarer to denser medium
at convex spherical refracting surface
$\left(\mu_{1}<\mu_{2}\right)$. Where u, v and R are object
distance, image distance and radius of curvature of spherical surface respectively.

D Watch Video Solution

54. What happens to the wavelength of light when it goes from rarer to denser medium?

D Watch Video Solution

55. By stating the sign conventions and assumptions used, derive the relation between
distance of object, distance of image and radius of curvature of convex spherical surfaces, when refraction takes from optically rarer to optically denser medium.

- Watch Video Solution

56. Starting new cartesian sign conventions, derive the relation. $-\frac{\mu_{1}}{u}+\frac{\mu_{2}}{v}=\frac{\mu_{2}-\mu_{1}}{R}$, when refraction occurs from rarer to denser medium at convex spherical refracting surface
$\left(\mu_{1}<\mu_{2}\right)$. Where u, v and R are object
distance, image distance and radius of curvature of spherical surface respectively.

D Watch Video Solution

57. Starting new cartesian sign conventions, derive the relation. $-\frac{\mu_{1}}{u}+\frac{\mu_{2}}{v}=\frac{\mu_{2}-\mu_{1}}{R}$, when refraction occurs from rarer to denser medium at convex spherical refracting surface $\left(\mu_{1}<\mu_{2}\right)$. Where u, v and R are object distance, image distance and radius of curvature of spherical surface respectively.

Watch Video Solution

58. Fig.2.100 shows a convex spherical surface with centre of curature C,separating the two media of refractive indices μ_{1} and μ_{2}.

Draw a ray diagram showing the formation of imge of a point object O lying on the principal axis.Derive the relationship between the object and image distances in terms of the
refractie indices of the wo media and the radius of curvature R of the surface.

- Watch Video Solution

59. Fig.2.100 shows a convex spherical surface with centre of curature C,separating the two media of refractive indices μ_{1} and μ_{2}.

Draw a ray diagram showing the formation of

imge of a point object O lying on the principal axis.Derive the relationship between the object and image distances in terms of the refractie indices of the wo media and the radius of curvature R of the surface.

- Watch Video Solution

60. Starting new cartesian sign conventions, derive the relation. $-\frac{\mu_{1}}{u}+\frac{\mu_{2}}{v}=\frac{\mu_{2}-\mu_{1}}{R}$, when refraction occurs from rarer to denser medium at convex spherical refracting surface
$\left(\mu_{1}<\mu_{2}\right)$. Where u, v and R are object distance, image distance and radius of curvature of spherical surface respectively.

D Watch Video Solution

61. Starting new cartesian sign conventions,
derive the relation. $-\frac{\mu_{1}}{u}+\frac{\mu_{2}}{v}=\frac{\mu_{2}-\mu_{1}}{R}$, when
refraction occurs from rarer to denser medium
at convex spherical refracting surface
$\left(\mu_{1}<\mu_{2}\right)$. Where u, v and R are object
distance, image distance and radius of curvature of spherical surface respectively.

D Watch Video Solution

62. Prove the following formula when refraction takes place at a convex spherical refracting surface and source of light lies in
the rarer medium and image formed is real $\frac{\mu_{2}}{v}-\frac{\mu_{1}}{u}=\frac{\mu_{2}-\mu_{1}}{R}$ Where the terms have their usual meanings.

D Watch Video Solution

63. Prove the following formula when refraction takes place at a convex spherical refracting surface and source of light lies in
the rarer medium and image formed is real $\frac{\mu_{2}}{v}-\frac{\mu_{1}}{u}=\frac{\mu_{2}-\mu_{1}}{R}$ Where the terms have their usual meanings.

D Watch Video Solution

64. Fig.2.100 shows a convex spherical surface with centre of curature C,separating the two
media of refractive indices μ_{1} and μ_{2}.

Draw a ray diagram showing the formation of imge of a point object O lying on the principal axis.Derive the relationship between the object and image distances in terms of the refractie indices of the wo media and the radius of curvature R of the surface.
65. Write formula for refraction of light from a single spherical surface.

- Watch Video Solution

66. Derive the equation relating u, v and R in
case of refraction i a medum of refactive index
μ_{1} from a medium of refractive index μ_{2}. State te assumption made in you deriation.

D Watch Video Solution

67. By stating the sign conventions and assumptions used, derive the relation between distance of object, distance of image and radius of curvature of convex spherical surfaces, when refraction takes from optically rarer to optically denser medium.

D Watch Video Solution

68. By stating the sign conventions and assumptions used, derive the relation between
distance of object, distance of image and radius of curvature of convex spherical surfaces, when refraction takes from optically rarer to optically denser medium.

D Watch Video Solution

69. Starting new cartesian sign conventions,
derive the relation. $-\frac{\mu_{1}}{u}+\frac{\mu_{2}}{v}=\frac{\mu_{2}-\mu_{1}}{R}$, when refraction occurs from rarer to denser medium
at convex spherical refracting surface
$\left(\mu_{1}<\mu_{2}\right)$. Where u, v and R are object
distance, image distance and radius of curvature of spherical surface respectively.

D Watch Video Solution

70. Starting new cartesian sign conventions, derive the relation. $-\frac{\mu_{1}}{u}+\frac{\mu_{2}}{v}=\frac{\mu_{2}-\mu_{1}}{R}$, when refraction occurs from rarer to denser medium at convex spherical refracting surface $\left(\mu_{1}<\mu_{2}\right)$. Where u, v and R are object distance, image distance and radius of curvature of spherical surface respectively.

Watch Video Solution

71. Starting new cartesian sign conventions, derive the relation. $-\frac{\mu_{1}}{u}+\frac{\mu_{2}}{v}=\frac{\mu_{2}-\mu_{1}}{R}$, when refraction occurs from rarer to denser medium at convex spherical refracting surface $\left(\mu_{1}<\mu_{2}\right)$. Where u, v and R are object distance, image distance and radius of curvature of spherical surface respectively.

- Watch Video Solution

72. Starting new cartesian sign conventions,
derive the relation. $-\frac{\mu_{1}}{u}+\frac{\mu_{2}}{v}=\frac{\mu_{2}-\mu_{1}}{R}$, when refraction occurs from rarer to denser medium at convex spherical refracting surface $\left(\mu_{1}<\mu_{2}\right)$. Where u, v and R are object distance, image distance and radius of curvature of spherical surface respectively.

D Watch Video Solution

73. What is the relation between focal length

 and radius of curvature of a concave mirror?What is focal length of a plane mirror?

- Watch Video Solution

74. By giving assumptions made, derive the
lens maker formula for a double convex lens.

- Watch Video Solution

75. Derive lens maker's formula for a thin concave lens.

D Watch Video Solution

76. By stating the sign conventions and assumptions used, derive the relation between
distance of object, distance of image and radius of curvature of convex spherical surfaces, when refraction takes from optically rarer to optically denser medium.
77. Derive lens maker's formula for a thin concave lens.

D Watch Video Solution

78. By giving sign-conventions, derive the lens
formula relating object distance, image distance and focal length for a thin convex lens. Draw a ray diagram to show the formation of image of an object placed
between optical centre and focus of a convex lens.

D Watch Video Solution

79. Derive lens maker's formula for a thin concave lens.

D Watch Video Solution

80. By giving assumptions made, derive the
lens maker formula for a double convex lens. concave lens.

- Watch Video Solution

82. Derive lens maker's formula for a thin concave lens.

- Watch Video Solution

83. Derive lens maker's formula for a thin concave lens.

- Watch Video Solution

84. Derive expression for the lens maker's
formula i.e.: $\quad \frac{1}{f}=(\mu-1)\left(\frac{1}{R_{1}}-\frac{1}{R_{2}}\right)$
where the letters have their usual meanings
85. Derive expression for the lens maker's
formula \quad i.e.: $\quad \frac{1}{f}=(\mu-1)\left(\frac{1}{R_{1}}-\frac{1}{R_{2}}\right)$
where the letters have their usual meanings

D Watch Video Solution

86. What is a lens formula? Derive an expression for lens formula for a convex lens
forming a real image.

D Watch Video Solution

87. With the help of suitable diagram, sign conventions and assumptions, derive lens

Maker's formula for a convex lens.

D Watch Video Solution

88. By stating the sign conventions and assumptions used, derive the relation between distance of object, distance of image and radius of curvature of convex spherical surfaces, when refraction takes from optically rarer to optically denser medium.
89. Draw a ray diagram to show the image formation by a concave mirror, when the object is kept between its focus and the pole.

D Watch Video Solution

90. A ray of light passes from air to glass
($\mu=1.5$) at an angle of 30°.Calculate angle of refraction.

Watch Video Solution

91. Refractive indices of water and glass are
$4 / 3$ and $3 / 2$ respectively.A ray of light travelling in water is incident on the waterglass interface at 30°.Calculate the angle of refraction.

- Watch Video Solution

92. A ray of light of frequency of $5 \times 10^{14} \mathrm{~Hz}$ is passed through a liquid.the wavelength of
light measured inside the liquid is found to be
$450 \times 10^{-9} \mathrm{~m}$.Calculate refractive index of the

liquid.

D Watch Video Solution

93. A tank is filled with water to a height of 12.5
cm . The apparent depth of a needle lying at
the bottom of the tank is measured by a microscope to be 9.4 cm . What is the refractive index of water? If water is replaced by a liquid of refractive index 1.63 up to the same height,
by what distance would the microscope have to be moved to focus on the needle again?

D Watch Video Solution

94. Calculate the index of refraction of a liquid
from the following into glass:

Reading for the bottom of an empty beaker:11.324 cm .

Reading for the bottom of the beaker,when partially filled with the liquid: 11.802 cm

Reading for the upper level of the liquid in the beaker: 12.895 cm .

D Watch Video Solution

95. While determining th refractive index of a liquid experimentally, he miroscope was focussed at the bottom of a beaker,when its reading was 3.965 cm . On pouring liquid upto a height of 2.537 cm inside the beaker ,the reading of the refocussed microscoe was 3.348 cm .Find the refractive index of the liquid.
96. The bottom of a container is a 4.0 cm thick
glass $(\mu=1.5)$ slab. The container contains two immiscible liquids A and B of depths 6.0 and 8.0 cm respectively. What is the apparent position of a scratch on the outer surface on
the bottom of the glass slab, when viewed through the container? Refractive indices of A and B are 1.4 and 1.3 respectively.
97. Find the criical angle for a raay of light going from paraffin oil to air .Given that the refractive index of paraffin oil with repsect to air is 1.44 .

- Watch Video Solution

98. What is the critical anle for a ray going from glass into water?The refractive indices of glass and water are 1.62 and 1.32 respectivley.
99. Velocity of light in a liquid is
$1.5 \times 10^{8} \mathrm{~ms}^{-1}$ and in air,it is $3 \times 10^{8} \mathrm{~ms}^{-1}$. If
a ray of light passes from this liquid to air ,calculate the value of critical angle.

D Watch Video Solution

100. A small bulb is placed at the bottom of a tank containing water to a depth of 80 cm .

What is the area of the surface of water through which light from the bulb can emerge
out? Refractive index of water is 1.33 . (Consider the bulb to be a point source.)

D Watch Video Solution

101. A ocnvex refracting surface of radius of
curvature 20 cm separeates two media of refractive indices $4 / 3$ and 1.60.An object is placed in the first medium $(\mu=4 / 3)$ at a distance of 200 cm from the refractign surface.Calculate the position of the image formed.
102. the radius of curvature of convex surface
is 10 cm and if an object lies at a distance of
20 cm from it in the rarer medium,find the position of the image assuming that refractive index of the rarer medium is 1.0 ,while that of the denser medium is 2.0 .

-
 Watch Video Solution

103. One end of a cylinrical rod is grounded to
a hemispherical surface or rdius $\mathrm{R}=20 \mathrm{~mm}$.lt is
immersed in water of refractive ndex 1.33 .If the refractive index of the rodd is 1.50 ,find the position of the image of an object placed on the axis of the rod inside water at 10 cm from the pole.

D Watch Video Solution

104. A spherical refrativng suurface of denser medium $(\mu=1.5)$ is placed in a rarer medium ($\mu=1.3$) .for an object lying in rarer medium at 20 cm from the surface, the virtual image is
formed at 60 cm in rarer medium.find out the radius fo cruvature of the surface.

D Watch Video Solution

105. A small object is enclosed in a spere of glass 7 cm in radius . It si situated 1 cm from
the centre and is veiwed from the side to whh
it is nearest.where will it appear to be ,if refractive index is 1.4 ?Also find the appparent position of the oject as seen by an eye looking laong diameter throug greatest thickness of eh glass.

D Watch Video Solution

106. Fig. 2.49 shows a solid glass sphere of radius 5 cm that has a small air bubble O trapped at a distance 2 cm from the centre
C.Th refractive index of the material of glass is
1.5. Find the apparent position of the bubble
where it will appear ,when seen throught the
surface from an ougtside point E .

- Watch Video Solution

107. Find the surface area of a sphere of radius

14 cm .

D Watch Video Solution

108. A point object is placed in air at distance of 40 cm from concave refrating surface of refractive index 1.5.If rasius of curvature of he spherical urface is 20 cm , calcuulate the position of the image.
109. A concave spherical surface of refractive index $3 / 2$ is immersed in water of refracitve index $4 / 3$.If a piont object lies in water at a distance of 10 cm from the pole of the refracting surfae,calculate the position of the image.Given that radius of curvature of the spherical surface is 18 cm .

D Watch Video Solution

110. A small object is 2 cm elow the concave mensicus of wae in a test tube.The radius of
the meniscus is 5 mm and μ for water is $4 / 3$
.Find tthe nature and position of the image.

- Watch Video Solution

111. The radii of curvature of he two surfaces of
a lens are not the same .lt forms image of an
object.The surfaces of the lens facing the
object and image are interchanged .Will the position of the image change?

D Watch Video Solution

112. The radii of curvature of double convex lens are 30 cm and 60 cm and its refractive index is 1.5 .Calculate its focal length.

D Watch Video Solution

113. A binovex lens has a focal lenth $2 / 3$ tiems
the radius of curvature of either
surface.Calculate the refractive index of lens material.

D Watch Video Solution

114. The radii of curvature of the faces of a double convex lens are 10 cm and 12 cm respectively.If the focal length of the lens is 12
cm ,find the refractive index of the material of the lens.

D Watch Video Solution

115. The radii of curvature of the two faces of a
convex lens are 0.1 m and 0.15 m respectively.lf
the foal length of the lens is 0.12 m,find the refractie index of the material of the lens.

- Watch Video Solution

116. A thin douel convex lens has surfaces of radii of curature 30 cm each. Find the refractive index of the material of lens, if the focal length is 25 cm .

- Watch Video Solution

117. A equiconvex lens of focal length 30 cm is
divided into two equal halves in thickness.find
the focal Inegth of eah half.

- Watch Video Solution

118. The radius of curvture of the convex face of a plano-covex lens is 12 cm and its refractive index is 1.5 .

Find the focal length of the lens.

119. The radius of curvature of each face of a biconcave lens made of glass of refractive index 1.5 is 30 cm . Calculate the focal length of the lens is air.

- Watch Video Solution

120. The radii of curvature of the two surface of a convexo concave ens ae 15 cm and 30 cm
.Find the focal lenth of the lens,if eh refractiveindex of its mterial is 1.6 .
121. The foal length of a glass convex lens in air is 15 cm .Calculate its focal lenth,when is is totally immersed in wate.Given $a^{\mu}{ }_{-} w=4 / 3$ and $a^{\mu}-g=1.5$.

D Watch Video Solution

122. A glass $(\mu=1.5)$ convex lens of focl length 40 cm is placed in water $(\mu=1.3)$

What will be its new focal length?
123. The focal length of a concavo - convex lens
of radii of curvature 5 cm and 10 cm is 20 cm. What will be its focal length in water $(\mu=4 / 3)$?

D Watch Video Solution

124. If the refractive index from air to glass is
$3 / 2$ adn that from air to water is $4 / 3$, find the
ratio of the focal length of glass lens in water in air.

D Watch Video Solution

125. A convex lens of refractive index 1.5 has a focal length of 18 cm in air.Calculate the change in focal length,when it is immersed in water of refractive index $4 / 3$.

D Watch Video Solution

126. The radii of curvature of a convex lens are

20 cm and 30 cm nd the refractive index of its
material is 1.5 .How its nature nd focal length
will change, when it is immersed in a liquid of
refractive index $=1.6 ?$

- Watch Video Solution

127. A convex lens of refractive index 1.5 is immersed in a liquid of refractive index:
1.6 What will happen to the focal length and nature of lens ?

D Watch Video Solution

128. Explain what happens, when a convex lens of refractive index 1.2 is immersed in a liquid of refractive index 1.3.

D Watch Video Solution
129. A convex lens of refrative index 1.5 is immersed in a liquid of refractive index:
1.5.
what changes happen to the focal length of the lens in the three cases?

D Watch Video Solution

130. An object is placed at 0.06 m from a convex lens of focal length 0.10 m.Calculate the position and nature of the image.
131. An object is kept 0.2 m from a conex lens of focal length 0.15 m .Find the position of the image.

- Watch Video Solution

132. A 5.0 cm long needle is placed vertically at a distance 20 cm in front of a double convex lens made of a material of refractive index 1.5
having radii of curvature as 20 cm and 30 cm
.Find the height of image formed.

D Watch Video Solution

133. A convex lens of foal length 30 cm and a concave lens of focal length 60 cm are placed in contact.If the object is placed 40 cm away from the combination , find the position of the image.

- Watch Video Solution

134. A ocnverging bem of light forms of a sharp image on a screen. lens is placed in the path of the beam at 10 cm from the screen.It si found that screen has to be moved 8 cm further away from the lens to obtain a sharp image.Find the focal length and natrue of the lens.

- Watch Video Solution

135. An object is placed at a distance of 75 cm
from a screen .Where should a convex lens of
focal length 12 cm be placed so as to obtain on the screen?

D Watch Video Solution

136. The image of needle placed 45 cm from a lens is formed on a screen placed 90 cm on the otehr side of teh lens.Find the displacement of the image, if the object is moved to 5.0 cm away from the lens.
137. If the distance between the screen and object is 50 cm and the displacement of the lens is 10 cm ,clculate the focal length of the lens.

- Watch Video Solution

138. A convex lens of focal lenght 20 cm is placed coaxially wih a convex mirror of radius of curvature 20 cm .the two are kept at 15 cm apart.A point object lies 60 cm in front of the convex lens.Draw a ray diagram to show the
formation of the image by the combination.Determine the nature and position of the image formed.

D Watch Video Solution

139. An object is placed at a distance 5 cm
from a convex lens of focal lenth 10 cm.Calculate the position nd magnifiation of the image.

- Watch Video Solution

140. Where should an object placed from a conveging lens of focal length $20 \mathrm{~cm}, \mathrm{so}$ as to obtain a real image of magnification 2?

D Watch Video Solution

141. Calculate the distance at which an object
should be placed in front of a convex lens of
ocal length 10 cm ,so as to obtain an image twice the size of the object?
142. At what distance should be placed from a convex lens of focal length 15 cm to obtain an image three times the size of the object?

- Watch Video Solution

143. A lens placed at a distance of 20 cm from
an object produces a virtual image $2 / 3$ the
size of the object.Find the position of image,kind of lens and its focal length.
144. The image obtained with a convex lens is erect and its lenth is four times the length of the object.If the focal length of the lens is 20 cm,calculate the object and image distance.

- Watch Video Solution

145. An object is placed at a distance of 1.5 m
from a screen and a convex lens is interosed between them the magnification produced is 4.What is the focal length of the lens?
146. Two lenses of powers +4 D and -14 D form
a combination.If a 2 cm size object is placed 30
cm from this combination, find the position, nature and size of the image.

- Watch Video Solution

147. An iluminated object and a screen are placed 90 cm apart.Determine the focal length
and nature of the lens required to produce a clear image on the screen,twice the size of the object.

D Watch Video Solution

148. A convex lens is used to obtain a magnified image of an object on a screen 10 m
from the lens .If the magnification is 19 ,find the foal length of the lens.

- Watch Video Solution

149. The image obtained iwth a convex lewns is ereect and its length is four times the length of the object.If the focal length of the lens is 20 cm ,calculate the object and image distance.

- Watch Video Solution

150. A lens of focal length 12 cm forms an upright image three times the size of a real object ,calculate the object and image distances.
151. A lens of focal length 12 cm produces a virtual image,whose linear dimensions are $1 / 3$
that of the object.What kind of a lens is it?

Dtermine the position of the object and the image.

- Watch Video Solution

152. A lens has a power of $+5 D$ in air.If completely immersed in water,what will be its
power ?Given,refractive index of glass $=3 / 2$,refractive index of water $=4 / 3$.

D Watch Video Solution

153. Find the ratio of the powers of a glass lens in water and in air .Given,refractive index of glass $=1.50$,refractive index of water=1.33.

- Watch Video Solution

154. A glass convex lens has a power of +10
D.When ths lens is totally immersed in a
liquid,it acts as concave lens of focal length 50 cm .Calculate the refractive index of the liquid.Given ${ }^{\wedge} a \mu_{g}=1.5$.

- Watch Video Solution

155. What is the focal length of a convex lens
of focal length 30 cm in contact with a concave
lens of focal length 20 cm ? Is the system a
converging or a diverging lens? Ignore thickness of the lenses.

D Watch Video Solution

156. A concave lens is placed in contact with a convvex lens of focal lenght 25 cm.the combinatin produces a real image at a distance of 80 cm ,when the object is at a distance of 40 cm . What is the focal length of the concave lens?
157. Two thin lenses of focal lenths +10 cm and
-5 cm are kept in contact.What is the focal length and

D Watch Video Solution

158. Two thin lenses of focal lenths +10 cm
and -5 cm are kept in contact.What is the
power of combination.
159. Two lenses of focal length 10 cm and -20 cm are placed in contact .What is the total power of the combination?

D Watch Video Solution

160. A convex lens of focal lenth 30 cm and a concave lens of focal length 60 cm are placed in contact.Find the power of the combination.

D Watch Video Solution

161. Two lenses of power 15.5 D and -5.5 D are placed in contact.What is teh focal length of the combbination?

- Watch Video Solution

162. Two thin lenses of pwer +5D and -3D are in
contact. What is the focal length of the combnation?
163. A concave lens is kept in contact with a convex lens of focal length 20 cm.The combbination works as a convex lens of focal length 50 cm .Find the power of the concave lens.

D Watch Video Solution

164. Two lenses of power +15 D and -5 D are in
contact with each other forming a comvination lens.
what is the focal length of this combination?

Watch Video Solution

165. Two lenses of power +15 D and -5 D are in
contact with each other forming a comvination lens.
what is the focal length of this combination?

D Watch Video Solution

166. A compound lens is made of a convex lens
of power 10 D and a concave lens of power 5 D .

An object 2 cm high is placed in front of this
combination at a distance 40 cm from it. Find nature and size of the image formed.

D Watch Video Solution

167. Two lenses of powers 10D - 5D are placed in contact

Calculate the power of the new lens.

- Watch Video Solution

168. Two lenses of power +10 D and -5 D are placed in contact.

Where should an object be held from the lens,so as to obtain a virtual image of magnification 2?

D Watch Video Solution

