©゙’doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - MODERN PUBLICATION

TEXUAL QUESTIONS

Example

1. What is the Coulomb.s force between two
small charged spheres having charges
$2.0 \times 10^{-7} \mathrm{C}$ and 3.0×10^{-7} Coulomb placed 30 cm in air.

- Watch Video Solution

2. The electrostatic force on a small sphere of charge $0.4 \mu C$ due to another small sphere of charge $-0.8 \mu C$ in air is 0.2 N .

What is the distance between the two spheres?

- Watch Video Solution

3. The electrostatic force on a small sphere of charge $0.4 \mu C$ due to another small sphere of charge $-0.8 \mu C$ in air is 0.2 N .

What is the force on the second spheres due to the first?

- Watch Video Solution

4. Check that the ratio $k \frac{e^{2}}{G} m_{e} m_{p}$ is dimensionless. Look up a table of physical constants and determine the value of this ratio. What does the ratio signify.
5. Explain the meaning of the statement 'electric charge of a body is quantised.'

- Watch Video Solution

6. Why Can one ignore quantisation of electric charge when dealing with macroscopic i.e., large scale charges?
7. When a glass rod is rubbed with a silk cloth, charges appear on both. A similar phenomenon is observed with many other pairs of bodies. Explain how this observation is consitent with the law of conservation of charge.

D Watch Video Solution

8. Four point charges $q_{A}=2 \mu C$,
$q_{B}=-5 \mu C . q_{c}=2 \mu C$, and $q_{D}=-5 \mu C$
are located at the corners of a square $A B C D$ of side 10 cm . What is the force on a charge of $1 \mu C$ placed at the centre of the square?

D Watch Video Solution

9. An electrostatic field line is a continuous
curve. That is, a field line cannot have sudden breaks. Why not?
10. Explain why the two field lines never cross each other at any point?

D Watch Video Solution

11. Two point charges $q_{A}=3 \mu C$ and $q_{B}=-3 \mu C$ are located 20 cm apart in
vacuum. What is the electric field at the midpoint O of the line $A B$ joining the two charges?
12. Two point charges $q_{A}=3 \mu C$ and
$q_{B}=-3 \mu C$ are located 20 cm apart in
vacuum. If a negative test charge of magnitude $1.5 \times 10^{-9} C$ is placed at this point, what is the force experienced by the test charge?

D Watch Video Solution

13. A system has two charges $q_{A}=2.5 \times 10^{-7}$

C and $q_{B}=-2.5 \times 10^{-7} C$ located at points

A: $(0,0,-15 \mathrm{~cm})$ and $\mathrm{B}:(0,0,+15 \mathrm{~cm})$, respectively. What are the total charge and electric dipole moment of the system?

D Watch Video Solution

14. An electric dipole with dipole moment 4×10
${ }^{\wedge}-9 \mathrm{Cm}$ is aligned at $30^{\wedge} \circ$ with the direction
of a uniform electric field of magnitude 5×10
${ }^{\wedge} 4 \mathrm{~N} / \mathrm{C}$. Calculate the magnitude of the torque acting on the dipole.

D Watch Video Solution

15. A polythene piece rubbed with wool is
found to have a negative charge of
$3 \times 10^{-7} C$. Estimate the number of electrons
transferred (from which to which?)

- Watch Video Solution

16. A polythene piece rubbed with wool is
found to have a negative charge of
$3 \times 10^{-7} C$. Is there a transfer of mass from wool to polythene?

- Watch Video Solution

17. Two insulated charged copper spheres A and B have their centres separated by a distance of 50 cm . What is the mutual force of electrostatic repulsion if the charge on each is
$6.5 \times 10^{-7} C$? The radii of A and B are negligible compared to the distance of separation.

- Watch Video Solution

18. What is the Coulomb.s force between two small charged spheres having charges $2.0 \times 10^{-7} \mathrm{C}$ and 3.0×10^{-7} Coulomb placed 30 cm in air.

D Watch Video Solution

19. The sphere A and B have identical sizes. A
third sphere of the same size but uncharged is
brought in contact with the first, then brought
in contact with the second and finally removed
from both. What is the new force of repulsion between A and B ?

D Watch Video Solution

20. Shows the tracks of three charged particles
crossing a uniform electrostatic field with same velocities along horizontal. Give the signs of the three charges. Which particle has
the highest charge to mass ratio?

- Watch Video Solution

21. Consider a uniform electric field
$E=3 \times 10^{3} \hat{1} N / C$. - What is the flux of this
field through a square of 10 cm on a side whose plane is parallel to the yz plane?
22. Consider a uniform electric field
$\vec{E}=3 \times 10^{3} \hat{i} N C^{-1}$ What is the flux through
the same square, if the normal to its plane makes a 60° angle with the X -axis?

(D) Watch Video Solution
23. What is the net flux of the uniform electric
field through a cube of side 20 cm oriented so that its faces are parallel to the coordinate planes?

- Watch Video Solution

24. Careful measurement of the electric field at
the surface of a black box indicates that the net outward flux through the surface of the box is $8.0 \times 10^{3} \mathrm{Nm}^{2} / \mathrm{C}$. What is the net charge inside the box?

- Watch Video Solution

25. Careful measurement of the electric field at
the surface of a black box indicates that the net outward flux through the surface of the box is $8.0 \times 10^{3} \mathrm{Nm}^{2} / C$. If the net outward flux through the surface of the box were zero, could you conclude that there were no charges inside the box? Why or Why not?

- Watch Video Solution

26. A point charge $+10 \mu C$ is at a distance 5
cm directly above the centre of a square of
side 10 cm as show in the figure.

What is
the magnitude of the electric flux through the
square?

- Watch Video Solution

27. A point charge of $2.0 \mu C$ is at the centre of a cubic Gaussian surface 9.0 cm on edge. What is the net electric flux through the surface?

- Watch Video Solution

28. A point charge causes an electric flux of
$-1.0 \times 10^{3} \mathrm{Nm}^{2} / \mathrm{C}$ to pass through a spherical Gaussian surface of 10.0 cm radius centred on the charge - If the radius of the

Gaussian surface were doubled, how much flux would pass through the surface?

D Watch Video Solution

29. A point charge causes an electric flux of
$-1.0 \times 10^{3} \mathrm{Nm}^{2} / C$ to pass through a spherical Gaussian surface of 10.0 cm radius
centred on the charge - What is the value of the point charge?

D Watch Video Solution

30. A conducting sphere of radius 10 cm has
an unknown charge. If the electric field 20 cm
from the centre of the sphere is
$1.5 \times 10^{3} \mathrm{~N} / C$ and points radially inward, what is the net charge on the sphere?

D Watch Video Solution

31. A uniformly charged conducting sphere of
2.4 m diameter has a surface charge density of
$80.0 \mu C / m^{2}$ - Find the charge on the sphere.
32. A uniformly charged conducting sphere of
2.4 m diameter has a surface charge density of
$80.0 \mu C / m^{2}$ - What is the total electric flux leaving the surface of the sphere?

- Watch Video Solution

33. An infinite line charge produces a field of
$9 \times 10^{4} N C^{-1}$ at a distance of 4 cm . Calcualte
the linear charge density.

- Watch Video Solution

34. Two large, thin metal plates are parallel and close to each other. On their inner faces, the plates have surface charge densities of opposite signs and of magnitude $17.0 \times 10^{-22} C / m^{2}$. What is E: between the plates?
35. Two large, thin metal plates are parallel and close to each other. On their inner faces, the plates have surface charge densities of opposite signs and of magnitude $17.0 \times 10^{-22} C / m^{2}$. What is E : between the plates?

D Watch Video Solution

36. Two large, thin metal plates are parallel and close to each other. On their inner faces,
the plates have surface charge densities of opposite signs and of magnitude $17.0 \times 10^{-22} C / m^{2}$. What is E : between the plates?

- Watch Video Solution

37. An oil drop of 12 excess electrons is held stationary under a constant electric field of $2.55 \times 10^{4} N C^{-} 1$ in Millikan's oil drop experiment. The density of the oil is
$1.26 \mathrm{gcm}^{-3}$. Estimate the radius of the drop. $\left(g=9.81 \mathrm{~ms}^{-2}, e=1.60 \times 10^{-19} C\right)$.

- Watch Video Solution

38. Which of the following curves shown in the
figure cannot possibl represent electrostatic field lines?

- Watch Video Solution

39. A conductor A with cavity as shown in the
figure

a charge
Q. Show that the entire charge must appear on the outer surface of the conductor.
40. A conductor A with a cavity as shown in

Fig. is given a charge Q.. Another conductor B with charge q is inserted into the cavity keeping B insulated from A. Show that the total charge on the outside surface of A is $Q+$ q.

- Watch Video Solution

41. A sensitive instrument is to be shielded from the strong electrostatic fields in its environment. Suggest a possible way.

D Watch Video Solution

42. A hollow charged conductor has a tiny hole cut into its surface. Show that the electric field in the hole is $\left(\sigma / 2 \varepsilon_{0}\right) \widehat{n}$, where \widehat{n} is the unit
vector in the outward normal direction, and σ
is the surface charge density near the hole.

D Watch Video Solution

43. Obtain the formula for the electric field due to a long thin wire of uniform linear charge density λ without using Gauss's law.

D Watch Video Solution

44. It is now believed that protons and neutrons (which constitute nuclei of ordinary matter) are themselves built out of more elementary units called quarks. A proton and a neutron consist of three quarks each. Two types of quarks, the so called 'up' quark (denoted by u) of charge $+(2 / 3) \mathrm{e}$, and the 'down' quark (denoted by d) of charge
$(-1 / 3) \mathrm{e}$, together with electrons build up ordinary matter. (Quarks of other types have
also been found which give rise to different unusual varieties of matter.) Suggest a
possible quark composition of a proton and neutron.

D Watch Video Solution

45. Consider an arbitrary electrostatic field configuration. A small test charge is placed at a null point (i.e., where $E=0$) of the configuration. Show that the equilibrium of the test charge is necessarily unstable.
46. Consider an arbitrary electrostatic field configuration. A small test charge is placed at
a null point (i.e., where $E=0$) of the configuration. Show that the equilibrium of
the test charge is necessarily unstable. Verify this result for the simple configuration of two charges of the same magnitude and sign placed a certain distance apart.

- Watch Video Solution

47. A particle of mass m and charge ($-q$) enters
the region between the two charged plates initially moving along x-axis with speed v_x. The length of plate is L and an uniform electric
field E is maintained between the plates. Show that the vertical deflection of the particle at the far edge of the plate is $q E L^{2} /\left(2 m v_{x}^{2}\right)$.

D Watch Video Solution

48. Suppose that the particle is an electron projected with velocity $v_{x}=2.0 \times 10^{6} \mathrm{~ms}^{-1}$.

If E between the plates separated by 0.5 cm is
$9.1 \times 10^{2} N / C$, where will the electron strike the upper plate? ${ }^{`}\left(|\mathrm{e}|=1.6 \mathrm{xx} 10^{\wedge}-19 \mathrm{C}, \mathrm{m}_{-} \mathrm{e}=9.1 \mathrm{xx}\right.$ $10^{\wedge}-31 \mathrm{~kg}$.)

- Watch Video Solution

49. Two charges $5 \times 10^{-8} \mathrm{C}$ and $-3 \times 10^{-8} \mathrm{C}$ are located 16 cm apart. At what point(s) on
the line joining the two charges is the electric potential zero? Take the potential at infinity to be zero.

- Watch Video Solution

50. A regular hexagon of side 10 cm has a charge $5 \mu C$ at each of its vertices. Calculate the potential at the centre of the hexagon.

- Watch Video Solution

51. Two charges $2 \mu C$ and $-2 \mu C$ are placed at points A and $B 6 \mathrm{~cm}$ apart. Identify an equipotential surface of the system.

- Watch Video Solution

52. Two charges $2 \mu C$ and $-2 \mu C$ are placed at points A and $B 6 \mathrm{~cm}$ apart. What is the direction of the electric field at every point on this surface?
53. A spherical conductor of radius 12 cm has a charge of $1.6 \times 10^{-7} C$ distributed uniformly on its surface. What is the electric field inside the sphere?

- Watch Video Solution

54. A spherical conductor of radius 12 cm has a charge of $1.6 \times 10^{-7} C$ distributed uniformly on its surface. What is the electric field just outside the sphere?
55. A spherical conductor of radius 12 cm has a charge of $1.6 \times 10^{-7} C$ distributed uniformly on its surface. What is the electric field at a point 18 cm from the centre of the sphere?

- Watch Video Solution

56. A parallel plate capacitor with air between the plates has a capacitance of 8 pF
$\left(1 p F=10^{-12} F\right)$. What will be the capacitance if the distance between the plates is reduced by half, and the space between them is filled with a substance of dielectric constant 6?

D Watch Video Solution

57. Three capacitors each of capacitance 9 pF are connected in series as shown in the figure.

What is the total capacitance of the

combination.

- Watch Video Solution

58. Three capacitors each of capacitance 9 pF are connected in series as shown in the figure.
the potential difference across each capacitor, if the combination is connected to a 120 volt supply?

- Watch Video Solution

59. Three capacitors of capacitances $2 \mathrm{pF}, 3 \mathrm{pF}$ and 4 pF are connected in parrallel as shown in the figure.

What is

the total capacitance of the combination?

D Watch Video Solution
60. Three capacitors of capacitances $2 \mathrm{pF}, 3 \mathrm{pF}$ and 4 pF are connected in parrallel as shown in the figure.

Determine the charge on each capacitor, if the combination is connected to a 100 V supply.

(D) Watch Video Solution

61. In a parallel plate capacitor with air
between the plates, each plate has an area of
$6 \times 10^{-3} \mathrm{~m}^{2}$ and the distance between the
plates is 3 mm . Calculate the capacitance of the capacitor. If this capacitor is connected to a 100 V supply, what is the charge on each plate of the capacitor?

D Watch Video Solution

62. A parallel plate capacitor a air between its
plates having plate area of $6^{\star} 10^{\wedge}-3 \mathrm{~m}^{\wedge} 2$ and separation between them 3 mm is connected to a 100 V battery. Explain what would happen when a 3 mm thick mica sheet (of dielectric
constant $=6$) were inserted between the plates, while the voltage supply remained connected.

D Watch Video Solution

63. A parallel plate capacitor a air between its
plates having plate area of $6^{\star} 10^{\wedge}-3 \mathrm{~m}^{\wedge} 2$ and
separation between them 3 mm is connected to a 100 V battery. Explain what would happen
when a 3 mm thick mica sheet (of dielectric
constant $=6$) were inserted between the plates, after the supply was disconnected.

D Watch Video Solution

64. A 12 pF capacitor is connected to a 50 V battery. How much electrostatic energy is stored in the capacitor?

D Watch Video Solution
65. A 600 pF capacitor is charged by a 200 V supply. It is then disconnected from the supply and is connected to another uncharged 600 pF capacitor. How much electrostatic energy is lost in the process?

D Watch Video Solution

66. A charge of 8 mC is located at the origin.

Calculate the work done in taking a small charge of $-2 \times 10^{-9} C$ from a point $\mathrm{P}(0,0,3$
$\mathrm{cm})$ to a point $\mathrm{Q}(0,4 \mathrm{~cm}, 0)$, via a point $\mathrm{R}(0,6$ $\mathrm{cm}, 9 \mathrm{~cm}$).

D Watch Video Solution

67. A cube of side b has a charge q at each of its vertices. Determine the potential and electric field due to this charge array at the centre of the cube.
68. Two tiny spheres carrying charges
$1.5 \mu C$ and $2.5 \mu C$ are located 30 cm apart.

Find the potential and electrical field at the mid-point of the line joining the two charges.

D Watch Video Solution

69. Two tiny spheres canying charges $1.5 \mu C$ and $2.5 \mu C$ are located 30 cm apart. Find the potential and electric field: at a point 10 cm
from this midpoint in a plane normal to the line and passing through the mid-point.

(Watch Video Solution

70. A spherical conducting shell of inner radius
r_{1} and outer radius r_{2} has a charge Q as
shown in the figure.

A charge
q is placed at the centre of the shell. What is
the surface charge density of the inner and outer sufaces of the shell?

- Watch Video Solution

71. A spherical conducting shell of inner radius
r_{1} and outer radius r_{2} has a charge Q as
shown in the figure.
electric field isnide a cavity (with no charge)
zero, even if the shell is not spherical, but has any irregular shape? Explain.
72. Show that the normal component of electrostatic field has a discontinuity from one side of a charged surface to another given by $\left(E_{2}-E_{1}\right) \widehat{n}=\frac{\sigma}{\varepsilon_{0}}$ where \widehat{n} is a unit vector normal to the surface at a point and is the
surface charge density at that point. (The direction of \widehat{n} is from side 1 to side 2.) Hence show that just outside a conductor, the electric field is $\sigma \widehat{n} / \varepsilon_{0}$
73. Show that the normal component of electrostatic field has a discontinuity from one side of a charged surface to another given by $\left(E_{2}-E_{1}\right) \widehat{n}=\frac{\sigma}{\varepsilon_{0}}$ where n is a unit vector normal to the surface at a point and is the surface charge density at that point. (The direction of \widehat{n} is from side 1 to side 2.) Hence show that just outside a conductor, the electric field is $\sigma \widehat{n} / \varepsilon_{0}$. Show that the tangential component of electrostatic field is continuous from one side of a charged surface to another.
74. A long charged cylinder of linear charged density λ is surrounded by a hollow co-axial conducting cylinder. What is the electric field in the space between the two cylinders?

- Watch Video Solution

75. In a hydrogen atom, the electron and proton are bound at a distance of about 0.53
A. (a) Estimate the potential energy of the
system in eV, taking the zero of the potential energy at infinite separation of the electron
from proton. (b) What is the minimum work required to free the electron, given that its kinetic energy in the orbit is half the magnitude of potential energy obtained in (a)?

D Watch Video Solution

76. In a hydrogen atom, the electron and proton are bound at a distance of about 0.53
A. (a) Estimate the potential energy of the system in eV, taking the zero of the potential energy at infinite separation of the electron from proton. (b) What is the minimum work required to free the electron, given that its kinetic energy in the orbit is half the magnitude of potential energy obtained in (a)?

Watch Video Solution

77. In a hydrogen atom, the electron and proton are bound at a distance of about 0.53

A: (a) Estimate the potential energy of the system in eV, if the zero of potential energy is taken at $1.06 \AA$ separation of the electron
from proton? (b) What is the minimum work required to free the electron, given that its kinetic energy in the orbit is half the magnitude of potential energy obtained in (a)?
78. If one of the two electrons of a H_{2} molecule is removed, we get a hydrogen molecular ion H_{2}^{+}. In the ground state of an
H_{2}^{+}, the two protons are separated by roughly $1.5 \AA$. and the electron is roughly 1 A
from each proton. Determine the potential energy of the system. Specify your choice of the zero of potential energy.

- Watch Video Solution

79. Two charged conducting spheres of radii a and b are connected to each other by a wire.

What is the ratio of electric fields at the surfaces of the two spheres? Use the result obtained to explain why charge density on the sharp and pointed ends of a conductor is higher than on its flatter portions.

D Watch Video Solution

80. Two charges $-q$ and $+q$ are located point
$(0,0,-a)$ and $(0,0, a)$ respectively:

What is the electrostatic potential at the points ($0,0, \mathrm{z}$) and ($\mathrm{x}, \mathrm{y}, 0$) ?

D Watch Video Solution

81. Two charges $-q$ and $+q$ are located at points
$(0,0,-a)$ and ($0,0, a$), respectively. How much
work is done in moving a small test charge
from the point $(5,0,0)$ to $(-7,0,0)$ along the x -
axis? Does the answer change if the path of the test charge between the same points is not along the x-axis?

(Watch Video Solution

82. In figure

Shows a
charge array known as an electric quadrupole.

For a point P on the axis of the quadrupole,
obtain the dependence of potential on distance r for $r / a \gg 1$.

D Watch Video Solution

83. An electrical technician requires a capacitance of $2 \mu F$ in a circuit across a potential difference of 1 kV . A large number of $1 \mu F$ capacitors are available to him each of which can withstand a potential difference of not more than 400 V. Suggest a possible
arrangement that requires the minimum number of capacitors.

D Watch Video Solution

84. Obtain the equivalent capacitance of the
following netweork shown in the figure

For a

300 V supply, determine the charge and voltage across each capacitor. Given that $C_{1}=C_{4}=100 p F$ and $C_{2}=C_{3}=200 p F$.

D Watch Video Solution

85. The plates of a parallel plate capacitor have an area of $90 \mathrm{~cm}^{2}$ each and are separated by
2.5 mm . The capacitor is charged by connecting it to a 400 V supply. How much electrostatic energy is stored by the capacitor?

Watch Video Solution

86. The plates of a parallel plate capacitor have an area of $90 \mathrm{~cm}^{2}$ each and are separated by
2.5 mm . The capacitor is charged by connecting it to a 400 V supply. (a) How much electrostatic energy is stored by the capacitor? (b) View this energy as stored in the electrostatic field between the plates, and obtain the energy per unit volume u. Hence arrive at a relation between u and the
magnitude of electric field E between the plates.

D Watch Video Solution

87. A $4 \mu F$ capacitor is charged by a 200 V supply. It is then disconnected from the supply, and is connected to another uncharged $2 \mu F$ capacitor. How much electrostatic energy of the first capacitor is
lost in the form of heat and electromagnetic radiation?

Watch Video Solution

88. Show that the force on each plate of a parallel plate capacitor has a magnitude equal to $(1 / 2) Q E$, where Q is the charge on the capacitor, and E is the magnitude of electric field between the plates. Explain the origin of the factor $1 / 2$.

D
 Watch Video Solution

89. A spherical capacitor consists of two concentric spherical conductors, held in position by suitable insulating supports (Fig. 2.36). Show that the capacitance of a spherical capacitor is given by $C=\frac{4 \pi \varepsilon_{0} r_{1} r_{2}}{\left(r_{1}\right)-\left(r_{2}\right)}$ where r_{1} and r_{2} are the radii of outer and inner

spheres, respectively.:

D Watch Video Solution
90. A spherical capacitor has an inner sphere of radius 12 cm and an outer sphere of radius

13 cm . The outer sphere is earthed and the
inner sphere is given a charge of $2.5 \mu C$. The space between the concentric spheres is filled with a liquid of dielectric constant 32. Determine the capacitance of the capacitor.

D Watch Video Solution

91. A spherical capacitor has an inner sphere of
radius 12 cm and an outer sphere of radius 13
cm . The outer sphere is earthed and the inner
sphere is given a charge of $2.5 \mu C$. The space
between the concentric spheres is filled with a
liquid of dielectric constant 32 . What is the potential of the inner sphere?

D Watch Video Solution

92. A spherical capacitor has an inner sphere of radius 12 cm and an outer sphere of radius

13 cm . The outer sphere is earthed and the inner sphere is given a charge of $2.5 \mu C$. The space between the concentric spheres is filled with a liquid of dielectric constant 32.

Compare the capacitance of this capacitor
with that of an isolated sphere of radius 12 cm .

Explain why the latter is much smaller.

D Watch Video Solution

93. Answer carefully: Two large conducting spheres carrying charges Q_{1} and Q_{2} are brought close to each other. Is the magnitude of electrostatic force between them exactly given by $\left(\left(Q_{1} Q_{2}\right) /\left(4 \pi \varepsilon_{0} r^{2}\right)\right)$, where r is the distance between their centres?
94. Answer carefully: If Coulomb's law involved $1 / r^{3}$ dependence (instead of $1 / r^{2}$), would Gauss's law be still true?

D Watch Video Solution

95. Answer carefully: A small test charge is released at rest at a point in an electrostatic
field configuration. Will it travel along the field line passing through that point?
96. What is the work done by the field of a necleus in a complete circular orbit of the electron? What if the orbit is elliptical?

D Watch Video Solution

97. Answer carefully: We know that electric
field is discontinuous across the surface of a
charged conductor. Is electric potential also discontinuous there?

- Watch Video Solution

98. Answer carefully: What meaning would you give to the capacitance of a single conductor?

- Watch Video Solution

99. Answer carefully: Guess a possible reason why water has a much greater dielectric constant (=80) than say, mica (=6).
100. A cylindrical capacitor has two co-axial cylinders of length 15 cm and radii 1.5 cm and
1.4 cm . The outer cylinder is earthed and the inner cylinder is given a charge of $3.5 \mu C$.

Determine the capacitance of the system and the potential of the inner cylinder. Neglect end effects (i.e., bending of field lines at the ends).

D Watch Video Solution

101. A parallel plate capacitor is to be designed
with a voltage rating 1 kV , using a material of dielectric constant 3 and dielectric strength
about $10^{7} \mathrm{Vm}^{-1}$. (Dielectric strength is the maximum electric field a material can tolerate
without breakdown, i.e., without starting to
conduct electricity through partial ionisation.)

For safety, we should like the field never to exceed, say 10% of the dielectric strength.

What minimum area of the plates is required to have a capacitance of 50 pF ?
102. Describe schematically the equipotential
surfaces corresponding to- a constant electric field in the z-direction.

D Watch Video Solution

103. Describe schematically the equipotential
surfaces corresponding to - a field that uniformly increases in magnitude but remains
in a constant (say, z) direction.

Watch Video Solution

104. Describe schematically the equipotential
surfaces corresponding to - a single positive charge at the origin.

D Watch Video Solution

105. Describe schematically the equipotential
surfaces corresponding to - a uniform grid consisting of long equally spaced parallel charged wires in a plane.

- Watch Video Solution

106. In a Van de Graaff type generator a spherical metal shell is to be a $15 \times 10^{6} \mathrm{~V}$ electrode. The dielectric strength of the gas surrounding the electrode is $5 \times 10^{7} \mathrm{Vm}^{-1}$. What is the minimum radius of the spherical shell required? (You will learn from this exercise why one cannot build an electrostatic generator using a very small shell which requires a small charge to acquire a high potential.)

- Watch Video Solution

107. A small sphere of radius r_{1} and charge q_{1}
is enclosed by a spherical shell of radius r_{2}
and charge q_{2}. Show that if q_{1} is positive,
charge will necessarily flow from the sphere to
the shell (when the two are connected by a
wire) no matter what the charge q_{2} on the shell is.

- Watch Video Solution

108. Answer the following: The top of the atmosphere is at about 400 kV with respect to
the surface of the earth, corresponding to an
electric field that decreases with altitude. Near
the surface of the earth, the field is about
$100 \mathrm{Vm}^{-1}$. Why then do we not get an electric
shock as we step out of our house into the open? (Assume the house to be a steel cage so there is no field inside!)
109. Answer the following: A man fixes outside
his house one evening a two metre high insulating slab carrying on its top a large aluminium sheet of area $1 m^{2}$. Will he get an electric shock if he touches the metal sheet next morning?

D Watch Video Solution

110. Answer the following: The discharging current in the atmosphere due to the small
conductivity of air is known to be 1800 A on an average over the globe. Why then does the atmosphere not discharge itself completely in due course and become electrically neutral? In other words, what keeps the atmosphere charged?

D Watch Video Solution

111. Answer the following: What are the forms
of energy into which the electrical energy of
the atmosphere is dissipated during a lightning?

D Watch Video Solution

112. An arbitraty surface enclose a dipole. What is the electric flux through this surface?

D Watch Video Solution

113. A spherical conduting shell of inner radius
r_{1} and outer radius r_{2} has a charge Q . A
charge q is placed at the centre of the shell.

Write the expression for the electric field at a
point $x>r_{2}$ from the centre of the spherical shell.

D Watch Video Solution

114. A spherical conducting shell of inner
radius r_{1} and outer radius r_{2} has a charge Q . A
charge q is placed at the centre of the shell.

What is the surface charge density on the inner and outer surfaces of the shell?
115. The dimensions of an atom are of the order of an angstrom. Thus there must be large electric fields between the protons and electrons. Why, then is the electrostatic field inside a conductor zero?

- Watch Video Solution

116. Sketch the electric field lines for a uniformly charged hollow cylinder as shown in

the figure.

- Watch Video Solution

117. If the total charge enclosed by a surface is
zero, does it imply that the electric field everywhere on the surface is zero? Conversely, if the electric field everywhere on a surface is zero, does it imply that net charge inside is zero.
118. Shows a cube with side of length a.

What
will the total flux through the faces of the cube, if a charge q is placed at

A, a corner of the cube?

D Watch Video Solution
119. Shows a cube with side of length a.

What
will the total flux through the faces of the
cube, if a charge q is placed at
B, mid-point of an edge of the cube?

D Watch Video Solution
120. Shows a cube with side of length a.

What
will the total flux through the faces of the cube, if a charge q is placed at

C, centre of the face of the cube?

D Watch Video Solution
121. Shows a cube with side of length a. What will the total flux through the faces of the cube, if a charge q is placed at D, mid-point of B and C ?

- Watch Video Solution

122. A paisa coin is made up of Al-Mg alloy and weights 0.75 g . It has a square shape and its diagonal measures 17 mm . it is electrically neutral and contains equal amounts of positive and negative charges.

Treating the paisa coins made up of only Al,
find the magnitude of equal number of positively and negatively charages. what conclusion do you draw from this magnitude?
123. Consider a coin, It is electrically neutral and contains equal amounts of positive and negative charge of magnitude $34.8 k C$.

Suppose that these equal charages were concentrated two point charges separated by

100 m(-length of a long building),find the force on each such point charge in this case. What do you conclude from these results?

D Watch Video Solution

124. Consider a coin, It is electrically neutral and contains equal amounts of positive and negative charge of magnitude $34.8 k C$.

Suppose that these equal charages were concentrated two point charges separated by

100 m(-length of a long building),find the force on each such point charge in this case. What do you conclude from these results?

D Watch Video Solution

125. Consider a coin, It is electrically neutral and contains equal amounts of positive and negative charge of magnitude $34.8 k C$.

Suppose that these equal charages were concentrated two point charges separated by

100 m(-length of a long building),find the force on each such point charge in this case. What do you conclude from these results?

D Watch Video Solution

126. Represents a crystal a crystal unit of cesium chloride (CsCl).
atoms are situated at the corners of a cube of
side 0.4 nm , whereas a Cl atom is situated at
the centre of the cube. The Cs atoms are
deficient in one electron, while the Cl atom
carries an excess electron. What is the net
electric field on the Cl atom due to eight Cs atoms?

D Watch Video Solution
127. Represents a crystal a crystal unit of
cesium chloride (CsCl).

The Cs
atoms are situated at the corners of a cube of
side 0.4 nm , whereas a Cl atom is situated at
the centre of the cube. The Cs atoms are deficient in one electron, while the Cl atom carries an excess electron. Suppose that the Cs atom at the corner A is missing. What is the net force now on the Cl atom due to the seven remaining Cs atoms?

Watch Video Solution

128. Two charges q and $-3 q$ are placed fixed on

X-axis separated by distance ' d '. Where should
a thrd charge $2 q$ be placed such that it will not experience any force?

- Watch Video Solution

129. In figure Which charges are positive?

- Watch Video Solution

130. In figure Which charge has the largest magnitude? Why?

- Watch Video Solution

131. In figure In which region or regions of the
figure could the electric field be zero nearA,
nearB, near C or nowhere. Justify your answer.

(D) Watch Video Solution
132. Five charges, q each, are placed at the corners of a regular pentagon of side a as shown in the figure.

What
will be the electric field at 0 , the centre of the
pentagon? What will be the electric field at O ,
fi the charge from one of the corners (Say A) is
removed? What will be the electric field at 0 , if
the charge q at A is repalced by $-q$?
133. Five charges, q each, are placed at the corners of a regular pentagon of side a as shown in the figure.

How
would your answer to be affected, if pentagon
is replaced by n-sided regular polygon with charge q at each of its corners?

Watch Video Solution

134. Consider two conducting spheres of radii of R_{1} and R_{2} with $R_{1}>R_{2}$. If the two are at the same potential the larger sphere has more charge than the smaller spheres. State whether the charge density of the smaller sphere is more or less than that of the larger one.

- Watch Video Solution

135. Do free electrons travel to region of higher potential or lower potential?

D Watch Video Solution

136. Can there be potential difference between two adjacent conductors which carry the same positive charge?

D Watch Video Solution

137. Can the potential function have a maximum or minimum in free space?

D Watch Video Solution

138. A test charge q is made to move in the electric field of a point charge Q along two different closed paths. Fig. First path has
sections along and perpendicular loop of the same area as the first loop. How does the work
done compare in the two cases?

D Watch Video Solution

139. A capacitor has some dielectric between
its plates, and the capacitor is connected to a

DC source. The battery is now disconnected
and then the dielectric is removed. State whether the capacitance, the energy stored in it, electric field, charged stored and the voltage will increase, decrease or remains constant.

D Watch Video Solution

140. Prove that, if an insulated, unchanged conductor is placed near a charged conductor, and no other conductors are present, the uncharged body must be intermediate in
potential between that of the charged body and that of infinity.

D Watch Video Solution

141. Electric field is the electrostatic force per unit charge acting on a vanishingly small test charge placed at that point. It is a vector quantity and the electric field inside a charged conductor is zero. Electric flux ϕ is the total number of electric lines of force passing through a surface in a direction normal to the
surface when the surface is placed inside the electric field.
$\phi=\widehat{\vec{E}} \cdot \overrightarrow{d s}=\frac{q}{\varepsilon_{0}}$
A positive charge Q is uniformly distributed along the circular ring of radius R . A small test charge q is placed at the centre of te ring as shown.

142. A positive charge Q is uniformly distributed along a circular ring of radius R . A small test charge q is placed at the centre of the ring.

- Watch Video Solution

143. Two identical conducting spheres M and N has charge q_{M} and q_{N} respectively. A third identical neutral spehre P is brought in
contact with M and then separated. Now, sphere P is brought in contact with N and then separated. Find out final charge on the spehre P.

- Watch Video Solution

144. Two concentric hollow spheres are arranged as shown in the figure. If a charge $+Q$ is given to the outer sphere, find charge
induced on the inner sphere.

- Watch Video Solution

145. Electric field and a dipole are in same direction. When the dipole is deflected through a small angle, does it exhibit S.H.M?
146. An electric dipole of dipole moment \vec{p} is lying along a uniform electric field \vec{E}. What is the work done in rotating the dipole through 90° ?

- Watch Video Solution

147. An electric dipole has the magnitude of its
chawrge q and its dipole moment is p . It is placed in a uniform electric field. If the dipole
moment is along the direction of the field, what is the force on its and its potential energy?

D Watch Video Solution

148. Electric field inside a sphere varies with distance as A r. Find the total charge enclosed within the sphere, if $\mathrm{A}=3,000 \mathrm{Vm}^{-2}$ and $\mathrm{R}=$ 30 cm , where R is radius of the sphere.

- Watch Video Solution

149. The electric field at a distance $3 R / 2$ from
the centre of a charge conducting spherical
shell of radius R is E. The electric field at a distance $R / 2$ from the centre of the sphere is
A. zero
B. E
C. E/2
D. $\mathrm{E} / 3$

Answer:

150. A ring of radius R is uniformly charged by
+Q charge. Find potential at an axial point, which is situated at distance r from the centre and hence deduce electric field.

- Watch Video Solution

151. A charge Q is given to a conducting cone.

Is charge density on the cone it all the points is same?
152. A charge Q is given to a conducting cone.

Is electric potential at all the points on the surface of the cone same?

- Watch Video Solution

153. Dielectric strength of air is $3 \times 10^{6} \mathrm{Vm}^{-1}$.

If electric potential on a sphere can be $9 \times 10^{6} V$, then find the minimum radius of the sphere.
154. Is the electrostatic potential necessarily
zero at a point where the electric field strength is zero? Give an example to illustrate your answer.

- Watch Video Solution

155. Two parallel metal plates having charge $+Q$ and $-Q$ face each other at a certain
distance between them. If the plates are now
dipped in kerosene oil tank, the uniform electric field between the plates will
A. increase
B. decreases
C. remain same
D. becomes zero.

Answer:

D Watch Video Solution
156. A capacitor of plate area A and separation between plates d is half filled with dielectric of dielectric constant K. What is equivalent capacitance?

- Watch Video Solution

Exercise

1. A charge q is placed at the centre of line
joining two equal charges Q. Show that the
system of three charges will be in equilibrium
if $q=-Q / 4$
A. $Q / 2$
B. $-Q / 2$
C. $\mathrm{Q} / 4$
D. $-Q / 4$

Answer:
(Watch Video Solution
2. Two opposite corners of a square carry Q
charges each and the other two opposite
corners of the square carry q charge each. If
the resutlant force on Q is zero, how are Q and
q related?
A. -1
B. 1
C. $-2 \sqrt{2}$
D. $-1 / \sqrt{2}$

Answer:

- Watch Video Solution

3. A copper ball of density $8.6 \mathrm{gcm}^{-3} \mathrm{~cm}$ in diameter is immersed in oil of density
$0.8 \mathrm{gcm}^{-3}$. If the ball remains suspended in oil in a uniform electric field of intensity $36,000 \mathrm{NC}^{-1}$ acting in upward direction, what is the charge on the ball?
A. $3.3 \times 10^{-18} C$
B. $3.2 \times 10^{-18} C$
C. $1.6 \times 10^{-18} C$

$$
\text { D. } 4.8 \times 10^{-18} C
$$

Answer:

D Watch Video Solution

4. Two point charges of $+16 \mu C$ and $-9 \mu C$ are placed 8 cm apart in air. Determine the position of the point at which the resultant electric field is zero.
A. 2 L
B. L/4
C. 8 L
D. 4 L

Answer:

- Watch Video Solution

5. A spherical conductor of radius 12 cm has a charge of $1.6 \times 10^{-7} C$ distributed uniformly on its surface. What is the electric field inside the sphere?
A. $-\frac{q}{2 \pi^{2} e \pi s l o n a^{2}} \hat{j}$
B. $\frac{q}{2 \pi^{2} e \pi s l o n a^{2}} \hat{j}$
C. $-\frac{q}{4 \pi^{2} e \pi s l o n a^{2}} \hat{j}$
D. $\frac{q}{4 \pi^{2} e \pi s l o n a^{2}} \hat{j}$

Answer:

D Watch Video Solution

6. An electric dipoole, when placed at an angle 30° with a uniform electric field of $10^{4} N C^{-1}$, expereinces a torque of $9 \times 10^{-26} \mathrm{~N} \quad \mathrm{~m}$.

Calculate the dipole moment and electrostatic potential energy in this position.
A. a torque as well as translational force
B. a torque only
C. a translational force only in the direction
of the field.
D. a translational force only in a direction
normal to the direction of the field.

Answer:

7. A charged ball B hangs from a silk thread S , which makes an angle θ with a large charged conducting sheet P as shown in Fig. Show that the surface charge density of the sheet is proportional to $\tan \theta$.
A. $\cos \theta$
B. $\cot \theta$
C. $\sin \theta$
D. $\tan \theta$

Answer:

D Watch Video Solution

8. A charged particle q is placed at the centre

O of the cube (ABCDEFGH) of length L. Another
same charge q is placed at a distance L from O .

Then, the electric flux through $A B C D$ is
A. $q / 4 \pi \varepsilon_{0} L$
B. zero
C. $q / 2 \pi \varepsilon_{0} L$

D. $q / 3 \pi \varepsilon_{0} L$

Answer:

D Watch Video Solution

9. Two charged conducting spheres A and B
having radii a and b connected to each other by a copper wire. Find the ratio of the electric fields at the surfaces of the two spheres.
A. $2: 1$
B. 1: 4
C. $4: 1$
D. 1:2

Answer:

D Watch Video Solution
10. On moving a charge of 20 C by $2 \mathrm{~cm}, 2 \mathrm{~J}$ of
work is done. Then, the potential difference between the points is
A. 0.1 V
B. 8 V
C. 2 V
D. 0.5 V

Answer:

D Watch Video Solution

11. The potential at a point at distance x from some charge placed on X-axis is given by
$V(x)=\frac{20}{x^{2}-4}$ (in volt) The electric field at a distane $x=4 \mu m$ is given by
A. $5 / 3 V \mu m^{-1}$ (in the negative X-direction)
B. $5 / 3 V \mu m^{-1}$ (in the postive X -direction)
C. $10 / 9 V \mu m^{-1}$ (in the postive X-direction)
D. $10 / 9 V \mu m^{-1}$ (in the negative X -
direction)

Answer:

D Watch Video Solution

12. Capacitance (in F) of a spherical conductor

 of radius 1 m isA. 1.1×10^{-10}
B. 10^{-6}
C. 9×10^{-9}
D. 10^{-3}

Answer:

- Watch Video Solution

13. A sheet of aluminium foil of negligible
thickness is introduced between the plates of
a capacitor. The capacitence of the capacitor.
A. decrease
B. remains unchanged
C. become infinite
D. increase

Answer:

D Watch Video Solution
14. A parallel plate capacitor is made by stacking n equally spaced plates connected alternatively. If the capacitance between any two adjacent plates is ' C ' then the resultant capacitance is
A. $(n-1) C$
B. $(n+1) C$
C. C
D. nC
15. If n capacitors are connected in parallel to
a V volt source, then total energy of the system is:
A. CV
B. $\frac{1}{2} n C V^{2}$
C. $C V^{2}$
D. $\frac{1}{2}(n) C V^{2}$

- Watch Video Solution

16. A battery is used to charge a parallel plate
capacitor till the potential differece between
the plates becomes equal to the electromotive
force of the battery. The ratio of the energy
stored in the capacitor and the work done by
the battery will be
A. 44200
B. 44198
C. 1
D. 2

Answer:

D Watch Video Solution

17. A parallel plate capacitor with air between
the plates has capacitance of $9 p F$. The separation between its plates is ' d '. The space between the plates is now filled with two dielectrics. One of the dielectrics has dielectric constant $k_{1}=3$ and thickness $\mathrm{d} / 3$ while the
other one has dielectric constant $k_{2}=6$ and thickness $\frac{2 d}{3}$. Capacitance of the capacitor is now
A. 1.8 pF
B. 20.25 pF
C. 40.5 pF
D. 45 pF

Answer:

- Watch Video Solution

18. A fully charged capacitor has a capacitance
'C'. It is discharged through a small coil of resistance wire embedded in a thermally insulated block of specific heat capacity 's' and mass ' m '. If the temperature of the block is
raised by ΔT, the potential difference ' V ' across the capacitance is
A. $\left(\frac{\sqrt{2 m C \Delta T}}{s}\right)$
B. $\frac{m C \Delta T}{s}$
C. $\frac{m s \Delta T}{C}$
D. $\sqrt{\frac{2 m s \Delta T}{C}}$

Answer:

- Watch Video Solution

19. The unit of permittivity of free space (E_O)
is :
A. $C N^{-1} m^{-1}$
B. $N m^{2} C^{-2}$
C. $C^{2} N^{-1} M^{-2}$
D. $C^{2} N^{-2} m^{-2}$

Answer:

- Watch Video Solution

20. When air is replaced by a dielectric medium of dielectric constant K , the maximum
force of attraction between two charges separated by a distance
A. decrease K times
B. remains unchanged
C. increase K times

D. decrease k^{2} times

Answer:

D Watch Video Solution

21. A charge q is placed at the centre of the
line joining two exactly equal positive charges
Q. the system of three charges will be in equilibrium, if q is equal to:
A. $-Q / 4$
B. $+Q$
C. $-Q$
D. $\mathrm{Q} / 2$

Answer:

D Watch Video Solution

22. Point charges $+4 q,-q$ and $+4 q$ are kept on
the X-axis at points $x=0, x=a$ and $x=2 a$ respectively
A. Only - q is in stable equilibrium
B. None of the charges is in equilibrium
C. All the charges are in unstable equilibrium

D. All the charges are in stable equilibrium.

Answer:

- Watch Video Solution

23. There is an electric field E in x-direction. If the work done on moving a charge of 0.2 C through a distance of $2 m$ along a line making a angle 60° with x -axis is 4 J , then what is the value of E ?
A. $\sqrt{3} N C^{-1}$
B. $4 N C^{-1}$
C. $5 N C^{-1}$
D. $20 N C^{-1}$

Answer:

- Watch Video Solution

24. A point Q lies on the perpendicular bisector of an electrical dipole of dipole moment p, If the distance of Q from the dipole is r (much larger than the size of the dipole), then electric field at Q is proportional to
A. p^{-1} and r^{-2}
B. p and r^{-2}
C. p^{2} and r^{-3}

D. p and r^{-3}

Answer:

D Watch Video Solution

25. Dedce the expression for the torque acting ona dipole of dipole moment \vec{p} in the presence of a uniform electric field \vec{E}
A. $\vec{p} \times \vec{E}$
B. $\vec{p} \cdot \vec{E}$
C. $\vec{p} \times(\vec{E} \times \vec{p})$
D. $\vec{E} \cdot \vec{p} / p^{2}$

Answer:

D Watch Video Solution

26. A semi-cricular arc of radius a is charged unformly and the charge per unit length is λ.

The electric field at the centre is
A. $\frac{\lambda}{4 \pi^{2} \varepsilon_{0} a}$
B. $\frac{\lambda}{2 \pi \varepsilon_{0} a^{2}}$
C. $\frac{\lambda}{2 \pi \varepsilon_{a}}$
D. $\frac{\lambda^{2}}{2 \pi \varepsilon_{0} a}$

Answer:

- Watch Video Solution

27. A point charge $+q$ is placed at the mid point of a cube of side b. The electric flux emerging from the cube is:
A. zero
B. $\frac{q}{\varepsilon_{0}}$
C. $\frac{6 q l^{2}}{}$ epsilon_0
D. $\frac{q}{6 l^{2} \varepsilon_{0}}$

Answer:

D Watch Video Solution

28. A charge Q isenclosed by a Gaussian spherical surface of radius R. If the radius is doubled, then the outward electric flux will
A. increase four times
B. be reduced to half
C. remains the same
D. be doubled

Answer:

D Watch Video Solution
29. A capacitor of capacitance C is charged to a potential V and is placed inside a closed
surface. The electric flux through the closed surface is
A. $C V / \varepsilon_{0}$
B. $2 C V / \varepsilon_{0}$
C. $C V / 2 \varepsilon_{0}$
D. zero

Answer:
(Watch Video Solution
30. A charge Q is placed at the corner of a cube. The electric flux through all the six faces of the cube is

$$
\begin{aligned}
& \text { A. } \frac{Q}{\varepsilon_{0}} \\
& \text { B. } \frac{Q}{6 \varepsilon_{0}} \\
& \text { C. } \frac{Q}{8 \varepsilon_{0}} \\
& \text { D. } \frac{Q}{3 \varepsilon_{0}}
\end{aligned}
$$

Answer:

D Watch Video Solution
31. An electric charge q is placed at one of the corner of a cube of side a. The electric flux on one of its faces will be
A. $q / a \varepsilon_{0}$
B. $q /\left(\varepsilon_{0} a^{2}\right)$
C. $q /\left(4 \pi \varepsilon_{0} a^{2}\right)$
D. $\frac{q}{24 \varepsilon_{0}}$

Answer:

D Watch Video Solution
32. Some charge is being given to a conductor.

Then, its potential.
A. is maximum at surface
B. is maximum at centre
C. remains the same througout the
conductor
D. is maximum somewhere between surface
and centre.

Answer:

Watch Video Solution

33. The electric potential at a point in free space due to charge Q coulomb is $Q \times 10^{11}$ volts. The electric field at that points is
A. $4 \pi \varepsilon_{0} Q \times 10^{20} V m^{-1}$
B. $4 \pi \varepsilon_{0} Q \times 10^{22} V m^{-1}$
C. $12 \pi \varepsilon_{0} Q \times 10^{20} V m^{-1}$
D. $12 \pi \varepsilon_{0} Q \times 10^{22} V m^{-1}$
34. Three concentric spherical metal sheels A, B
and C of radii a, b and c a'< 'b'<'c have surface charge densities $+\sigma,-\sigma$ and $+\sigma$ respectively. Find the potentials of three sheels A, B and C.
A. $V_{C} \neq V_{B} \neq V_{A}$
B. $V_{C}=V_{B}=V_{A}$
C. $V_{C}=V_{A} \neq V_{B}$
D.

Answer:

D Watch Video Solution

35. In bringing an electron towards another electrons, the electrostatic potential energy of the system
A. increases
B. decreases

C. remains unchanged

D. becomes zero.

Answer:

D Watch Video Solution

36. Two metallic sphers of radii 1 cm and 2 cm
are given charges $10^{-2} C$ and $5 \times 10^{-2} \mathrm{C}$ respectively. If they are connected by a conducting wire, the final charge on the smaller sphere is
A. $10^{-2} C$
B. $2 \times 10^{-2} C$
C. $3 \times 10^{-2} C$
D. $4 \times 10^{-2} C$

Answer:

D Watch Video Solution
37. Three capacitors each of cpacitance C and breakdown voltage V are joined in series. The
capacitance and break-down voltage of the

combination will be

A. $3 C, V / 3$
B. $C / 3,3 V$
C. $3 \mathrm{C}, 3 \mathrm{~V}$
D. $C / 3, V / 3$

Answer:
(Watch Video Solution
38. Three capacitors each of capacitance $4 \mu F$
are to be connected in such a way that the effective capacitance is $6 \mu F$. This can be done by connecting.
A. all of them in series
B. all of them in parallel
C. two in parallel and one in series
D. $\mathrm{C} / 2$

Answer:

39. A parallel plate capacitor with oil between
the plates has a capacitance C (dielectric constant of oil is 2). If the oil is removed, then
capacitance of the capacitor becomes
A. $\sqrt{2} C$
B. 2 C
C. $C / \sqrt{2}$
D. $\mathrm{C} / 2$

Answer:

- Watch Video Solution

40. A capacitor of capacitance C_{1} is charged upto potential V and then connected in parallel to an uncharged capacitor of capacitance C_{2}. The final potential difference across each capacitor will be
A. $\frac{C_{2} V}{C_{1}+C_{2}}$
B. $\frac{C_{1} V}{C_{1}+C_{2}}$
C. $\left(1+\left(\frac{C_{2}}{C_{1}}\right) V\right.$
D. $\left(1-\left(\frac{C_{2}}{C_{1}}\right) V\right.$

Answer:

- Watch Video Solution

41. A parallel plate air capacitor is charged to a potential difference of V volts. After disconnecting the charging battery the distance between the plates of the capacitor is increased using an isulating handle. As a
result the potential difference between the plates
A. increase
B. decreases
C. does not change
D. becomes zero.

Answer:

D Watch Video Solution
42. Calculate the energy stored in a capacitor?

$$
\begin{aligned}
& \text { A. } \frac{1}{2} C^{2} V \\
& \text { B. } \frac{1}{2} C V^{2} \\
& \text { C. } \frac{1}{2} C V \\
& \text { D. } \frac{1}{2} C^{2} V^{2}
\end{aligned}
$$

Answer:

43. A $4 \mu F$ capacitor is charged to 400 V . If its
plates are joined through a resistance of $2 K \omega$,
then heat produced in the resistance is
A. 0.16 J
B. 0.32 J
C. 0.64 J
D. 1.28 J

Answer:

- Watch Video Solution

44. A capacitor is charged by connecting a battery across its plates. It stores energy U .

Now the battery is disconnected and another identical capacior is connected across it, then
the energy stores by both capacitors of the system will be
A. U
B. U/2
C. $3 \mathrm{U} / 2$
D. $\mathrm{U} / 4$

Answer:

- Watch Video Solution

45. Two identical conductors of copper and aluminium are placed in an identical electric
field. The magnitude of induced charge in the aluminium will be
A. zero
B. greater than in copper
C. less than in copper

D. equal to that of copper

Answer:

D Watch Video Solution

46. When a body becomes negatively charged.

Its mass.
A. giving excess of elements to it
B. removing some electrons from it
C. giving some protons to it

D. removing some neutrons form it.

Answer:

D Watch Video Solution

47. Two charge spheres separated at a distance d exert a force F on each other. If they are immersed in a liquid of dielectric constant
$K=2$, then the force (if all conditions are same)
is
A. $F / 2$
B. F
C. 2 F
D. 4 F

Answer:

D Watch Video Solution

48. Three charge q, Q and $-4 q$ are placed in a straight line, line of length L at points distant
$0, \mathrm{~L} / 2$ and L respectively from one end. In order
to make the net force on q zero, the charge Q must be equal to
A. $-q$
B. $-2 q$
C. $-q / 2$
D. $4 q$

Answer:
(Watch Video Solution
49. The voltage of clouds is $4 \times 10^{6} V$ with respect to ground. In a lighting strike lasting 100 ms , a charge of 4 C is delivered to the ground. The power of ligthing strike is
A. 160 MW
B. 80 MW
C. 20 MW
D. 500 MW

Answer:
50. The point charges Q and $-2 Q$ are placed at some distance apart. If the electirc field at the location of Q is E, the electric field at the location of $-2 Q$ will be

$$
\begin{aligned}
& \text { A. }-E / 2 \\
& \text { B. }-3 E / 2 \\
& \text { C. }-E \\
& \text { D. }-2 E
\end{aligned}
$$

Answer:

- Watch Video Solution

51. What happens when an electric dipole is
held in a non-uniform electric field?
A. both, a torque and a net force
B. only a force but no torque
C. only a torque but no net force
D. no torque and no net force.

Answer:

- Watch Video Solution

52. A charge (q) is enclosed in a cube, what is
electric flux associated with one of the faces of
the cube?
A. q / ε_{0}
B. ε_{0} / q
C. $6 q / \varepsilon_{0}$
D. $q / 6 \varepsilon_{0}$

Answer:

D Watch Video Solution

53. Two infinite parallel planes have uniform
charge densities $\pm \sigma$. What is the electric field in the region between the planes
A. $1.5 N C^{-1}$
B. $1.5 \times 10^{-10} N C^{-1}$
C. $3 N C^{-1}$
D. $3 \times 10^{-10} N C^{-1}$

Answer:

- Watch Video Solution

54. Two infinite parallel planes have uniform charge densities $\pm \sigma$. What is the electric field in the region between the planes
A. $0 V m^{-1}$
B. $\sigma / 2 \varepsilon_{0} V m^{-1}$
C. $\sigma / \varepsilon_{0} V m^{-1}$
D. $2 \sigma / \varepsilon_{0} V m^{-1}$

Answer:

- Watch Video Solution

55. A circle of radius ' r ' is drawn with charge
' +q ' at the centre. A charge q_{0} is brought from
the point B to C. Then work done is:

A. positive

B. negative
C. infinite
D. zero

Answer:

D Watch Video Solution

56. Is it possible to have a positively charged body at
A. zero potential
B. negative potential
C. positive potential
D. all of these

Answer:

D Watch Video Solution

57. The potential at a point P due to an electric dipole is 1.8×10^{5} volt. If P is at a distance of 50 cm apart from the centre O of the dipole
and if OP makes an angle 60° with the positive side of the axial line of the dipole, what is the moment of the dipole?
A. 10 Cm
B. $10^{-3} \mathrm{Cm}$
C. $10^{-4} \mathrm{Cm}$
D. $10^{-5} \mathrm{Cm}$

Answer:

D Watch Video Solution
58. Describe schematically the equipotential surfaces corresponding to - a field that uniformly increases in magnitude but remains in a constant (say, z) direction.
A. planes parallel to YZ-plane
B. planes parallel to XY-plane
C. planes parallel to XZ-plane
D. coaxial cylinders of increasing radii around the X -axis.

- Watch Video Solution

59. In bringing an electron towards another electrons, the electrostatic potential energy of
the system
A. increases
B. decreases
C. becomes zero
D. remains the same
60. What is the area of the plates of a 3 F parallel plate capacitor, if the separation between the plates is 5 mm ?
A. $1.694 \times 10^{9} m^{2}$
B. $4.529 \times 10^{9} \mathrm{~m}^{2}$
C. $9.281 \times 10^{9} \mathrm{~m}^{2}$
D. $12.281 \times 10^{9} m^{2}$
61. The dielectric between the conductors reduces the electric intensity
A. to zero
B. between them
C. with no change
D. none of the above

Answer:
62. Given a number of capacitors labelled as
$8 \mu F .250 V$. Find the minimum number of
capacitors needed to get an arrangement equivalent to $16 \mu F, 1,000 V$
A. 4
B. 16
C. 32
D. 64

Answer:

- Watch Video Solution

63. A parallel plate air capacitor has a
capacitance C. When it is half filled with a dielectric of dielectric constant 5, the percentage increase in the capacitance will be
A. 0.333
B. 0.666
C. 2
D. 4

Answer:

D Watch Video Solution

64. When a capacitor is connected to a battery
A. a current flows in the circuit for sometimes, them decreases to zero
B. no current flows in the circuit at all
C. an alternating current flows in the circuit
D. none of the above

Answer:

D Watch Video Solution

65. A 40 muF capacitor in a defibrillator is charged to 3000 V . The energy stored in the capacitor is sent through the patient during a
pulse of duration 2 ms . The power delivered to
the patient is
A. 45 kW
B. 90 kW
C. 180 kW
D. 360 kW

Answer:
(Watch Video Solution
66. Assertion. A metallic shield in the form of a
hollow shell, can be built to block an electric
field.

Reason. In a hollow spherical shell, the electric
field inside is not zero at every point.
A. A
B. B
C. C
D. D

- Watch Video Solution

67. Assertion. Capacity of a parallel plate condenser remains unaffected on introduced
a conducting or insulating slab between the plates.

Reason. In both the cases, electric field intensity between the plates increases.
A. A
B. B
C. C
D. D

Answer:

D Watch Video Solution

68. Assertion: In the absence of an external electric field, the dipole moment per unit volume of a polar dielectric is zero.

Reason: The dipoles of a polar dielectric are randomly oriented.
A. If both Assertion and Reason are true
and the Reason is the correct explanation of the Assertion.
B. If both Assertion and Reason are true
but the Reason is not the correct
explanation of the Assertion
C. If Assertion is true statement but

Reason is false
D. If both Assertion and Reason ale false
statements.

Answer:

D Watch Video Solution

69. Assertion: A metal sphere of radius 1 cm
can not hold a charge of 1 coulomb

Reason: For placing a charge of 1 coulomb on
a shere of radius 1 cm , its potential has to eb
raised to $=9 \times 10^{22} V$
A. If both Assertion and Reason are true and the Reason is the correct
explanation of the Assertion.
B. If both Assertion and Reason are true
but the Reason is not the correct
explanation of the Assertion
C. If Assertion is true statement but

Reason is false
D. If both Assertion and Reason ale false statements.

Answer:

70. Assertion : The total charge stored in a capaitor is zero.

Reason : The electric field just outside the capacitor is σ / ε_{0}. Where σ is the charge density
A. If both Assertion and Reason are true
and the Reason is the correct
explanation of the Assertion.
B. If both Assertion and Reason are true
but the Reason is not the correct explanation of the Assertion
C. If Assertion is true statement but

Reason is false
D. If both Assertion and Reason ale false
statements.

Answer:

71. Assertion : When two conductors charged
to different potentials are conencted with a wire, there is always some loss of electric energy.

Reason : A part of the electric energy is lost in the form of heat and electromagnetic radiation.
A. If both Assertion and Reason are true
and the Reason is the correct
explanation of the Assertion.
B. If both Assertion and Reason are true
but the Reason is not the correct explanation of the Assertion
C. If Assertion is true statement but

Reason is false
D. If both Assertion and Reason ale false
statements.

Answer:

72. Assertion. Capacity of a parallel plate condenser remains unaffected on introduced
a conducting or insulating slab between the plates.

Reason. In both the cases, electric field intensity between the plates increases.
A. both, Assertion and Reason are true and
the Reason is correct explanation of the

Assertion.
B. both, Assertion and Reason are true, but Reason is not the correct explanation of the Asserrtion.
C. Assertion is true, but the Reason is false.
D. both, Assertion and Reason are false.

Answer:

- Watch Video Solution

73. Assertion : The electrostatic force between
the plates of a charged isolated capacitor decreases when dielectric fills whole space between plates.

Reason : The electric field between the plates of a charged isolated capacitance decreases when dielectric fills whole space between plates.
A. both, Assertion and Reason are true and
the Reason is correct explanation of the

Assertion.
B. both, Assertion and Reason are true, but Reason is not the correct explanation of the Asserrtion.
C. Assertion is true, but the Reason is false.
D. both, Assertion and Reason are false.

Answer:

- Watch Video Solution

74. Assertion : A parallel plate capacitor is connected across battery through a key. A dielectric slab dielectric constant K is introduced between the plates. The energy which is stored becomes K times.

Reason : The surface density of charge on the plate remains constant or unchanged.

D Watch Video Solution

75. Assertion : A parallel plate capacitor is connected across battery through a key. A dielectric slab dielectric constant K is introduced between the plates. The energy
which is stored becomes K times.

Reason : The surface density of charge on the plate remains constant or unchanged.
A. A
B. B
C. C
D. D

Answer:

D Watch Video Solution

76. Assertion : The charge on a conductor can be transferred to a hollow spherical conductor irrespective of the potential, to which it gets raised

Reason : It is because of the principle of the spherical capacitor.
A. if both Assertion and Reason are true
and the Reason is correct explanation of
the Assertion.
B. If both Assertion and Reason are true
but Reason is not the correct
explanation of the Assertion.
C. if Assertion is true, but the Reason is
false.
D. if both Assertion and Reason are false
77. A comb run through one's dry hair attracts small bits of paper. This is due
A. a) the atoms of the paper get polarised
by the charged comb
B.b) the comb possesses magnetic properties
C. c) comb is a good conductor
D. d) paper is a good conductor

Answer:

D Watch Video Solution

78. What are the dimensions of $K=1 / 4 \pi \varepsilon_{0}$?
A.
B.
C.
D.
79. If both the charges and distance between
them is doubled, then new electrostaic force will be
A. a) F
B. b) 2 F
C. c) C
D. d) none of the above

- Watch Video Solution

80. When air is replaced by a dielectric medium of dielectric constant K, the maximum force of attraction between two charges separated by a distance
A. a) increases k^{-1} times
B. b) increases K times
C. c) decreases K times
D. d) remains constant

Answer:

- Watch Video Solution

81. A hollow cylindrical conductor having positive charge is placed near another neutral conductor. The net charge induced on the neutral conductor is
A. positive
B. negative
C. depends on distance

D. zero

Answer:

D Watch Video Solution

82. The number of electrons to be put on a spherical conductor of radius 0.1 m to produed electric field of $0.36 N C^{-1}$ just above the surface is
A. 2.7×10^{6}
B. 2.6×10^{6}
C. 2.5×10^{6}
D. 2.4×10^{6}

Answer:

D Watch Video Solution

83. An electric field required to keep a water drop of mass m just to remain suspended, when charged with one electron is
A. em /g
B. $\mathrm{m} g / \mathrm{e}$
C. emg
D. mg

Answer:

D Watch Video Solution

84. There is an electric field E in x-direction. If
the work done on moving a charge of 0.2 C
through a distance of 2 m along a line making
a angle 60° with x -axis is 4 J , then what is the value of E ?
A. $2 \sqrt{3} N C^{-1}$
B. $4 N C^{-1}$
C. $5 N C^{-1}$
D. none of these

Answer:
(Watch Video Solution
85. What is the angle between the electric
dipole moment and the electric field strength due to it on the equitorial line?
A. 0°
B. 90°
C. 180°
D. none of these

Answer:

D Watch Video Solution
86. An arbitraty surface enclose a dipole. What
is the electric flux through this surface?
A. half that due to a single charge
B. double that due ot a single charge
C. dependent on the position of the dipole
D. zero

Answer:

(Watch Video Solution
87. A hollow metallic sphere of radius 10 cm is charged, such that potential of its surface is 70 V . The potential at the centre of the sphere would be
A. OV
B. 7 V
C. 70 V
D. 700 V

Answer:
88. Two equal and opposite charges (+q and -
q) are situated at x distance from each other.

The value of potential at very far point will depend on
A. only on q
B. only on x
C. on q x
D. $o n q / x$

- Watch Video Solution

89. A charge q is distributed over two concentric hollow spheres of raddii r and R
such that the surface densities are equal. Find the potential at the common centre.
A. `sigma/epsilon_0 ($\mathrm{R}-\mathrm{r}$)
B. 'sigma/epsilon_0 ($\mathrm{R}+\mathrm{r}$)
C. $\frac{R \sigma}{\varepsilon_{0}}$
D. $\frac{\sigma}{\varepsilon_{0}}$

Answer:

- Watch Video Solution

90. What is not true for equipotential surface for a uniform electric field?
A. Equipotential surface is flat
B. Equipotential surface is spherical
C. Electrical lines of force are perpendicular

D. work done is zero

Answer:

- Watch Video Solution

91. Which of the following is not the property of equipotential surfaces?
A. They do not cross each other
B. They are concentric spheres for uniform
electric field.
C. Rate of change of potential with
distance on them is zero
D. They can be imaginary sphers.

Answer:

D Watch Video Solution

92. The charge given to any conductor resides
on its outer surface, because
A. the free charge tends to be in its minimum potential energy state
B. the free charge tends to be in its minimum kinetic energy state
C. the free charge tends to be in its
maximum potential energy state.
D. the free charge tends to be in its maximum kinetic energy state.

Answer:

93. The electrostatic capacitance depends on

A. nature of the conductor
B. size of the conductor
C. thickness of the conductor

D. none of these

Answer:

94. n identical mercury droplets charged to
the same potential V coalesce to form a single bigger drop. The potential of new drop will be
A. V / n
B. nV
C. $n V^{2}$
D. $n^{2 / 3} V$

Answer:

95. The capacitance of a parallel plate capacitor increases with
A. decrease of its area
B. increase of its distance
C. increase of its area
D. decrease of its distance

Answer:

96. 27 small drops, each having charge q and
radius r coalesce to forma big drop. How many
times charge and capacitance will become?
A. 3.27
B. 27,3
C. 27,27
D. 3,3

Answer:

D Watch Video Solution
97. The potentials of the two plates of capacitors are +10 V and -10 V . The charge on one of the plates is 40 C . the capacitance of the capacitor is
A. 2 F
B. 4 F
C. 0.5 F
D. 0.25 F

Answer:

- Watch Video Solution

98. A capacitor of $20 \mu F$ charged uptp 500 V is connected in parallel with another capacitor of $10 \mu F$ which is charged upto 200 V . The common potential is
A. 250 V
B. 300 V
C. 400 V
D. 600 V
99. Three capacitors 2,3 and $6 \mu F$ are connected in series to a 10 V source. The charge on $3 \mu F$ capacitor is
A. $5 \mu C$
B. $10 \mu C$
C. $12 \mu C$
D. $15 \mu C$
100. 700 pF capacitor is charged by a 50 V battery, How much electrostatic energy is stored by it?
A. $6.7 \times 10^{-7} j$
B. $8.7 \times 10^{-7} j$
C. $13.6 \times 10^{-9} j$
D. $17.0 \times 10^{-8} J$
101. The potential enery of a charged parallel
plate capacitor is $U_{-}(0)$. If a slab of dielectric constant K is inserted between the plates, then the new potential energy will be
A. U_{0} / K
B. $U_{0} K^{2}$
C. U_{0} / K^{2}
D. U_{0}^{2}

Answer:

D Watch Video Solution

102. A parallel plate air capacitor has a
capacitance C. When it is half filled with a dielectric of dielectric constant 5, the percentage increase in the capacitance will be
A. 0.333
B. 0.666
C. 2
D. 4

Answer:

(D) Watch Video Solution

103. A capacitor, having capacitance $1 \mu F$ with
air, is filled with two dielectrics as shown in the
figure. How many times the capacitance will increase?
A. 44411
B. 3
C. 6
D. 12

Answer:

D Watch Video Solution

104. The force between the plates of a parallel
plates capacitor of area A, capacitance C and
having charge of will be
A. $q^{2} / 2 \varepsilon_{0} A$
B. $-q^{2} / 2 \varepsilon_{0} A$
C. $q^{2} / 4 \varepsilon_{0} A$
D. $-q^{2} / 4 \varepsilon_{0} A$

Answer:

- Watch Video Solution

105. A soap bubble is given a negative charge.

Then, its radius
A. decreases
B. increases
C. remains unchanged
D. nothing can be predicted.

Answer:

D Watch Video Solution
106. A charge q is placed at the centre of the
line joining two exactly equal positive charges
Q. the system of three charges will be in equilibrium, if q is equal to:
A. $-Q / 2$
B. $-Q / 4$
C. $+Q / 4$
D. $+Q / 2$

Answer:
(Watch Video Solution
107. Two equal negative charges $-q$ are fixed at
points ($0,-a$) and ($0, a$) on y-axis. A poistive
charge Q is released from rest at point ($2 \mathrm{a}, 0$)
on the x -axis. The charge Q will
A. execute simple harmonic motion above
the origin
B. move to the origin and remain at rest
C. execute oscillatory but not simple
harmonic motion
D. move to infinity

Answer:

D Watch Video Solution

108. A positively charged thin metal ring of radius R is fixed in the xy plane with its centre at the origin O. A negatively charged particle P is released from rest at the point $\left(0,0, z_{0}\right)$ where $z_{0}>0$. Then the motion of P is
A. periodic for all the values of z_{0} satisfying

$$
o<Z_{0}<\infty
$$

B. simple harmonic for all the values of z_{0}

 satisfying $0<z_{0} \leq R$
D. such that P crosses O and continues to
move along the negative Z-axis towars
$z=-\infty$.

Answer:

D Watch Video Solution

109. A given charge is situated at a certain distance from an electric dipole in the end-on position experiences a force F If the distance of the charge is doubled, the force acting on the charge will be
A. 2 F
B. $\mathrm{F} / 2$
C. F/4
D. $\mathrm{F} / 8$
110. The diemnsion of energy density, $\frac{1}{2} \varepsilon_{0} E^{2}$, where elipson $_{0}$ is permittivity of free space and E is electric field is :
A. $M L T^{-1}$
B. $M L^{2} T^{-2}$
C. $M L T^{-2}$
D. $M L^{2} T^{-1}$
111. A small metal ball is suspended in a uniform electric field with the help of an insulated thread. If high energy X-ray beam falls on it,
A. the ball will be deflected in the direction
of field
B. the ball will be deflected opposite to the
direction of field

C. the ball will not deflect at all

D. the ball will fly to infinity

Answer:

(D) Watch Video Solution
112. A field line is shown in the figure.

This
field cannot represent
A. gravitational field
B. electrostatic field
C. induced electric field

D. magnetic field

Answer:

- Watch Video Solution

113. The nuclear charge (Ze) is nonuniformly distributed within a nucleus of radius R. The charge density $p(r)$ (change per unit volume) is dependent only on the radial distance r from
the center of the nucleus as shown in figure, the electric field is only along the radial
direction.

The electric field at $r=R$

A. independent of a
B. directly proportional to a
C. directly proportional to a^{2}
D. inversely proportionaly to a

Answer:

D Watch Video Solution

114. The nuclear charge (Ze) is nonuniformly distributed within a nucleus of radius R. The charge density $p(r)$ (change per unit volume) is dependent only on the radial distance r from
the center of the nucleus as shown in figure, the electric field is only along the radial direction.The electric field within the nucleus is generally observed to be linerarly

dependent on r. This implies

A. $a=0$
B. $a=R / 2$
C. $a=R$
D. $a=2 R / 3$

Answer:
(Watch Video Solution
115. A non-conducting solid sphere of radius R is uniformly charged. The magnitude of the electric field due to the sphere at a distance r form its centre
A. increases as r increases, for $r<R$
B. decreases as r increases, for $0<r<$

C. decreases as r increases, for $R<r<$

D. is discontinuous at $r=R$

Answer:

D Watch Video Solution

116. Consider the charge configuration and a spherical Gaussian surface as shown in the
figure. When calculating the flux of the electric field over the spherical surface, the electric
field will be due to.
A. q_{2}
B. only the positive charges
C. all the charges
D. $+q_{1}$ and $-q_{1}$

Answer:

- Watch Video Solution

117. An ellipsoidal cavity is carved within a perfect conductor. A positive charge q is placed at the centre of the cavity. The points A and B are on the cavity surface as shown in
the figure. Then

A. electric field near A in the cavity $=$ electric field near B in the cavity
B. charge density at $A=$ charge density at B
C. potential at $A=$ potential at B
D. total electric field flux through the
surface of the cavity is q / ε_{0}

Answer:

D Watch Video Solution

118. A hollow sphere of charge does not produce an electric field at any
A. interior point
B. outer point
C. beyond 2 m
D. beyond 10 m

Answer:

D Watch Video Solution

119. Which of the following statement (s) is/are correct?
A. If the electric field due to a point charge
varies as $r^{-2.5}$ instead of r^{-2}, then the

Gauss law will still be valid
B. The Gauss law can be used to calculate
the field distribution around the electric
dipole
C. If the electric field between two point
charges is zero somewhere, then the
sign of the two charges is the same
D. the work done by the external force in
moving a unit positive charge from point

A at potential V_{A} to point B at potential
V_{B} is $\left(V_{B}-V_{A}\right)$

Answer:

D Watch Video Solution

120. The electric potential V at any point (x, y, z)
all in meters in space is given by $V=4 x^{2}$ volt.

The electric field at the point $(1,0,2)$ in V / m is
A. 8 along negative x-axis
B. 8 along positive X-axis
C. 16 along negative X-axis
D. 16 along positive X-axis

Answer:

D Watch Video Solution

121. A uniform electric field pointing in positive x-direction exists in a region. Let A be the origin, B be the point on the x-axis at $x=+1 \mathrm{~cm}$ and C be the point on the y-axis at $y=+1 \mathrm{~cm}$.
then the potetial at the points A, B and C satisfy

$$
\text { A. } V_{A}<V_{B}
$$

B. $V_{A}>V_{B}$
C. $V_{A}<V_{C}$
D. $V_{A}>V_{C}$

Answer:

D Watch Video Solution

122. A hollow metal sphere of radius 5 cm is charged, such that the potential on its surfae is 10 V . The potential at the centre of the sphere is
A. OV

B. 10 V

C. same as at a point 5 cm away from the

surface

D. same as at a point 25 cm away from the
surface

Answer:

(Watch Video Solution
123. A particle A has chrage $+q$ and a particle B
has charge $+4 q$ with each of them having the
same mass m. When allowed to fall from rest through the same electric potential difference,
the ratio of their speed $\frac{v_{A}}{v_{B}}$ will become
A. 2:1
B. $1: 2$
C. 1: 4
D. $4: 1$
124. A bal of mass 1 g carrying a chage $10^{-8} \mathrm{C}$ moves from a point A at potential 600 V to a point B at zero potential. The change in its K.E. is
A. $-6 \times 10^{6} \mathrm{erg}$
B. $-6 \times 10^{-6} j$
C. $6 \times 10^{-6} \mathrm{~J}$
D. $6 \times 10^{-6} \mathrm{erg}$

Answer:

D Watch Video Solution

125. A solid conducting sphere having a charge
Q is surrounded by an uncharged concentric
hollow spherical shell. Let the potential difference between the surface of the solid sphere and that of the outer surface of the hollow shell be v. If the shell is now given a charge of -3 Q , the new potential difference between the same two surfaces is
A. V
B. 2 V
C. 4 V
D. $-2 V$

Answer:

- Watch Video Solution

126. Two equal point charges are fixed at $x=-a$ and $x=+a$ on the x-axis. Another point charge Q
is placed at the origin. The change in the
electrical potential energy of Q , when it is
displaced by a small distance x along the x axis, is approximately proportional to
A. X
B. x^{2}
C. x^{3}
D. $1 / x$

Answer:

D Watch Video Solution
127. When the separation between two charges is increased, the electric potential energy of the system
A. remains the same
B. may increase or decrease
C. increases
D. decreases

Answer:

128. A sheet of aluminium foil of negligible thickness is introduced between the plates of a capacitor. The capacitence of the capacitor.
A. same
B. double
C. half
D. K times

Answer:

129. A and B are two conducting spheres of the
same radii. A being solid and B hollow. Both
are charged to the same potential. What will be the relation between the charges on the two spheres?
A. hollow sphere has more charge
B. both have equal charge
C. only hollow sphere has charge
D. solid sphere has more charge
130. wo capacitors of capacitances C_{1} and C_{2}
are connected in parallel across a battery. If
Q_{1} and Q_{2} respectively be the charges on the capacitors, then $\frac{Q_{1}}{Q^{2}}$ will be equal to
A. C_{1} / C_{2}
B. C_{2} / C_{1}
C. $C_{1} C_{2}$
D. $1 / C_{1} C_{2}$

Answer:

D Watch Video Solution

131. A dielectric slab of thickness d is inserted
in a parallel plate capacitor whose negative plate is at $x=0$ and positive plate is at $x=3 d$.

The slab is equidistant from the plates. The
capacitor is given some charge. As one goes
from 0 to 3d
A. the magnitude of the electric field remains the same
B. the direction of the electric field remains
the same
C. the electric potential increases
continuously.
D. the electric potential increases at first,
then decreses and again increases.

Answer:

132. The magnitude of electric field \vec{E} in the annualr region of a charged cylidrical capacitor.
A. is same througout
B. varies as $1 / r^{2}$, where r is the distance
from the axis
C. varies as $1 / r$, where r is the distance
from the axis

D. is higher near the outer cylinder than

near the inner cylinder.

Answer:

D Watch Video Solution

133. A parallel plate capacitor is connected to a battery as shown in Figure.
(A) Key K is kept closed and the plates of the
capacitor are moved apart using insulating handle.
(B) Key K is opened and plates of capacitors are moved apart using insulating handle.

Which of the following statement is correct?
A. the charge on the capacitor increases
B. the voltage across the plates increases
C. the capacitance increases
D. the electrostatic energy stored in the
capacitor increases
134. A parallel plate air capacitor is connected to a battery. The quantities charge, voltage, electric field and energy associated with this
capacitor are given by Q_{0}, V_{0}, E_{0} and U_{0} respectively. A dielectric slab is now introduced to fill the space between the plates with battery still in connection. The corresponding quantities now given by $\mathrm{Q}, \mathrm{V}, \mathrm{E}$ and U are related to the previous one as
A. $Q>Q_{0}$
B. $V>V_{0}$
C. $E>E_{0}$
D. $U>U_{0}$

Answer:

D Watch Video Solution

135. Two identical capacitors, have the same capacitance C. One of them is charged to potential V_{1} and the other V_{2}. The negative
ends of the capacitors are connected together.

When the poistive ends are also connected, the decrease in energy of the combined system is

$$
\begin{aligned}
& \text { A. } \frac{1}{4} C\left(V \wedge 2-V_{2}^{2}\right) \\
& \text { B. } \frac{1}{4} C\left(V \wedge 2+V_{2}^{2}\right) \\
& \text { C. } \frac{1}{4} C\left(V_{1}-V_{2}\right)^{2} \\
& \text { D. } \frac{1}{4} C\left(V_{1}+V_{2}\right)^{2}
\end{aligned}
$$

Answer:

136. Consider the situation shown in the
figure. The capacitor A has a charge q on it whereas B is uncharged. The charge appearing on the capacitor B a long time after the switch
is closed is :

A. zero
B. $q / 2$
C. q
D. $2 q$

Answer:

D Watch Video Solution

137. A circuit is connected as shown in the
figure with the switch S open. When the switch
is closed, the total amount of charge that
flows from Y to X is

A. zero
B. $27 \mu C$
C. $54 \mu C$
D. $81 \mu C$

Answer:
138. Static electricity is produced due to
A. friction

B. conduction

C. induction
D. all of these

Answer:

139. A polythene piece rubbed with wool is
found to have a negative charge of
$3 \times 10^{-7} C$. Estimate the number of electrons
transferred (from which to which?)
A. 10^{13} from wool to polythene
B. 10^{13} form polythene to wool
C. 2.56×10^{15} from wool to polythene
D. 10^{-13} form wool to polythene

Answer:

Watch Video Solution

140. Choose the correct answer
A. Total charge present in the universe is
constant
B. Total positive charge present in the
universe is constant
C. Total negative charge present in the
universe is constant
D. Total number of charged particles present in the universe is constant.

Answer:

D Watch Video Solution

141. A positively charged glass rod attracts a suspended pith-ball. Does it imply that te pithball is negatively charged?
A. attracted towards the rod
B. repelled away from the rod
C. not affected by therod
D. attracted towards the rod, touches it and is then thrown away from it

Answer:

- Watch Video Solution

142. The unit of permittivity of free space (E_O)
is :
A. $N m^{2} C^{-2}$
B. $N m^{-2} C^{-1}$
C. $C^{2} N^{-1} m^{-2}$
D. $A m^{-1}$

Answer:

D Watch Video Solution

143. Two points charges of $+3 \mu C$ and $+8 \mu C$ repel each other with a
force of $40 N$. A charge of $-5 \mu C$ is added to each of them. Now, the force will be
A. 10 N (attractive)
B. 1 N (repulsive)
C. zero
D. cannot be found

Answer:
(Watch Video Solution
144. Force between the two stationary charges, when placed in freespace is 10 N . If they are placed in a medium of relative permittivity 5 , the force between them is
A. 50 N
B. 2 N
C. 0.5 N
D. 10 N

Answer:

145. A charge having magnitude Q is divided into two parts q and ($\mathrm{Q}-\mathrm{q}$). If the two parts exerts a maximum force of repulsion on each other, then find the ratio Q / q.
A. $1: 2$
B. 2:1
C. 1: 4
D. $4: 1$

Answer:

- Watch Video Solution

146. A charge q_{1} exerts some force on a second
charge q_{2}. A third charge q_{3} is brought near
them. Then, force exerted by q_{1} on q_{2} will:
A. decrease in magnitude
B. increase in magnitude
C. remain unchanged

D. increase if q_{2} is of the same sign as q_{1}

 and will decrease, if q_{2} is of opposite sign.
Answer:

D Watch Video Solution

147. Five balls numbered $1,2,3,4$, and 5 are suspended using separated threads. The balls
$(1,2),(2,4)$ and $(4,1)$ show electrostatic
attraction while balls $(2,3)$ and $(4,5)$ show repulsion. Therefore, ball 1 must be
A. positively charged
B. negatively charged
C. neutral
D. made of metal

Answer:

- Watch Video Solution

148. Two charges each of $+q$ units are placed along a line. A third chare of $-\mathrm{q} / 4$ is placed midway between them. The system will
A. be in equilibrium
B. not be in equilibrium
C. lose charge
D. oscillate

Answer:

D Watch Video Solution
149. Two equal and similar charges are placed along a straight line. A third equal and similar charge is placed midway between the two charges. Then, the system, will:
A. be in equilibrium
B. not be in equilibrium
C. lose charge
D. oscillate

Answer:

150. Two equal and similar charges are placed along a straight line. A third equal but opposite to the charges is placed midway between them. Then, system will
A. be in equilibrium
B. not be in equilibrium
C. lose charge
D. oscillate

Answer:

D Watch Video Solution

151. A stationary charges produces.
A. an electric field only
B. a magnetic field only
C. both electric and magnetic fields
D. an electromagnetic wave
152. A proton and an electron are placed in a uniform electric field. Then
A. the electric forces acting on them will be
equal
B. the magnitudes of the forces acting on
them will be equal
C. their acceleratioins will be equal

D. the magnitudes of their accelerations

will be equal

Answer:

D Watch Video Solution

153. In SI. Unit of electric field is:
A. $A m^{-1}$
B. $N C^{-1}$
C. $C m^{-1}$
D. $C m^{-2}$

Answer:

- Watch Video Solution

154. Determine the magnitude of an electric
field that will balance the weight of an electron.
A. e/m g
B. mg / e

C. mge

D. cannot be found

Answer:

D Watch Video Solution

155. A dipole of electric dipole moment \vec{P} is
placed in a uniform electric field of strength \vec{E}. If θ is angle between \vec{p} and \vec{E} then potential energy of the dipole becomes largest, when θ is
A. zero
B. $\pi / 4$
C. $\pi / 2$
D. π

Answer:

D Watch Video Solution

156. A positivity charges ball hangs from a silk thread Electric filed at a certain point (at the same horizontal level of ball) due to this
charge is E.. We put a positive test charge Q_{0} at a point and measure F / q_{0} then, it can be prediced that the electric field strength E
A. $>F / q_{0}$
B. $=F / q_{0}$
C. $<F / q_{0}$
D. cannot be predicted

Answer:

D Watch Video Solution
157. A cylinder of length L and radius R is placed in a uniform electric field E parallel to
the axis o the cylinder. The total electric flux for the surface of the cylinder is given by
A. $\left(2 \pi R^{2}\right) E$
B. $(2 \pi R L) E$
C. $2 \pi R(R+L) E$
D. zero

Answer:

D Watch Video Solution
158. Gauss's theorem
A. does not hold, if the closed surface
encloses a discrease distribution of
charges
B. does not hold, if the closed surface
encloses a line, a surface or a volume
charge distribution
C. holds, if the surface encloses a point charge only

D. holds, irrespective of the form in which

changes are enclosed by the closed surface.

Answer:

D Watch Video Solution

159. Electric field varies as r^{-3} due to
A. a point charge
B. an infinite line charge

C. an electric dipole

D. an infintie plane sheet of charge

Answer:

D Watch Video Solution

160. Electric field varies as r^{-1} due to
A. a point charge
B. a quadrupole
C. an infinite line charge

D. an infinite plane sheet of charge

Answer:

D Watch Video Solution

161. The electric field inside a spherical shell of
uniform surface charge density is
A. zero
B. uniform
C. non-uniform

D. proportional to distance from the centre

Answer:

D Watch Video Solution

162. A spherical shell of radius R has a charge
$+Q$ units. The electric field due to the shell at a point
A. inside is zero and varies as r^{-1} outside
it
B. inside is constant and varies as r^{-2}
outside it
C. inside is zero and varies as r^{-2} outside
it
D. inside is constant and varies as r^{-1}
outside it

Answer:

(Watch Video Solution
163. A sphere of charge of radius R has
uniform volume charge density. The electric
field due to the sphere of charge at a point
A. inside varies as r^{-2} and as r outside it
B. inside varies as r and as r^{-2} outside it
C. inside is zero and varies as r outside it
D. inside is constant and varies as r^{-2}
outside it

Answer:
164. A charge Q is placed at the corner of a cube. The electric flux through all the six faces of the cube is
A. q / ε_{0}
B. $q / 3 \varepsilon_{0}$
C. $q / 6 \varepsilon_{0}$
D. $q / 8 \varepsilon_{0}$

Answer:
165. If the flux through a closed surface is zero, then
A. the electric field must be zero every
where on the surface
B. the electric field may be zero everywhere
on the surface
C. the charge inside the surface must be

D. the charge in the vicinity of the surface

 must be zero
Answer:

D Watch Video Solution

166. An electric dipole is placed inside a hollow sphere at its centre. Then
A. the electric flux through the sphere is
zero
B. the electric field is zero at every point on
the surface of the sphere
C. the electric field is non-zero at every
point on the surface of sphere
D. The electric field is zero on a circle on
the sphere.

Answer:

167. A metalli particle having no net charge is
placed near a positively charged metal plate
having finite size. The electric force on the particle will be
A. towards the plate
B. away from the plate
C. parallel to the plate
D. zero

Answer:

168. If one penetrates a uniformly charged solid sphere, the electric field strength E
A. increases
B. decreases
C. remains the same as at the surface
D. is zero at all points.

Answer:

169. Potentail at any point inside a charged hollow sphere
A. increase with distance
B. is a constant
C. decreases with distance from centre
D. is zero

Answer:

D Watch Video Solution
170. Two small spheres, each carrying a charge q are placed r m apart and they interact with
force F. If one of the sphere is taken around the other once in a circular path, the work done will be equal to
A. $F \times r$
B. $F \times 2 \pi r$
C. $F / 2 \pi r$
D. zero
171. The electric potential at the surface of an atomic nucleus ($\mathrm{Z}=50$) of radius $9.0 \times 10^{-15} \mathrm{~m}$ is
A. 80 V
B. $8 \times 10^{6} V$
C. 9 V
D. $9 \times 10^{5} \mathrm{~V}$
172. If a charge is moved against the Coulomb force of an electric field
A. work is done by the electric field
B.energy is used from some outside source
C. the strength of field is decreased
D. the energy of the system is decreased

Answer:

D Watch Video Solution

173. Hydrogen ion and singly ionized helium atom are accelerated, from rest, through the
same potential difference . The ratio of final speeds of hydrogen and helium ions is close to :
A. 1
B. $2 / 1$
C. $\frac{1}{4}$
D. $\sqrt{2}$

Answer:

D Watch Video Solution

174. In SI. Unit of electric field is:
A. $C m^{-2}$
B. $A m^{-1}$
C. $V m^{-1}$
D. $C m^{-1}$

Answer:

D Watch Video Solution

175. A charge of $10 \mu C$ experience a force of 5
N in an electric field. The potential gradient at that point is:
A. $0.4 N C^{-1}$
B. $4 \times 10^{5} N C^{-1}$

C. $2.5 \times 10^{-6} N C^{-1}$

D. cannot be found

Answer:

D Watch Video Solution

176. There is an electric field E in x-direction. If
the work done on moving a charge of 0.2 C through a distance of $2 m$ along a line making a angle 60° with x-axis is 4 J , then what is the value of E ?
A. $\sqrt{3} N C^{-1}$
B. $4 N C^{-1}$
C. $5 N C^{-1}$
D. $20 N C^{-1}$

Answer:

- Watch Video Solution

177. Can a body have charge and still be at zero potential?
A. Yes, always
B. Yes, but not always
C. Never
D. Depends upon the nature of the charge

Answer:

D Watch Video Solution
178. Can a body have electric potential and still be uncharged?
A. Yes, always
B. Yes, but not always
C. Never
D. Depends upon the nature of the charge

Answer:

D Watch Video Solution
179. In the electric field of a point charge q, a certain charge is carried from point A to B, A
to C, A to D and A to E. Then the work done

A. minimum along path $A B$
B. minimum along path AD
C. minimum along path $A E$
D. zero along all the paths

Answer:

D Watch Video Solution

180. Which of the following quantites do not
depend on the choice of zero potential or zero
potential energy?
A. potential at a point
B. potential energy of a system of two point charges
C. change in potential energy of a system of two point charges

D. potential difference between two points

Answer:

D Watch Video Solution
181. In SI , unit of permittivity is
A. $F m^{-1}$
B. $N^{-1} m^{-2} C^{2}$
C. $N m^{-2} C^{-1}$

D. $A m^{-1}$

Answer:

D Watch Video Solution

182. The capacitance of the earth viewed as a spherical conductor of radius 6408 km is
A. $980 \mu F$
B. $1424 \mu F$

C. $712 \mu F$

D. $600 \mu F$

Answer:

D Watch Video Solution

183. n identical mercury droplets charged to
the same potential V coalesce to form a single
bigger drop. The potential of new drop will be
B. V / N
C. V N
D. $V N^{2 / 3}$

Answer:

D Watch Video Solution

184. A capacitor having capacity of 2 muF is
charged to 200 V and then the plates of the capacitor are connected to a resistance wire.

The heat produced in joule will be
A. 4×10^{-2}
B. 2×10^{-2}
C. 1×10^{-2}
D. 0

Answer:

D Watch Video Solution

185. A parallel plate capacitor is charged. If the
plates are pulled apart
A. the potential difference increases
B. the capacitance increases
C. the total charge increases
D. the charge and the potential difference
remain the same.

Answer:

D Watch Video Solution

186. When air is replaced by a dielectric medium of constant K , the maximum capacitance of the capacitor
A. increases K times
B. remains unchanged
C. increases k^{2} times
D. decreases K times

Answer:

D Watch Video Solution
187. An isolated capacitor of unknown
capacitance has been charged to potential V_{0}.
This capacitor is then connected to an uncharged capacitor of capacity C. If common potential is $V\left(<V_{0}\right)$, find unknown capacitance.

D Watch Video Solution

188. In a charged capacitor, the energy resides
A. on the positive charged plate
B. on both the positive and negative charged plates
C. in the field between the plates
D. around the edge of the capacitor plates

Answer:

D Watch Video Solution

189. A capacitor $10 \mu F$ was originally charged to 10 V . Now, the potential difference is
increased to 20 V . The increase is potential energy is
A. $4 \times 10^{-4} J$
B. $10 \times 10^{-4} j$
C. $15 \times 10^{-4} j$
D. $5 \times 10^{-4} j$

Answer:
(Watch Video Solution
190. Two idential capacitors are joined in
parallel, charged to a potential V and then
separated and then connected in series i.e. the positive plate of one is connected to negative of the other. Then
A. the charges on the free paltes
connected together are destroyed
B. the charges on the free plates are enhanced
C. the energy stored in the system in increases
D. the potential difference between the
free plates becomes 2 V .

Answer:

- Watch Video Solution

191. The accumulation of charge on clouds, which produces lightining is caused by
A. rain drops changing on clouds, which produces lightning, is caused by
B. the electric field or the earth
C. ionisatino by the sun
D. electrification due to motion of water molecules.

Answer: electric
192. In a guard ring capacitor, the purpose of the guard ring is
A. to increase the capacitance
B. to decrease the capacitance
C. to increase the effective area of the
capacitor
D. to avoid the variation of the electric field
intensity at the edges

Answer:

193. wo capacitors of capacitances C_{1} and C_{2} are connected in parallel across a battery. If
Q_{1} and Q_{2} respectively be the charges on the
capacitors, then $\frac{Q_{1}}{Q^{2}}$ will be equal to
A. C_{1} / C_{2}
B. V_{1} / V_{2}
C. V_{1}^{2} / V_{2}^{2}
D. C_{1}^{2} / C_{2}^{2}

Answer:

D Watch Video Solution

194. A parallel plate capacitor with air as medium between the plates has a capacitance of $10 \mu F$. The area of capacitor is divided into two equal halves and filled with two media as shown in the figure having dielectric constnt $k_{1}=2$ and $k_{2}=4$. the capacitance of the system will now be
A. $10 \mu f$
B. $20 \mu F$
C. $30 \mu F$
D. $40 \mu F$

Answer:

D Watch Video Solution
195. Van de Graaff generator is used to
A. measure high potential difference
B. produce high d.c. potential
C. produce higha.c. potential
D. comapre high d.c. potential

Answer:

- Watch Video Solution

