© 'doubtnut

CHEMISTRY

BOOKS - ACCURATE PUBLICATION

CHEMICAL KINETICS

Multiple Choice Questions

1. The rate of a chemical reaction tells us about :
A. the reactants taking part in the reaction
B. the products formed in the reaction
C. how slow or fast the reaction is taking place
D. none of the above

Answer: C

2. In the rate equation, when the concentration of reactants is unity then the rate is equal to :
A. specific rate constant
B. average rate constant
C. instantaneous rate constant
D. None of the above

Answer: A

(D) Watch Video Solution

3. For a reaction $2 A+B \rightarrow 2 C$, rate equation is given as Rate $=$ $k\left|A^{2}\right| B \mid$, which of the following statement is correct :
A. the order with respect to A is 1 and the order overall is 1 .
B. the order with respect to A is 2 and the order overall is 2 .
C. the order with respect to A is 2 and the order overall is 3 .
D. the order with respect to B is 2 and the order overall is 2

Answer: C

- Watch Video Solution

4. Suppose the reaction : $A+2 B \rightarrow A B_{2}$, occurs by the following mechanism:

Step 1: $A+B \rightarrow \mathrm{AB}$ slow
Step 2: $A B+B \rightarrow A B_{2}$ fast
Overall : $A+2 B \rightarrow A B_{2}$
The rate law expression must be, Rate =
A. $k[A]$
B. $k[B]$
C. $k[A][B]$
D. $k i[B]^{2}$

Answer: C

- Watch Video Solution

5. State whether the statement is true or false- Rusting of iron is faster in costal areas than the desert areas.

(D) Watch Video Solution

6. Why rate of reaction increases when the concentration of reactant molecules is increased ?
A. the average kinetic energy of molecules increases.
B. the frequency of molecular collisions increases.
C. the rate constant increases.
D. the activation energy increases.

- Watch Video Solution

7. Fill in the blanks- Forming of curd is a \qquad and an \qquad change.

- Watch Video Solution

8. If a reaction requires two moles of a single reactant to produce one mole of product, what is the ratio of the rate of product formation to the rate of reactant consumption?
A. 2:1
B. 1:2
C. 1:1
D. Cannot be determined

Answer: B

- Watch Video Solution

9. The value of average rate approaches the value of instantaneous rate for a reaction :
A. at the start of the reaction
B. at the end of the reaction
C. in the middle of the reaction
D. when the length of time interval approaches zero

Answer: D

Watch Video Solution
10. The rate law for the reaction $A+B \rightarrow$ Product, is given by the expression $k[A][B]$. If the concentration of B is increased from 0.1 to $0.3 \mathrm{~mol} / \mathrm{L}$, keeping the value of A at $0.1 \mathrm{~mol} / \mathrm{L}$, the rate constant will be:
A. K
B. $\mathrm{K} / 3$
C. 3K
D. 9 K

Answer: A

- Watch Video Solution

11. In the given elementary reaction $2 A+B \rightarrow A_{2} B$, if the concentration of A is doubled and that of B is halved, then the rate of the reaction will:
A. increase 2 times
B. increase 4 times
C. decrease 2 times
D. remain the same

Answer: A

- Watch Video Solution

12. Higher-order ($n>3$) reactions are rare due to:
A.
B.
C.
D.

Answer: C

13. Give one example where both chemical and physical changes occur together?

- Watch Video Solution

14. The rate-determining step is:
A. The slowest step in a mechanism
B. The fastest step in a mechanism
C. A fictional reaction added to every mechanism
D. None of the above •

Answer: A

- Watch Video Solution

15. A catalyst:
A. actually participates in the reaction
B. always increases the activation energy for reaction
C. does not affect a reaction energy path
D. always decreases the rate for are action

Answer: A

- Watch Video Solution

16. A catalyst alters, which of the following in a chemical reaction?
A. Entropy
B. Enthalpy
C. Internal energy
D. Activation energy

Answer: D

17. In the presence of a catalyst, the heat evolved or absorbed during the reaction :
A. Increases
B. Decreases
C. Remain sun changed
D. May increase or decrease

Answer: C

- View Text Solution

18. In the formation of SO_{2} by contact process: $2 \mathrm{SO}_{2}+\mathrm{O}_{2} \rightarrow 2 \mathrm{SO}_{3}$, the rate of disappearance of O_{2} is $2.5 \times 10^{-4} \mathrm{molL}^{-1} \mathrm{~s}^{-1}$. The rate of formation of SO_{3} will be:
A. $-5.0 \times 10^{-4} \mathrm{~mol}^{-1} \mathrm{~s}^{-1}$
B. $-1.25 \times 10^{-4} \mathrm{molL}^{-1} \mathrm{~s}^{-1}$
C. $3.75 \times 10^{-4} \mathrm{~mol}^{-1} \mathrm{~s}^{-1}$
D. $5.00 \times 10^{-4} \mathrm{~mol}^{-1} \mathrm{~s}^{-1}$

Answer: D

- View Text Solution

19. The formation of gas at the surface of tungsten due to adsorption is the reaction of order :
A. 0
B. 1
C. 2
D. in sufficient data

- View Text Solution

20. Which of the following graphs corresponds to first order reaction:
A. rate=3
B. rate $=k[A]$
C. rate $=k[A]^{2}$
D. rate $=k[A][B][C]$

Answer: D

- Watch Video Solution

21. Molecularity of a reaction is equal to the total number of .
A. Products formed in the elementary step
B. Reactants taking part in elementary step
C. Reactants and products in the elementary step
D. Reactants and products in the final step

Answer: B

- Watch Video Solution

22. The elementary processes with molecularity greater than are not known.
A. 1
B. 2
C. 3
D. 0

Answer: C

MA/ath Midan Cnlirtinm
23. Which of the following statement is incorrect about the molecularity of are action ?
A. It is a theoretical concept
B. Each step of a multi-step reaction has a unique molecularity
C. It is equal to the total number of reactants taking part in elementary step
D. It can be zero, fractional or integer

Answer: D

(D) Watch Video Solution

24. The effective collisions between the reactant molecules at higher
\qquad .
A. Increase
B. Decrease
C. Remains same
D. First increase then decrease

Answer: A

- Watch Video Solution

25. Molecularity of are action
A. is always equal to the overall order of reaction
B. May not be equal to the order of reaction
C. Can be equal to the overall order of reaction
D. Both (b) and (c)

Answer: D

26. Which of the following statements are applicable to a balanced chemical equation of an elementary reaction ?
A. Order is same as molecularity
B. Order is less than the molecularity
C. Order is greater than the molecularity
D. Molecularity can be zero

Answer: A

- Watch Video Solution

27. State whether the statement is true or false- Burning of wood is a chemical change.
28. State whether the statement is true or false- To prevent an iron gate from rusting, it should be painted with a paint.

(D) Watch Video Solution

29. For which type of reactions, order and molecularity have same value ?

- Watch Video Solution

30. For a reaction: $\mathrm{H}_{2}+\mathrm{Cl}_{2} \rightarrow 2 \mathrm{HCl}$. Write molecularity of this reaction
A. Two
B. Three
C. Four
D. One

- Watch Video Solution

31. What are the units of k for the rate law : Rate $=k[A][B]^{2}$, when the concentration unit is $\mathrm{mol} / \mathrm{L}$?
A. s^{-1}
B. s
C. $\mathrm{Lmol}^{-1} \mathrm{~s}^{-1}$
D. $L^{2} \mathrm{~mol}^{-2} s^{-1}$

Answer: D

Watch Video Solution
32. The rate of reaction, $A+B \rightarrow$ Products, is given by the equation, $r=k[A][B]$. If B is taken in excess, what would be the order of reaction ?
A. 2
B. 1
C. zero
D. unpredictable

Answer: B

(D) Watch Video Solution

33. 50 \% of first order reaction gets completed in 16 minutes. What fraction of the reaction would occur in 32 minutes :
A. 66%
B. 75%
C. 25%
D. 90%

Answer: B

(D) Watch Video Solution

34. For a reaction $A+B \rightarrow$ Products, the rate law is $=k[A][B]^{3 / 2}$ can the reaction be an elementary reaction :
A. Yes
B. No
C. Cannot be determined
D. Data Inadequate

Answer: B

35. State a condition under which a bimolecular reaction is kinetically first order reaction.
A. Bimolecular reaction becomes kinetically first order when one of the reactants is in excess.
B. Bimolecular reaction becomes kinetically first order when one of the reactants is in lesser amount.
C. Cannot be determined
D. When both reactants are in excess.

Answer: A

- Watch Video Solution

36. For which type of reactions, molecularity have value $=2$?
A. Elementary
B. Bimolecular
C. Trimolecular
D. Tetramolecular

Answer: B

(D) Watch Video Solution

37. For a zero order reaction will the molecularity be equal to zero ?
A. No
B. Yes
C. Data Inadequate
D. Cannot be determined
38. What are the elements of the weather?

- Watch Video Solution

39. For a reaction Rate $=k(\text { acetone })^{3 / 2}$ then unit of rate constant will be
A. $\left(m o l L^{-1}{ }^{\prime} s^{-1}\right)$
B. $\left(\mathrm{mol}^{-1 / 2} L^{1 / 2} s^{-1}\right)$
C. $\left(m o l^{1 / 2} L^{1 / 2} s^{-1}\right)$
D. $\left(m o l L s^{-1}\right)$

Answer: B

40. What is the reason behind that some areas have very dry and hot climate through out the year?

- Watch Video Solution

41. A zero order reaction is one in which the rate of reaction:
A. is dependent on concentration of only one reactant.
B. is independent of concentration of reactants.
C. is dependent on concentration of catalyst
D. none of the above.

Answer: B

- Watch Video Solution

42. Units of rate constant for zero order reaction in case of gaseous
A. s^{-1}
B. $\operatorname{atm} s^{-1}$
C. $\operatorname{atm}^{-1} s^{-1}$
D. $\mathrm{atm}^{-2} s^{-1}$

Answer: B

- Watch Video Solution

43. How will rate of reaction change when $[A]_{0}$ is doubled for a zero order reaction
A. it becomes two times
B. it is halved
C. it remain sun changed
D. it becomes four times

Answer: C

- Watch Video Solution

44. The rate of reaction is equal to rate constant of the reaction. What is the order of reaction?

- Watch Video Solution

45. Give one example of zero order reaction.

- Watch Video Solution

46. Unit of rate constant for zero order reaction is
A. $m o l L^{-1} s^{-1}$
B. S^{-1}
C. $\mathrm{Lmol}^{-1} S^{-1}$
D. $L^{2} \mathrm{~mol}^{-2} S^{-1}$

Answer: A

Watch Video Solution

47. The half life period for a zero order reaction is equal to
A. $t_{1 / 2}=0.693 k$
B. $t_{1 / 2}=[A]_{0} / 2 K$
C. $t_{1 / 2}=1 / k[A]_{0}$
D. none of the above.

Answer: B

- Watch Video Solution

48. In the rate equation, when the concentration of reactants is unity then the rate is equal to :
A. specific rạte constant
B. average rate constant
C. instantaneous Rate constant
D. none of the above

Answer: A

- Watch Video Solution

49. For a reaction, $A \rightarrow$ products to be zero order. If time taken for 50
\% completion is 2 mins, find the time required for 75% completion of reaction.
A. $2 \min$
B. 3 min
C. 15 min
D. none of the above

Answer: B

- Watch Video Solution

50. Which are the two regions of the earth with extremely hot and extremely cold climatic conditions?

- Watch Video Solution

51. Which property is used for determination of molar mass of colloids, polymers and proteins
A. when there are two reactants
B. when there is only one reactant
C. when there are more than two reactants
D. all of these

Answer: B

Watch Video Solution

52. State whether the statement is true or false- The climate of any particular area changes frequently but weather does not.

- Watch Video Solution

53. State whether the statement is true or false- Tropical rainforests there is a large number of population of animals.

- Watch Video Solution

54. If a is the initial concentration of the reactant what is the time required for 100% completion of a zero order reaction
A. a / k
B. $a . k$
C. $a / 2 k$
D. none of these.

Answer: A

- Watch Video Solution

55. A photochemical reaction which is example of zero order is
A. decomposition of $\mathrm{N}_{2} \mathrm{O}_{5}$
B. formation of HCl
C. inversion of sucrose
D. hydrogenation of ethane

Answer: B

- Watch Video Solution

56. Explain the following statement- Animals adapt themselves according to the climatic conditions they are living in.

(D) Watch Video Solution

57. The plot of $[R]$ (concentration) versus t (time) for a zero order reaction is
A. straight line
B. hyperbola
C. parabola
D. none of these

- Watch Video Solution

58. The reaction $A+B \rightarrow C$ has zero order. What is its rate equation
A. rate $=k[A]^{0}[B]^{0}$
B. rate $=k[A]^{1 / 2}[B]^{0}$
C. rate $=k[A]^{2}[B]^{0}$
D. none of the above

Answer: A

- Watch Video Solution

59. Rate law for the reaction $A+2 B \rightarrow C$ is found to be rate $=k[A][B]$ concentration of reactant B is doubled, keeping the
concentration of A constant the value of rate will be
A. same
B. doubled
C. quadrupled
D. halved

Answer: A

- Watch Video Solution

60. How elephant is adapted to live in tropical rainforests?

- Watch Video Solution

61. A first order reaction has specific reaction rate $10^{-2} s^{-1}$. How much time it will take for 20 g of reactant to reduce to 5 g ?
A. $138.6 s$
B. 346.5 s
C. 693.0 s
D. $238.6 s$

Answer: A

- Watch Video Solution

62. If conc, of reactant ' A ' is increased 10 times and rate of reaction becomes 100 times, What is order with respect to ' A '?
A. 1
B. 2
C. 3
D. 4

Answer: B

- Watch Video Solution

63. Fill in the blanks- Wind is \qquad

Watch Video Solution

64. A first order reaction has a half life period of 34.65 seconds. Its rate constant is
A. $2 \times 10^{-2} s^{-1}$
B. $4 \times 10^{-4} s^{-1}$
C. $20 s^{-1}$
D. $2 \times 10^{-4} s^{-1}$
65. The value of k for a reaction is $2.96 \times 10^{-30} s^{-1}$. What is the order of reaction ?
A. zero
B. 3
C. 2
D. 1

Answer: D

- Watch Video Solution

66. Half life period of a first order reaction depends upon :
A. 1.Concentration of reactants
B. 2. Concentration of products
C. 3. Rate constant of reaction
D. 4.None of these

Answer: C

Watch Video Solution

67. Half life period of a first order reaction is :
A. directly proportional to the initial concentration of reactant
B. half of the rate constant
C. same for all reactions
D. independent of the initial concentration of the reactants

Answer: D

(D) Watch Video Solution

68. A reaction is 50% completes in 2 hours and 75% completes in 4 hours. The order of reaction is
A. 0
B. 1
C. 2
D. 3

Answer: B

- Watch Video Solution

69. What is the difference between air and wind?
70. Near the earth surface, \qquad air rises up and \qquad air comes down.

(Watch Video Solution

71. In a first order reaction, 80% of the reactant at an instant was reduced to 8% in 4606 seconds. The rate constant of the reaction is
A. $2.303 \times 10^{-4} \mathrm{sec}^{-1}$
B. $4.606 \times 10^{-14} \mathrm{sec}^{-1}$
C. $5.000 \times 10^{-3} \mathrm{sec}^{-1}$
D. $5.000 \times 10^{-4} \mathrm{sec}^{-1}$

Answer: D

- Watch Video Solution

72. Would you like to buy a house having windows but no ventilators?

Watch Video Solution

73. What is the composition of soil?

- Watch Video Solution

74. which type of soil has the highest capacity to hold maximum water?

- Watch Video Solution

75. Explain the term- Weathering?

- Watch Video Solution

76. Which soil is useful for wheat and paddy crops?

Watch Video Solution

77. If the rate constant for a first order reaction is k, the time (t) required for completion of 99% of the reaction is given by
A. $t=2.303 / k$
B. $t=180.693 / k$
C. $t=6.909 / k$
D. $t=4.606 / k$

Answer: D

- Watch Video Solution

78. Which type of crops can be grown on sandy soil?
79. If the half life period of a first order reaction is 100 seconds, then rate constant will be
A. $6.93 \times 10^{-3} s$
B. $6.93 \times 10^{-2} s$
C. $0.693 s$
D. 6.93 s

Answer: A

- Watch Video Solution

80. Fill in the blanks- The process in which the upper fertile layer of soil is removed by strong wind and flowing water is called \qquad .
81. The activation energy for the reaction if $k=A$ is
A. 0
B. ?
C. 1
D. none of these

Answer: A

(D) Watch Video Solution

82. The activation for the reverse reaction $X Y$, if $Y X$ is an exothermic reaction and E_{a} for Y is 39.5 kJ per mole and the heat of the reaction is 71.7 kJ
A. 111.2
B. 32.2
C. 91.2
D. 47.2

Answer: A

Watch Video Solution

83. The activation energy for the forward reaction in case of exothermic reaction :
A. less than backward reaction
B. more than backward reaction
C. same for both
D. uncountable

Answer: A

84. State whether the statement is true or false- We eat leaves of paddy crop.

- Watch Video Solution

85. By determining the rate constants at two temperatures, we will be able to
A. determine the rate constant at standard temperature
B. determine Activation energy of a chemical reaction
C. determine probability of collision.
D. all of above.

Answer: B

- Watch Video Solution

86. By plotting the graph between $\log k v s \frac{1}{T}$ for first order reaction gives straight line having slope - 4670 K. The activation energy for this reaction is :
A. 89.417 Jmol
B. 89417. $1 \mathrm{Jmol}^{-1}$
C. $89.417 \mathrm{KJmol}^{-1}$
D. $89417.1 \mathrm{KJmol}^{-1}$

Answer: C

- Watch Video Solution

87. Fill in the blanks- We eat \qquad and \qquad of the mustard plant.

- Watch Video Solution

88. Rate of a reaction can be expressed by Arrhenius equation as $k=A e^{-\frac{E_{a}}{R T}}$. In this equation,$E_{a}$ represents:
A. the energy below which colliding molecules will not react.
B. the total energy of the reacting molecules at a temperature
C. the fraction of molecules with energy greater than the activation energy.
D. the energy above which all the colliding molecules will react.

Answer: A

(D) Watch Video Solution

89. In respect of the equation $K=A e^{-E a / R T}$ in chemical kinetics, which one of the following statements is correct?
A. k is equilibrium constant
B. A is adsorption factor.
C. E_{a} is energy of activation
D. R is Rydberg's constant

Answer: C

- Watch Video Solution

90. The rate of chemical reaction becomes double for every 10° rise in temperature because of
A. increase in activation energy
B. decrease in activation energy
C. increase in number of molecular collisions
D. increase in number of activated molecules

Answer: D

MA/atah Midan Colirtinn
91. The increase in concentration of the reactant leads to change in :
A. $d H$
B. collision frequency
C. activation energy
D. none of these.

Answer: B

- Watch Video Solution

92. In Arthenius equation graph of $\log k v s(1 / T)$ has slope equals to
A. $-E_{a} / 2.303 R$
B. E_{a} / R
C. $E_{a} / 2.303 R$
D. $-E_{a} / R$

Answer: A

- Watch Video Solution

93. The activation energy of a reaction is $56.2 \mathrm{~kJ} / \mathrm{mol}$. The ratio of the rate constant at 300 K and 305 K is $\left(R=8 \mathrm{Jmole}^{-1} \mathrm{~K}^{-1}\right)$ about :
A. 1.25
B. 1.5
C. 1.10
D. 1.60

Answer: B

94. The chemical reactions in which the reactants require high amount of activation energy are generally
A. fast
B. slow
C. instantaneous
D. none of these.

Answer: B

- Watch Video Solution

95. Effective collisions are when
A. molecules have attained the threshold energy
B. the molecules are in proper orientation
C. products are formed
D. all the above.

Answer: D

- Watch Video Solution

96. What type of reactions are represented by following equation: 2Ca
$+\mathrm{O} 2 \rightarrow 2 \mathrm{CaO}$

- Watch Video Solution

97. What type of reactions are represented by following equation: 2 Na $+\mathrm{O} 2 \rightarrow \mathrm{Na} 2 \mathrm{O}$

Watch Video Solution

98. Although combustion of fuels is exothermic reaction, yet these can be stored in contact of air and oxygen. This is mainly due to :
A. fuels have high activation energy
B. fuels have poor energy absorbing power
C. fuels have low activation energy
D. combustion of fuels have no relation with activation energy.

Answer: A

- Watch Video Solution

99. Which of the following reactants in presence of
AlCl_{3} gives acetophenone ?
A. both 1 and 4
B. both 2 and 3
C. 1, 2 and 3
D. 1,2,3 and 4

- Watch Video Solution

100. What type of reactions are represented by following equation :
$\mathrm{AgNO}+\mathrm{NaCl} \rightarrow \mathrm{AgCl}+\mathrm{NaNO} 3$

- Watch Video Solution

101. A first order reaction has a half life period of 34.65 seconds. Its rate constant is
A. $2 \times 10^{-2} s^{-1}$
B. $4 \times 10^{-2} s^{-1}$
C. $20 s^{-1}$
D. $2 \times 10^{-4} s^{-1}$

- Watch Video Solution

102. If a graph is plotted between $\log k$ and $1 / T$ the slope of the straight
line so obtained is given by
A. $-E a / R$
B. $-E a / 2.303 R$
C. $-20303 / E a . R$
D. $-E a / 2.303$

Answer: A

A. $m o l L^{-1} s^{-1}$
B. s^{-1}
C. $L \mathrm{~mol}^{-1} \mathrm{~s}^{-1}$
D. $L^{2} \mathrm{~mol}^{-2} s^{-1}$

Answer: A

- Watch Video Solution

104. The half-life period for a first order reaction is 69.3 s . Its rate constant is:
A. $10^{-2} s^{-1}$
B. $10^{-4} s^{-1}$
C. $10 s^{-1}$
D. $10^{2} s^{-1}$

- Watch Video Solution

105. What type of reactions are represented by following equation : $\mathrm{BaCl} 2+\mathrm{Na} 2 \mathrm{SO} 4 \rightarrow \mathrm{BaSO} 4+2 \mathrm{NaCl}$

(D) Watch Video Solution

106. What type of reactions are represented by following equation :
$2 \mathrm{SO} 2+\mathrm{O} 2 \rightarrow 2 \mathrm{SO} 3$

(D) Watch Video Solution

107. For the first order reaction, the half life period is (if k is rate constant and a is initial concentration),

$$
\text { A. } \ln 2 / k
$$

B. $1 / k a$
C. $\ln k / 2$
D. $\log k / 2$

Answer: A

- Watch Video Solution

108. If k_{1} and k_{2} are rate constants at temperatures T_{1} and T_{2} respectively, then according to Arrhenius equation,
A. $\log k_{2} / k_{1}=2.303 / \operatorname{EaR}\left[1 / T_{1}-1 / T_{2}\right]$
B. $\log k_{2} / k_{1}=E a / 2.303 R\left[1 / T_{1}-1 / T_{2}\right]$
C. $\log k_{1} / k_{2}=E a / 2.303 R\left[1 / T_{1}-1 / T_{2}\right]$
D. $\log k_{1} / k_{2}=E a / 2.303\left[1 / T_{1}-1 / T_{2}\right]$

Answer: B

109. The rate constant of a reaction is $1.2 \times 10^{-5} \mathrm{~mol}^{-2} \mathrm{litre}^{2} \mathrm{~s}^{-1}$. The order of the reaction is:
A. Zero
B. 1
C. 2
D. 3

Answer: D

- Watch Video Solution

110. For Zero order reaction. The integrated rate equation is:
A. $k t=[A] /[A]_{0}$
B. $k t=[A]-[A]_{0}$
C. $[A]=-k t+[A]$
D. $[A]=k t-[A]_{0}$

Answer: C

D Watch Video Solution

111. Fill in the blanks-Example of flowers with joint sepals are \qquad and

- Watch Video Solution

112. Which of the following is correct for a zero order reaction
A. $t_{3 / 4}=2 t_{1 / 2}$
B. $t_{3 / 4}=1.5 t_{1 / 2}$
C. $t_{3 / 4}=1 / 2 t_{1 / 2}$
D. $t_{3 / 4}=1 / 3 t_{1 / 2}$

Answer: B

- Watch Video Solution

113. The half life period for a zero order reaction is equal to
A. $2 k /[A]_{0}$
B. $[A]_{0} / 2 k$
C. $0.693 / k$
D. $0.693 / k[A]_{0}$

Answer: B

114. For a second order reaction rate at a particular time x . if the initial concentration is tripled, the rate will become.
A. $3 x$
B. $9 x^{2}$
C. $9 x$
D. $27 x$

Answer: C

- Watch Video Solution

115. For the reaction $2 \mathrm{~N}_{2} \mathrm{O}_{5} \rightarrow 4 \mathrm{NO}_{2}+\mathrm{O}_{2}$ rate and rate constant are 1.22×10^{-4} and $3.4 \times 10^{-5} s^{-1}$ respectively then the concentration of $N_{2} O_{5}$ at that time will be

$$
\text { A. } 1.732
$$

B. 3.6
C. 1.02×10^{-4}
D. 3.4×10^{5}

Answer: B

(D) Watch Video Solution

116. For a reaction having rate law expression Rate $=k[A]^{3 / 2}[B]^{-1 / 2}$. If the concentration of both A and B becomes four times, the rate of reaction:
A. becomes four times
B. becomes 16 times
C. decreases four times
D. remains same
117. A reaction is 50% completes in 2 hours and 75% completes in 4 hours. The order of reaction is
A. 0
B. 1
C. 2
D. 3

Answer: B

(D) Watch Video Solution

118. The half life period of a first order reaction is 6.93 minutes. The time required for the completion of 99% of the chemical reaction will be $(\log 2=0.301)$
A. 230.3 minutes
B. 23.03 minutes
C. 46.06 minutes
D. 460.6 minutes

Answer: C

(D) Watch Video Solution

119. The rate of chemical reaction double for every $10^{\circ} \mathrm{C}$ rise of temperature if the temperature is raised by $50^{\circ} \mathrm{C}$, the rate of the reaction increases by
A. 10 times
B. 24 times
C. 32 times
D. 64 times

- Watch Video Solution

120. What is the activation energy for a reaction if its rate double when the temperature raised from $20^{\circ} \mathrm{C}$ to $35^{\circ} \mathrm{C} ?(R=8.314 \mathrm{~J} / \mathrm{mol} / \mathrm{K})$
A. $34.7 \mathrm{~kJ} / \mathrm{mol}$
B. $15.1 \mathrm{~kJ} / \mathrm{mol}$
C. $342 \mathrm{~kJ} / \mathrm{mol}$
D. $269 \mathrm{~kJ} / \mathrm{mol}$

Answer: A

121. What is the time required for a first order reaction to be 99% complete, compared to the time taken for the reaction to be 90% complete?
A. there is no change
B. time taken is double
C. time taken is triple
D. the reaction is instantaneous

Answer: B

- Watch Video Solution

122. For a reaction $2 \mathrm{NO}(g)+\mathrm{O}_{2}(g) \rightarrow 2 \mathrm{NO}_{2}(g)$

Rate $=\mathrm{k}[\mathrm{NO}]^{2}\left[\mathrm{O}_{2}\right]$, if the volume of the reaction vessel is double. What is the rate of reaction.
A. will diminish to $1 / 4$ of initial value
B. will diminish to $1 / 8$ of initial value
C. will grow 4 times
D. will grow 8 times

Answer: B

- Watch Video Solution

123. In the reversible reaction $2 \mathrm{NO}_{2} \leftrightarrow \mathrm{~N}_{2} \mathrm{O}_{4}$, the rate of disappearance of NO_{2} is equal to
A. $2 k_{1} / k_{2}\left[\mathrm{NO}_{2}\right]$
B. $2 k_{1}\left[\mathrm{NO}_{2}\right]-2 k_{2}\left[\mathrm{~N}_{2} \mathrm{O}_{4}\right]$
C. $2 k_{1}\left[N O_{2}\right]^{2}-2 k_{2}\left[N_{2} O_{4}\right]$
D. $\left(2 k_{1}-k_{2}\right)\left[N O_{2}\right]$

Answer: C

- Watch Video Solution

1 Mark Questions

1. What are the units of rate constant for a third order reaction ?

- Watch Video Solution

2. Unit of rate constant for zero order reaction is

- Watch Video Solution

3. Give one example of zero order reaction.

- Watch Video Solution

4. What is Pseudo first order reaction and gives its example.

(D) Watch Video Solution

5. Which factor Rate of reaction depends upon ?

(D) Watch Video Solution

6. What is the effect of temperature on rate of a reaction.

- Watch Video Solution

7. Draw the diagram for reactant change its concentration with time?

- Watch Video Solution

8. What is order of reaction ? Explain.
9. Example for first order reaction.

D Watch Video Solution

10. Molecularity of are action

- Watch Video Solution

11. What is molecularity of reaction
$C I \rightarrow \frac{1}{2} C l_{2}$

D Watch Video Solution

12. What is the value of integrated Rate reaction in zero order reaction
13. Derive the integrated rate law equation for $1^{s t}$ order reaction and write its one use.

(D) Watch Video Solution

14. Define half life period of a reaction.

- Watch Video Solution

15. What is activation energy ?

- Watch Video Solution

16. Define catalyst.
17. Why ΔG is positive for photochemical reaction?

- Watch Video Solution

18. A catalyst :

- Watch Video Solution

19. What are Enzymes ? Give important characteristics of enzyme catalysis.

- Watch Video Solution

20. Name the enzyme which converts starch into maltose.
21. Name the enzyme which converts starch into maltose.

D Watch Video Solution

22. Name the enzyme which converts glucose into alcohol.

- Watch Video Solution

23. Name the enzyme which converts sucrose into glucose and fructose.

- Watch Video Solution

24. what is enzyme catalysis?

- Watch Video Solution

1. What is the difference between instantaneous rate of a reaction and rate constant?

- Watch Video Solution

2. Write the difference between molecularity and order of reaction?

- Watch Video Solution

3. Define zero order reaction. Derive integrated rate equation for rate constant of a zero order reaction.

- Watch Video Solution

4. What is the value of integrated Rate reaction in zero order reaction ?
5. The half life period for a zero order reaction is equal to

- Watch Video Solution

6. Find the half life time period for first order reaction.

- Watch Video Solution

7. Discuss key concept of evolution theory of Darwin.

- Watch Video Solution

8. What are two main points of collision theory?
9. what is Arrhenius equation .

- Watch Video Solution

Numerical Of Half Life Time Period

1. A first order reaction is 20% complete in the 10 minutes. Calculate the time period for 75% completion of the reaction.

- Watch Video Solution

2. A first order reaction takes 23.1 minutes for 50% conmpletion.

Calculate the time required for 75% completion of this reaction
$(\log 2=0.301),(\log 3=0.4771)(\log 4=0.6021)$

(D) Watch Video Solution

3. The rate constant for a first order reaction in $60 S^{-1}$. How much time will it take to reduce the concentration of the reactant to $\frac{1}{20^{t h}}$ of its initial value?

- Watch Video Solution

4. The half-life for radioactive decay of.${ }^{14} C$ is 5730 years. An archaeological artifact contented wood that has only 80% of the.${ }^{14} C$ found in living tree. Estimate the age of the sample.

- Watch Video Solution

5. Calculate two third life of a first order reaction having $k=5.48 \times 10^{-14} s^{-1}$.

- Watch Video Solution

6. A first order reaction is 15% complete in 20 minutes. How long will it take to complete 60% ?

- Watch Video Solution

Arrhenius Equations

1. In general it is observed that the rate of a chemical reaction becomes double for every 10° rise in temperature. If this generalisation holds for a reaction in the temperature range 2908 K to 398 K , what would be the value of activation energy for the reaction.
($\mathrm{R}=8.314 \mathrm{~J} \mathrm{~K} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$)

- Watch Video Solution

2. The rate constant of a reaction at 700 K and 760 K are $0.011 M^{-1} s^{-1}$ and $0.105 M^{-1} s^{-1}$ respectively. Calculate the value of

Arrhenius parameter.

- Watch Video Solution

3. What type of reactions are represented by following equation :
$2 \mathrm{KClO3} \rightarrow 2 \mathrm{KCl}+3 \mathrm{O} 2$

- Watch Video Solution

4. Bicyclohexane was found to undergo two parallel first order rearrangements. At 730 K , the first order rate constant for the formation of cyclohexene was measured as $1.26 \times 10-4 \mathrm{sec}-1$, and for the formation of methyl cyclopentane the rate constant was $3.8 \times 10-5 \sec -1$. What is the percentage distribution of therearrangement products?

(D) Watch Video Solution

5. A first order reaction has a rate constant vlaue $10^{-3} s^{-1}$. How much time will it take for 10 g of the reactant of reduce to 2.5 g .

- Watch Video Solution

6. For the following data for the zero order reaction $A \rightarrow$ products.

Calculate the value of k .

Time (min)	$[A]$
0.0	$0.10 M$
1.0	$0.09 M$
2.0	$0.08 M$

- Watch Video Solution

7. The reaction $2 A+B+C \rightarrow D+2 E$ is of first order with respect to A and of second order with respect to B and is of zero order with respect to C

Write down the rate law for the reaction
8. A substance reacts according to the law of first order reaction the velocity constant of the reaction is 1.0×10^{-2} per sec. If initial conc. of the substance is 0.1 M

Find out the initial rate

D Watch Video Solution

9. A first order reaction is 20% complete in 10 minutes. Calculate

Specific rate constant of the reaction

- Watch Video Solution

10. The reaction $2 \mathrm{NO}_{2} \mathrm{O}_{5} \rightarrow 4 \mathrm{NO}_{2}+\mathrm{O}_{2}$ forms NO_{2} at the rate of $0.0072 \mathrm{~mol} L^{-1} s^{-1}$ after a certain time.

What is the rate of change of $\left[O_{2}\right]$ at this time?
11. A first order reaction is 20% complete in the 10 minutes. Calculate the time period for 75% completion of the reaction.

(D) Watch Video Solution

Topic Chemical Kinetic

1. A first order reaction is 20% complete in the 10 minutes. Calculate the time period for 75% completion of the reaction.

D Watch Video Solution

2. A first order reaction is 15% complete in 20 minutes. How long will it take to complete 60\%?
3. A first order reaction is 40%. Complete in 50 minute. How long will it take to 80% complete.

- Watch Video Solution

4. The rate constant for the first order reactior becomes three times when the temperatur is raised from $20^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$. Calculate the energy of activation for the reaction.

- Watch Video Solution

5. The rate constant for First order reaction become double when temperature is raised from 300 k to 400 k Find Activation Energy.

- Watch Video Solution

6. The rate constant for a first order reaction becomes six times when the temperature is raised from 350 K to 400 K . Calculate activation energy for the reaction.

- Watch Video Solution

7. For the reaction : $\mathrm{N}_{2}+3 \mathrm{H}_{2} \rightarrow 2 \mathrm{NH}_{3}$ The rate of reaction measured as $\frac{\Delta\left[N H_{3}\right]}{\Delta t}$ we found to be $2 \times 10^{-4} \mathrm{molL}^{-1} \mathrm{sec}^{-1}$. Calculate the rate of reaction expressed in terms of N_{2}.

- Watch Video Solution

8. The decomposition of hydrogen peroxide in the presence of iodide ion has been found to be first order with respect to $\mathrm{H}_{2} \mathrm{O}_{2}$ with rate constant k is $1.01 \times 10^{-2} \mathrm{~min}$. Calculate the rate of reaction when

$$
\left[\mathrm{H}_{2} \mathrm{O}_{2}\right]=0.15 \mathrm{~mol}^{-1}
$$

9. For the reaction :
$2 \mathrm{~N}_{2} \mathrm{O}_{5} \rightarrow 4 \mathrm{NO}_{2}+\mathrm{O}_{2}$
the rate of reaction measured as $\frac{\Delta\left[N O_{2}\right]}{\Delta t}$ was found to be $4 \times 10^{-3} \mathrm{~mol} \mathrm{~L}^{-1}$ is s^{-1}. Calculate the rate of reaction, expressed in terms of $\mathrm{N}_{2} \mathrm{O}_{5}$

- Watch Video Solution

10. The decomposition of $N_{2} O_{5}$ in carbon tetrachloride solution has been found to be first order with respect to $\mathrm{N}_{2} \mathrm{O}_{5}$ with rate constant, $k-6.2 \times 10^{-4} s 6-1$
$\mathrm{N}_{2} \mathrm{O}_{5}(G) \rightarrow 2 \mathrm{NO}_{2}(\mathrm{~g})+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g})$
Calculate the rate of reaction when
$\left[\mathrm{N}_{2} \mathrm{O}_{5}\right]=2.50 \mathrm{molL}^{-1}$

- Watch Video Solution

11. For Reaction : $3 \mathrm{H}_{2}+\mathrm{N}_{2}+2 \mathrm{NH}_{3}$. Find rate of H_{2} If rate of reaction is $\frac{\Delta\left[N H_{3}\right]}{\Delta t}=2 \times 10^{\wedge}-4 \mathrm{~mol} \mathrm{L-1} \mathrm{S-1}$

- Watch Video Solution

12. Give the unit of third order rate constant.

(D) Watch Video Solution

13. Unit of rate constant for zero order reaction is

- Watch Video Solution

14. The rate of constant of reaction at $300 K / 320 K$ are $5 \times 10^{-4} s^{-1}$ and $2.0 \times 10^{-3} s^{-1}$ respectively. Calculate the value of activation energy of reaction.
15. Write the general reaction rate constant for nth order. $\left(m o l L^{-1}\right)^{1-n} \sec ^{-1}$.

- Watch Video Solution

16. The rate constants of a reaction at 500 K and 700 K are $0.02 s^{-1}$ and $0.07 s^{-1}$ respectively. Calculate the values of E_{a} and A.

- Watch Video Solution

17. The units of rate constant for first order equation.

- Watch Video Solution

18. The rate constants of a reaction at 300 and 320 K are $0.0231 s^{-1}$ and $0.0693 s^{-1}$ respectively. Calculate the value of activation energy of
the reaction. $\left.[\mathrm{R}=8.314] \mathrm{K}^{-1} \mathrm{~mol}^{-1}, \log 3=0.4771\right]$

- Watch Video Solution

19. For a chemical reaction $X \rightarrow Y$, the rate. increases by a factor 2.25
when the concentration of X is increased by 1.5 . What is the order of reaction?

- Watch Video Solution

20. The rate of a reaction $2 A+B \rightarrow A_{2} B$.
has rate law : rate $=\mathrm{k}[A]^{2}$ with the rate constant equal to 0.50 $\mathrm{mol}^{-1} \mathrm{~L} \mathrm{sec}^{-1}$. Calculate the rate of reaction when
(i) $[\mathrm{A}]=0.60 \mathrm{~mol} L^{-1},[\mathrm{~B}]=-0.05 \mathrm{~mol} L^{-1}$ and
(ii) When concentration of A and B have been reduced to $1 / 4$ th

(D) Watch Video Solution

21. For a chemical reaction $A \rightarrow B$, the rate of reaction doubles when the concentration of A is doubled. What is the order of reaction ?

- Watch Video Solution

22. The decomposition of $\mathrm{N}_{2} \mathrm{O}_{5}$ in carbon tetrachloride solution has been found to be first order with respect to $\mathrm{N}_{2} \mathrm{O}_{5}$ with rate constant, $k-6.2 \times 10^{-4} s 6-1$
$\mathrm{N}_{2} \mathrm{O}_{5}(G) \rightarrow 2 \mathrm{NO}_{2}(g)+\frac{1}{2} \mathrm{O}_{2}(g)$
Calculate the rate of reaction when

$$
\left[\mathrm{N}_{2} \mathrm{O}_{5}\right]=2.50 \mathrm{~mol}^{-1}
$$

- Watch Video Solution

23. For a chemical reaction $R \rightarrow P$, the rate of reaction does not change when the concentration of R is changed. What is the order of reaction ?
24. The decomposition of hydrogen peroxide in the presence of iodide ion has been found to be first order in $\mathrm{H}_{2} \mathrm{O}_{2}$:
$2 \mathrm{H}_{2} \mathrm{O}_{2}(\mathrm{aq}) \xrightarrow{1^{-}(a q)} 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})+\mathrm{O}_{2}(\mathrm{~g})$.
The rate constant has been found to be $1.01 \times 10^{-2} \mathrm{~min}^{-1}$:
(a) Calculate the rate of reaction when $\left[H_{2} O_{2}\right]=0.4 \mathrm{~mol} \mathrm{lit}^{-1}$.
(b) What concentration of $\left[\mathrm{H}_{2} \mathrm{O}_{2}\right]$ would give a rate of $1.12 \times 10^{-2} \mathrm{~mol} \mathrm{lit}^{-1} \mathrm{~min}^{-1}$?

- Watch Video Solution

25. A first order reaction taken 16 minutes for 50% completion. How much time will it take for 75% completion ?

- Watch Video Solution

26. A first order reaction taken 32 minutes for 50% completion. Hew much time will it take for 90% completion ?

- Watch Video Solution

27. A first order reaction taken 45.4 minutes for 50% completion. How much time will it take for 60% completion ?

- Watch Video Solution

28. Rate constant for a first order reaction is $60 s^{-1}$. How much time will it take to reduce the concentration of the reaction on $\frac{1}{10}$ th of its initial value.

- Watch Video Solution

29. Reaction beween NO_{2} and F_{2} to give $\mathrm{NO}_{2} \mathrm{~F}$ takes place by the following machanism:
$\mathrm{NO}_{2}(\mathrm{~g})+\mathrm{F}_{2}(\mathrm{~g}) \xrightarrow{\text { slow }} \mathrm{NO}_{2} F(\mathrm{~g})+\mathrm{F}(\mathrm{g}), \mathrm{NO}_{2}(\mathrm{~g})+\mathrm{F}_{2}(\mathrm{~g}) \xrightarrow{\text { Fast }} \mathrm{NO}_{2} F(\mathrm{~g})$
Wiite the rate expression and order of the rection.

- Watch Video Solution

30. Calculate two third life of first order reaction having $K=5.48 \times 10^{-14} s^{-1}$.

- Watch Video Solution

31. Reaction between NO_{2} and CO to give CO_{2} takes place by the following mechanism :
$\mathrm{NO}_{2}+\mathrm{NO} \xrightarrow{\text { Slow }} \mathrm{NO}+\mathrm{NO}_{3}$
$\mathrm{NO}_{3}+\mathrm{CO} \xrightarrow{\text { Fast }} \mathrm{NO}_{2}+\mathrm{CO}_{2}$
Write the rate expression and order of the reaction.
32. The half life period for a reaction of first order is $2.31 \times 10^{3} \mathrm{~min}$. How long will it take for $\frac{1}{5^{t h}}$ of the reactants to be left behind.

(D) Watch Video Solution

33. Thermal decomposition of dinitrogen pentoxide takes place by the following mechanism :
$\mathrm{N}_{2} \mathrm{O}_{5} \xrightarrow{\text { Slow }} \mathrm{NO}_{2}+\mathrm{NO}_{3}$
$\mathrm{N}_{2} \mathrm{O}_{5}=\mathrm{NO}_{3} \xrightarrow{\text { Fast }} 3 \mathrm{NO}_{2}+\mathrm{O}_{2}$
Write the rate'expression and order of the reaction.

Watch Video Solution

34. A reaction is of first order in reactant A and of second order in reactant B. How is rate of reaction affected when
(a) Concentration of B alone is increased to three times.
(b) The concentration of A as well as B is doubled.

- Watch Video Solution

35. State the order with respect to each reactant and overall order for following reaction. Also give units of rate constant

$$
\begin{aligned}
& \underset{(g)}{\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{Cl}} \rightarrow \underset{(g)}{\mathrm{C}_{2} \mathrm{H}_{4}}+\underset{(\mathrm{g})}{\mathrm{HCI}} \\
& \text { Rate }=K\left[\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{Cl}\right]
\end{aligned}
$$

- Watch Video Solution

36. For a chemical reaction temperature ranges from 650 K to 750 K with rate constant 2.15 to 2.39. Find Activation Energy.

D Watch Video Solution

37. From the rate expression for the following reactions, determine their order of reaction and the dimensions of the rate constants: $\mathrm{CH}_{3} \mathrm{CHO}(\mathrm{g}) \rightarrow \mathrm{CH}_{4}(\mathrm{~g})+\mathrm{CO}(\mathrm{g})$ Rate $=k\left[\mathrm{CH}_{3} \mathrm{CHO}\right]^{\frac{3}{2}}$

- Watch Video Solution

38. In general it is observed that the rate of a chemical reaction becomes double for every 10° rise in temperature. If this generalisation holds for a reaction in the temperature range 2908 K to 398 K , what would be the value of activation energy for the reaction. ($\mathrm{R}=8.314 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$)

- Watch Video Solution

39. State the order with respect to each reactant and overall order for the following reaction :

$$
\mathrm{H}_{2} \mathrm{O}_{2}+3 \mathrm{I}^{-}+2 \mathrm{H}^{+} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}+\mathrm{I}_{3}^{-}(a q)
$$

Rate $=K\left[H_{2} O_{2}\right]\left[I^{-}\right]$
What are the units of rate constant?

- Watch Video Solution

40. The rate constant for first order reaction becomes six times when the temperature is raised from 50 K to 400 K . Calculate the activation energy for the reaction. ($\mathrm{R}=8.314 \mathrm{~J} / \mathrm{K} / \mathrm{mol}$)

- Watch Video Solution

41. 60% of a first order reaction was completed in 60 minutes. When was it half completed?

- Watch Video Solution

42. A first order reaction takes 69.3 minutes for 50% completion.

Calculate the time required for 80% completion of the reaction.

(D) Watch Video Solution

43. The half life period for a reaction of first order is $2.31 \times 10^{3} \mathrm{~min}$. How long will it take for $\frac{1}{5^{\text {th }}}$ of the reactants to be left behind.

- Watch Video Solution

44. $1^{\text {st }}$ order reaction Find the rate constant for the reaction having initial and final concentration are 11.9 and 4.15 at 20 minutes.

- Watch Video Solution

45. The decomposition of hydrogen peroxide in the presence of iodide ion has been found to be first order in $\mathrm{H}_{2} \mathrm{O}_{2}$:
$2 \mathrm{H}_{2} \mathrm{O}_{2}(\mathrm{aq}) \xrightarrow{1^{-}(a q)} 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})+\mathrm{O}_{2}(\mathrm{~g})$.
The rate constant has been found to be $1.01 \times 10^{-2} \mathrm{~min}^{-1}$:
(a) Calculate the rate of reaction when $\left[\mathrm{H}_{2} \mathrm{O}_{2}\right]=0.4 \mathrm{~mol} \mathrm{lit}^{-1}$.
(b) What concentration of $\left[\mathrm{H}_{2} \mathrm{O}_{2}\right]$ would give a rate of $1.12 \times 10^{-2} \mathrm{~mol} \mathrm{lit}^{-1} \mathrm{~min}^{-1}$?

- Watch Video Solution

46. The decomposition of $\mathrm{N}_{2} \mathrm{O}_{5}$ in carbon tetrachloride solution has been found to be first order with respect to $\mathrm{N}_{2} \mathrm{O}_{5}$ with rate constant,
$k=6.2 \times 10^{-4} s^{-1}$
$\mathrm{N}_{2} \mathrm{O}_{5}(G) \rightarrow 2 \mathrm{NO}_{2}(g)+\frac{1}{2} \mathrm{O}_{2}(g)$
What concentration of $\mathrm{N}_{2} \mathrm{O}_{5}$ would give a rate of $4.2 \times 10^{-3} \mathrm{molL}^{-1} \mathrm{~s}^{-1} ?$

- Watch Video Solution

47. The rate of a reaction $2 A+B \rightarrow A_{2} B$.
has rate law : rate $=\mathrm{k}[A]^{2}$ with the rate constant equal to 0.50 $\mathrm{mol}^{-1} \mathrm{~L} \mathrm{sec}^{-1}$. Calculate the rate of reaction when
(i) $[\mathrm{A}]=0.60 \mathrm{~mol} L^{-1},[\mathrm{~B}]=-0.05 \mathrm{~mol} L^{-1}$ and
(ii) When concentration of A and B have been reduced to $1 / 4$ th

- Watch Video Solution

48. A first order of reaction is found to have a rate constant, $\mathrm{k}=$ $5.5 \times 10^{-14} \mathrm{~s}$-1. Find half life of reaction.

- Watch Video Solution

49. The half-life period of a chemical reaction is 1443.6 sec , find out k for this reaction.

- Watch Video Solution

50. State the order with respect to each reactant and overall order for
the following reaction :
$\mathrm{H}_{2} \mathrm{O}_{2}+3 \mathrm{I}^{-}+2 \mathrm{H}^{+} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}+\mathrm{I}_{3}^{-}(a q)$

Rate $=K\left[H_{2} O_{2}\right]\left[I^{-}\right]$
What are the units of rate constant?

- Watch Video Solution

51. $2 \mathrm{NOBr} \rightarrow 2 \mathrm{NO}(g)+\mathrm{Br}_{2}(g)$

Rate $=k[\mathrm{NOBr}]_{2}$
What are the units of rate constant.?

- Watch Video Solution

52. State the order with respect to each reactant and overall order for following reaction. Also give units of rate constant

$$
\underset{(g)}{\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{Cl}} \rightarrow \underset{(\mathrm{~g})}{\mathrm{C}_{2} \mathrm{H}_{4}}+\underset{(\mathrm{g})}{\mathrm{HCI}}
$$

Rate $=K\left[\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{Cl}\right]$
53. Reaction between NO_{2} and F_{2} to give $\mathrm{NO}_{2} \mathrm{~F}$ takes place by the following mechanism
$\mathrm{NO}_{2}+\mathrm{F}_{2} \xrightarrow{\text { Slow }} \mathrm{NO}_{2} \mathrm{~F}+\mathrm{F}$
$\mathrm{NO}_{2}+\mathrm{F} \xrightarrow{\text { Fast }} \mathrm{NO}_{2} \mathrm{~F}$
$2 \mathrm{NO}_{2}+\mathrm{F}_{2} \rightarrow 2 \mathrm{NO}_{2} \mathrm{~F}$
write order of reaction.

(D) Watch Video Solution

54. Calculate two third life of first order reaction having $K=5.48 \times 10^{-14} s^{-1}$.

(D) Watch Video Solution

55. Thermal decomposition of dinitrogen pentoxide takes place by the following mechanism :
$\mathrm{N}_{2} \mathrm{O}_{5} \xrightarrow{\text { Slow }} \mathrm{NO}_{2}+\mathrm{NO}_{3}$
$\mathrm{N}_{2} \mathrm{O}_{5}=\mathrm{NO}_{3} \xrightarrow{\text { Fast }} 3 \mathrm{NO}_{2}+\mathrm{O}_{2}$
Write the rate'expression and order of the reaction.

- Watch Video Solution

56. The rate constant for the first order reaction is $3.0 \times 10^{-4} \mathrm{~min}^{-1}$. How long will it take for $1 / 5$ th of reaction to be left behind ?

- Watch Video Solution

57. Thermal decomposition of dinitrogen pentoxide takes place by the following mechanism :
$\mathrm{N}_{2} \mathrm{O}_{5} \xrightarrow{\text { Slow }} \mathrm{NO}_{2}+\mathrm{NO}_{3}$
$\mathrm{N}_{2} \mathrm{O}_{5}=\mathrm{NO}_{3} \xrightarrow{\text { Fast }} 3 \mathrm{NO}_{2}+\mathrm{O}_{2}$
Write the rate'expression and order of the reaction.

- Watch Video Solution

58. The rate constant for the first order reaction is $60 s^{-1}$. How much time will it take to reduce the concentration to reactant to $\frac{1}{10}$ th of initial value?

- Watch Video Solution

59. A first order reaction is 20% complete in 20 minuts. Calculate the time it will take the reaction to complete 80%.

- Watch Video Solution

60. A first order reaction is 20% complete in the 10 minutes. Calculate the time period for 75% completion of the reaction.

- Watch Video Solution

61. Calculate the time required for the completion of 90% of a reaction of first order kinetics, $t_{\frac{1}{2}}=44.1$ minutes.

- Watch Video Solution

62. The decomposition of hydrogen peroxide in the presence of iodide ion has been found to be first order in $\mathrm{H}_{2} \mathrm{O}_{2}$:
$2 \mathrm{H}_{2} \mathrm{O}_{2}(\mathrm{aq}) \xrightarrow{1^{-}(a q)} 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})+\mathrm{O}_{2}(\mathrm{~g})$.
The rate constant has been found to be $1.01 \times 10^{-2} \mathrm{~min}^{-1}$:
(a) Calculate the rate of reaction when $\left[H_{2} O_{2}\right]=0.4 \mathrm{~mol} \mathrm{lit}^{-1}$.
(b) What concentration of $\left[\mathrm{H}_{2} \mathrm{O}_{2}\right]$ would give a rate of $1.12 \times 10^{-2} \mathrm{~mol} \mathrm{lit}^{-1} \mathrm{~min}^{-1}$?

- Watch Video Solution

63. The decomposition of $\mathrm{N}_{2} \mathrm{O}_{5}$ in carbon tetrachloride solution has been found to be first order with respect to $\mathrm{N}_{2} \mathrm{O}_{5}$ with rate constant,
$k-6.2 \times 10^{-4} s 6-1$
$\mathrm{N}_{2} \mathrm{O}_{5}(G) \rightarrow 2 \mathrm{NO}_{2}(\mathrm{~g})+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g})$
Calculate the rate of reaction when
$\left[\mathrm{N}_{2} \mathrm{O}_{5}\right]=2.50 \mathrm{molL}^{-1}$

- Watch Video Solution

64. The decomposition of $\mathrm{H}_{2} \mathrm{O}_{2}$, in the presence of lodide ion has been found to be first order in $\mathrm{H}_{2} \mathrm{O}_{2}$.

The rate constant has been found to be $1.01 \times 10^{-2} \mathrm{~min}$. What concentration of $\mathrm{H}_{2} \mathrm{O}_{2}$ would give rate of $1.12 \mathrm{xx} 10^{\wedge}-2 \mathrm{~mol}^{\wedge}-1 \mathrm{~min}^{\wedge}-1$?

$$
\mathbf{2} \mathbf{H}_{2} \mathbf{O}_{2}(a q) \xrightarrow{\mathbf{I}^{-}(a q)} \mathbf{2 H}_{\mathbf{2}} \mathrm{O}(\mathrm{l})+\mathrm{O}_{\mathbf{2}}(\mathrm{g})
$$

- Watch Video Solution

65. The rate law for a reaction is

Rate $=k[A]^{1 / 2}[B]^{2}$

Can the reaction be an elementry reaction. Explain.

(D) Watch Video Solution

66. Calculate the e.m.f. of the following cell at $298 \mathrm{~K}, \mathrm{Mg}| | \mathrm{Mg} 2+($ $0.130 \mathrm{M})||||\mathrm{Ag}+(1.0 \times 10-4 \mathrm{M})|| \mathrm{Ag}$

- Watch Video Solution

67. Calculate the half life period of a first order reaction where specific rate constant is K is $200 s^{-1}$.

- Watch Video Solution

68. Find the half life period of first order reaction whose rate constant, $k=4.93 \times 10^{-4} s^{-1}$.
69. The rate constant for a first order reaction is $90 s^{-1}$.How much time will it take to reduce the concentration of the reactant to $\frac{1}{20^{t h}}$ of its Initial value ?

- Watch Video Solution

