



## MATHS

# **BOOKS - ACCURATE PUBLICATION**

# MATRICES

Example Questions Carrying 2 Marks

1. If matrix  $A = \left[a_i j
ight]_3 imes 2$  and  $a_i j = \left(3i-2j
ight)^2$ 

, then find matrix A.

2. Construct  $2 \times 2$  matrix  $A = [a_i j]$  whose elements are given by  $a_i j = rac{i}{j}.$ 

Watch Video Solution

**3.** If 
$$x \begin{bmatrix} 2 \\ 3 \end{bmatrix} + y \begin{bmatrix} -1 \\ 1 \end{bmatrix} = \begin{bmatrix} 10 \\ 5 \end{bmatrix}$$
 , find the values of x and y.

**4.** If 
$$x \begin{bmatrix} 3 \\ 4 \end{bmatrix} + y \begin{bmatrix} -1 \\ 1 \end{bmatrix} = \begin{bmatrix} 10 \\ 11 \end{bmatrix}$$
, then find the

value of x and y.

Watch Video Solution

Watch Video Solution

5. If 
$$x \begin{bmatrix} 4 \\ 5 \end{bmatrix} + y \begin{bmatrix} -1 \\ 1 \end{bmatrix} = \begin{bmatrix} 6 \\ 12 \end{bmatrix}$$
, then find the

value of x and y.

6. If 
$$A = \begin{bmatrix} 5 & 2 \\ -1 & 2 \end{bmatrix}$$
 and  $I = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$  show that (A - 3I) (A - 4I) = 0

7. If 
$$A=egin{bmatrix} 6&2\\-1&3 \end{bmatrix}$$
 and  $I=egin{bmatrix} 1&0\\0&1 \end{bmatrix}$  show that  $(A-4I)(A-5I)=0$ 

8. If 
$$A=egin{bmatrix} 7&2\\ -1&4 \end{bmatrix}$$
 and  $I=egin{bmatrix} 1&0\\ 0&1 \end{bmatrix}$  show that  $(A-5I)(A-6I)=0$ 

9. If 
$$A = egin{bmatrix} 1 & -2 \ -3 & 4 \end{bmatrix}$$
 , find  $-A^2 + 5A$ 

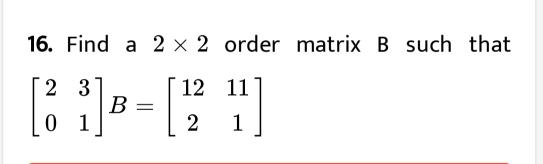
#### Watch Video Solution

10. If 
$$A = egin{bmatrix} 1 & -2 \ -3 & 4 \end{bmatrix}$$
 , find  $-A^2 + 5A$ 

11. If A 
$$= egin{bmatrix} -2 & -3 \ -2 & 4 \end{bmatrix}$$
 ,find  $-A^2+6A$ 

12. If 
$$f(x)=egin{bmatrix}\cos x & -\sin x & 0\\sin x & \cos x & 0\0 & 0 & 1\end{bmatrix}$$
 , show that  $f(x).\ f(y)=f(x+y)$ 

**13.** If 
$$F(\alpha) = \begin{bmatrix} \cos \alpha & -\sin \alpha & 0 \\ \sin \alpha & \cos \alpha & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
, then show


that F(lpha)F(eta)=F(lpha+eta).

Watch Video Solution

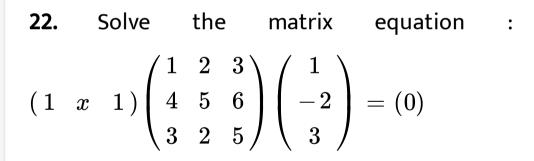
**14.** If 
$$F(\theta) = \begin{bmatrix} \cos \theta & -\sin \theta & 0\\ \sin \theta & \cos \theta & 0\\ 0 & 0 & 1 \end{bmatrix}$$
, then show that  $F(\theta)F(\phi) = F(\theta + \phi)$ .

**15.** Find a  $2 \times 2$  order matrix B such that  $\begin{bmatrix} 2 & 5 \\ -3 & 7 \end{bmatrix} B = \begin{bmatrix} 17 & -1 \\ 47 & -13 \end{bmatrix}$ 

#### Watch Video Solution



**17.** Find a  $2 \times 2$  order matrix B such that  $\begin{bmatrix} 6 & 5 \\ 5 & 6 \end{bmatrix} B = \begin{bmatrix} 11 & 0 \\ 0 & 11 \end{bmatrix}$ 


Watch Video Solution

18. If 
$$A=egin{bmatrix} 1&0\\-1&7 \end{bmatrix}$$
 and  $I=egin{bmatrix} 1&0\\0&1 \end{bmatrix}$  , then find k so that  $A^2=8A+kI$ 

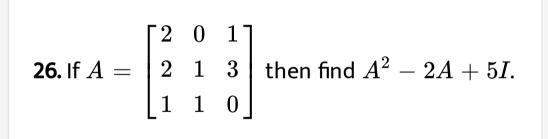
19. If A 
$$=$$
  $\begin{bmatrix} 0 & 3 \\ -7 & 5 \end{bmatrix}$ ,  $I = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$  , then find k so that  $kA^2 = 5A + 21I$ 

20. If 
$$(A=egin{bmatrix} 3&-2\ 4&-2 \end{bmatrix}$$
), find K such that ( $A^2=KA-2I_2$ ).

**21.** Solve the matrix equation :  
$$(1 \ x \ 1) \begin{pmatrix} 1 \ 2 \ 3 \\ 4 \ 5 \ 6 \\ 3 \ 2 \ 5 \end{pmatrix} \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} = (0)$$



**23.** Solve the matrix equation :  
$$(1 \ 1 \ x) \begin{pmatrix} 1 & 0 & 2 \\ 0 & 2 & 1 \\ 2 & 1 & 0 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} = (0)$$


**24.** If A = 
$$\begin{bmatrix} 2 & 0 & 1 \\ 2 & 1 & 3 \\ 1 & -1 & 0 \end{bmatrix}$$
 then find

 $A^2 - 3A + 2I$ 

**25.** If 
$$A = \begin{bmatrix} 2 & 0 & 1 \\ 2 & -1 & 3 \\ 1 & 1 & 0 \end{bmatrix}$$
 then find

 $A^2 - 3A + 2I.$ 

Watch Video Solution



**27.** If A=  $[3,2,0],\,[1,4,0][0,0,5]$  , then show

that A<sup>2</sup> -7A+10I3 =0

Watch Video Solution

**28.** If 
$$A = \begin{bmatrix} 1 & 2 & 3 \\ 3 & -2 & 1 \\ 4 & 2 & 1 \end{bmatrix}$$
, then find

 $A^2 - 23A - 40I$  where I is Identify Matrix.

29. If 
$$f(x) = x^2 - 5x + 7$$
, find f(A) where  $A = \begin{bmatrix} 3 & 1 \\ -1 & 2 \end{bmatrix}$ 

30. If 
$$A = \begin{bmatrix} 2 & 1 \\ -1 & 3 \end{bmatrix}$$
 and  $f(x) = x^2 - 4x + 2$ , then find f(A).

**31.** If 
$$A = \begin{bmatrix} 1 & 2 \\ 3 & -1 \end{bmatrix}$$
 and  $f(x) = x^2 - 7x + 10$ , then find f(A).

32. If 
$$A = \begin{bmatrix} 2 & 1 \\ 3 & -5 \end{bmatrix}$$
 and  $f(x) = x^2 - 2x + 3$ , then find f(A).

33. If 
$$A = \begin{pmatrix} 3 & -4 \\ 1 & -1 \end{pmatrix}$$
, then prove by Mathematical Induction that : $A^n = \begin{pmatrix} 1+2n & -4n \\ n & 1-2n \end{pmatrix}$ , where  $n \in N$ 

**34.** Prove the following by principle of mathematical induction :

(a) If 
$$A=egin{bmatrix} 11&-25\ 4&-9 \end{bmatrix}$$
, then  $A^n=egin{bmatrix} 1+10n&-25n\ 4n&1-10n \end{bmatrix}$  where n is a

positive integer.





**35.** If 
$$A = \begin{pmatrix} -1 & -4 \\ 1 & 3 \end{pmatrix}$$
, then prove by Mathematical Induction that :  $A^n = \begin{pmatrix} 1-2n & -4n \\ n & 1+2n \end{pmatrix}$ , where  $n \in N$ 

**36.** If 
$$A = \begin{bmatrix} 2 & 3 \\ 4 & 5 \end{bmatrix}$$
,  $B = \begin{bmatrix} 1 & 2 \\ 4 & 6 \end{bmatrix}$ , then verify that (AB)' = B' A'

**37.** If 
$$A = \begin{bmatrix} 3 & 4 \\ 4 & 5 \end{bmatrix}$$
,  $B = \begin{bmatrix} 5 & 3 \\ 2 & 1 \end{bmatrix}$  then verify that (AB)' = B' A'

**38.** If 
$$A = \begin{bmatrix} 2 & 4 \\ 3 & 5 \end{bmatrix}$$
 and  $B = \begin{bmatrix} 5 & 4 \\ 3 & 2 \end{bmatrix}$  then verify that (AB)' = B' A'

**39.** If A = 
$$\begin{bmatrix} -2 \\ 4 \\ 5 \end{bmatrix}$$
,  $B = \begin{bmatrix} 1 & 3 & -6 \end{bmatrix}$ , then

verify that (AB)' = B'A'

Watch Video Solution

**40.** If 
$$A = \begin{bmatrix} 1 \\ 5 \\ 6 \end{bmatrix}$$
,  $B = \begin{bmatrix} 2 & 1 & -5 \end{bmatrix}$ , verify that  $(AB)' = B'A'$ .

**41.** If 
$$A = \begin{bmatrix} 7 \\ 9 \\ -8 \end{bmatrix}$$
,  $B = \begin{bmatrix} 2 & 0 & -2 \end{bmatrix}$ , verify

that (AB)' = B'A'.

Watch Video Solution

42. If 
$$A = egin{bmatrix} 3 \ -1 \ 5 \end{bmatrix}, B = [-6, 7, 10]$$
, verify that

: (AB)' = B'A'.

**43.** If 
$$A = \begin{bmatrix} 4 \\ 0 \\ 7 \end{bmatrix}, B = \begin{bmatrix} -1 & -6 & 5 \end{bmatrix}$$
, then

verify that (AB)'=B'A'.

Watch Video Solution

**44.** If 
$$A = \begin{bmatrix} 3 \\ -1 \\ 4 \end{bmatrix}, B = \begin{bmatrix} 7 - 712 \end{bmatrix}$$
 then verify

that (AB)' : B' A'.

**45.** If 
$$A = \begin{bmatrix} 3 \\ -4 \\ 5 \end{bmatrix}, B = \begin{bmatrix} 6 & 1 & -1 \end{bmatrix}$$
, the verify

that (AB)'=B'A'.

Watch Video Solution

**46.** If 
$$A = \begin{bmatrix} 2 \\ -4 \\ 1 \end{bmatrix}, B = [(6)(3)(-1)]$$
 then

verify that (AB)'=B'A'.

**47.** If 
$$A = \begin{bmatrix} 2 \\ -4 \\ 1 \end{bmatrix}$$
,  $B = [(6)(3)(-1)]$  then

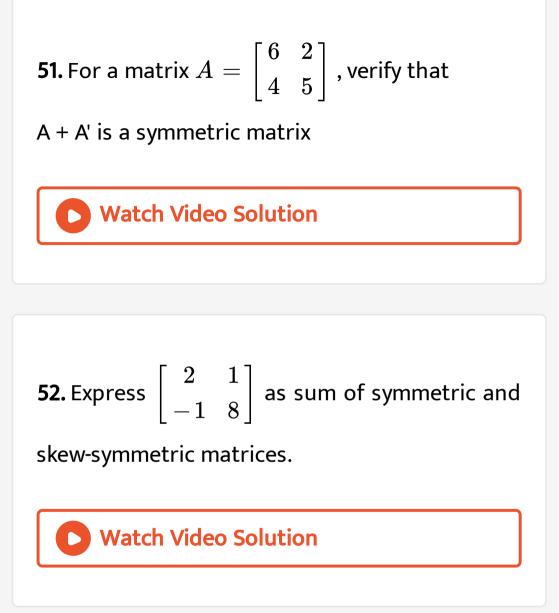
verify that (AB)'=B'A'.

Watch Video Solution

**48.** If 
$$A = \begin{bmatrix} 3 \\ 1 \\ 2 \end{bmatrix}, B = \begin{bmatrix} 1 & -2 & 5 \end{bmatrix}$$
 then verify

that (AB)' = B'A'.

**49.** For the matrix  $A = \begin{bmatrix} 1 & 5 \\ 6 & 7 \end{bmatrix}$ , verify that


 $\left(A-A^{\,\prime}
ight)$  is a skew symmetric matrix.

### Watch Video Solution

50. For the matrix 
$$A=egin{pmatrix} 2 & 5 \ 4 & 1 \end{pmatrix}$$
 , verify that : A

+ A' is a Symmetric Matrix





53. Express the following matrices as the sum of

a symmetric and a skew symmetric matrix :

$$(ii) \begin{bmatrix} 5 & 1 \\ 7 & 0 \end{bmatrix}$$
$$(iii) \begin{bmatrix} 2 & 1 \\ 3 & 0 \end{bmatrix}$$

Watch Video Solution

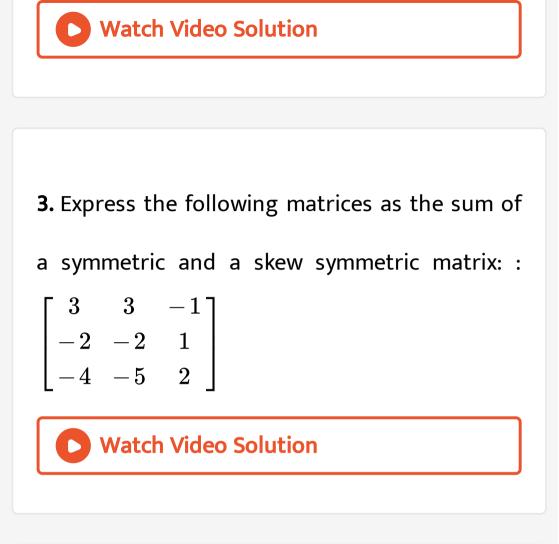
54. Express the following matrices as the sum of

a symmetric and a skew symmetric matrix :



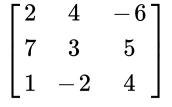
**1.** Express the matrix 
$$A = \begin{bmatrix} -2 & 3 & 1 \\ 1 & 3 & 2 \\ 5 & -4 & 5 \end{bmatrix}$$
 as

the sum of a symmetric and skew - symmetric


matrix



2. Express the following matrices as the sum of


a symmetric and a skew symmetric matrix :

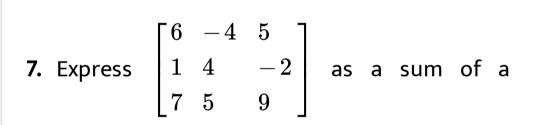
$$A = egin{bmatrix} 2 & -2 & -4 \ -1 & 3 & 4 \ 1 & -2 & -3 \end{bmatrix}$$



4. Express the following as sum of symmetric

and skew symmetric matrix




**5.** Express 
$$\begin{bmatrix} 1 & 3 & 5 \\ -6 & 8 & 3 \\ -4 & 6 & 5 \end{bmatrix}$$
 as a sum of symmetric

and skew-symmetric matrices.

6. Express 
$$\begin{bmatrix} 2 & -4 & 5 \\ 1 & 8 & -2 \\ 7 & 3 & 9 \end{bmatrix}$$
 as a sum of a

symmetric and a skew-symmetric matrix.

Watch Video Solution



symmetric and a skew-symmetric matrix.

**8.** Express 
$$\begin{bmatrix} 2 & 7 & 5 \\ 1 & 8 & -2 \\ 6 & 5 & 9 \end{bmatrix}$$
 as a sum of a

symmetric and a skew-symmetric matrix.

Watch Video Solution

9. Express the matrix  $A = \begin{pmatrix} -3 & 5 & 6 \\ -1 & 0 & 1 \\ 2 & 1 & 2 \end{pmatrix}$  as the sum of a symmetric and skew-symmetric

matrix.



10. Express the matrix  $A=egin{pmatrix}2&1&3\\3&-2&1\\-1&3&1\end{pmatrix}$  as

the sum of a symmetric and skew-symmetric matrix.



**11.** Express 
$$\begin{pmatrix} 1 & -2 & 3 \\ 7 & 0 & 5 \\ -4 & 1 & 9 \end{pmatrix}$$
 as the sum of a

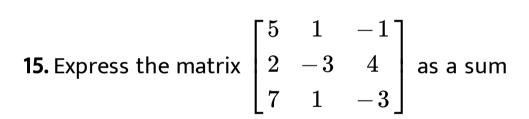
symmetric and a skew-symmetric matrix .

**12.** Express 
$$\begin{pmatrix} 1 & 2 & 3 \\ 7 & 4 & 5 \\ 4 & 1 & 9 \end{pmatrix}$$
 as the sum of a

symmetric and a skew-symmetric matrix .



**13.** Express 
$$\begin{pmatrix} 1 & 2 & -3 \\ 7 & 0 & 5 \\ -4 & 8 & 9 \end{pmatrix}$$
 as the sum of a


symmetric and a skew-symmetric matrix .



**14.** Express 
$$\begin{bmatrix} 2 & 5 & -1 \\ 3 & 1 & 5 \\ 7 & 6 & 9 \end{bmatrix}$$
 as a sum of

symmetric and skew-symmetric matrices.

Watch Video Solution



of symmetric and skew symmetric matrix

## Questions Carrying 1 Mark Type I Multiple Choice Questions

1. If 
$$\begin{bmatrix} x + y & 1 \\ 2y & 5 \end{bmatrix} = \begin{bmatrix} 7 & 1 \\ 4 & 5 \end{bmatrix}$$
, find 'x'  
A. 6  
B. 4  
C. 5  
D. 2

#### Answer: C



**2.** If 
$$\begin{bmatrix} 2x - y & 5 \\ 3 & y \end{bmatrix} = \begin{bmatrix} 6 & 5 \\ 3 & -2 \end{bmatrix}$$
, then x equals :

- A. 3
- $\mathsf{B.6}$
- $\mathsf{C}.-2$
- $\mathsf{D.}\ 2$

#### Answer: D

**3.** The matrix  $A = \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix}$  is equal to:

A. a unit matrix

B. a diagonal matrix

C. a scalar matrix

D. none of these .

**Answer: D** 



**4.** The matrix  $A = \begin{bmatrix} 1 & 3 \\ 0 & 1 \end{bmatrix}$  is equal to:

A. a unit matrix

B. a diagonal matrix

C. a scalar matrix

D. none of these .

Answer: D



5. The number of all possible matrices of order

3 imes 3 with each entry 0 or 1 is:

A. 27

**B**. 18

**C**. 81

D. 512

Answer: D

6. The number of all possible matrices of order

3 imes 3 with each element 0 or 2 is :

A. 27

 $\mathsf{B.}\,18$ 

**C**. 81

D. 512

Answer: D

7. If matrix A is of order 4 imes 3, then each row of

matrix A contains elements :

 $\mathsf{A}.\,12$ 

 $\mathsf{B.4}$ 

C. 3

D. none of these .

Answer: C

**8.** If A + B = C, where A and B are matrices of order 2 imes 3, then order of C is :

- A. 3 imes 2
- $\text{B.}\,2\times3$
- ${\rm C.}\,2\times2$
- D. 3 imes 3

Answer: B

**9.** If A + B = C, where A and B are matrices of order  $3 \times 5$ , then order of C is :

A. 3 imes 5

 $\text{B.}\,3\times3$ 

 $\text{C.}~5\times5$ 

D. 5 imes 3

Answer: A

10. If A+B=C where B and A are matrices of order 5 imes 5 then the order of matrix C is :

A. 3 imes 5

 $\text{B.} 3\times3$ 

 $\mathrm{C.}\,5\times5$ 

D. 5 imes 3

Answer: C

**11.** If 
$$X = \begin{bmatrix} 2 & 0 \\ 0 & 4 \end{bmatrix}$$
 and  $Y = \begin{bmatrix} -2 & 0 \\ -2 & 0 \end{bmatrix}$  then X + Y equal to :

A. 
$$\begin{bmatrix} 0 & 0 \\ -2 & 0 \end{bmatrix}$$
  
B. 
$$\begin{bmatrix} 0 & 0 \\ 0 & 4 \end{bmatrix}$$
  
C. 
$$\begin{bmatrix} 0 & 0 \\ -2 & 4 \end{bmatrix}$$
  
D. 
$$\begin{bmatrix} 2 & 0 \\ -2 & 4 \end{bmatrix}$$

## Answer: C

12. If A is matrix of a order  $2 \times 3$  and B is a matrix of order  $3 \times 2$ , then AB is a matrix of order:

- A. 2 imes 3
- B. 3 imes 2
- ${\rm C.}\,2\times2$
- D. 3 imes 3

#### Answer: C



**13.** If A is matrix of a order  $2 \times 3$  and B is a matrix of order  $3 \times 2$ , then AB is a matrix of order:

- A. 2 imes 3
- B. 3 imes 2
- ${\rm C.}\,2\times2$
- D. 3 imes 3

#### Answer: C



14. If AB = C, where B and C are matrices of order

3 imes 5 , then order of A is :

A. 3 imes 3

 $\text{B.}\,3\times5$ 

 $\mathrm{C.}\,5\times5$ 

D. 5 imes 3

**Answer: A** 

**15.** AB = C, where B and C are matrices of order

3 imes 4 , then order of A is :

A. 4 imes 4

 $\text{B.}\,3\times4$ 

 $\text{C.}\,4\times3$ 

 ${\rm D.}\,3\times3$ 

Answer: D

16. If AB = C, where B and C are matrices of order

4 imes 5, then the order of matrix A is :

A. 4 imes 5

 $\text{B.}\,4\times4$ 

 $\mathrm{C.}\,5\times5$ 

D. 5 imes 4

**Answer: B** 

17. If AB = C where Band C are matrices of orders 5 imes 3 then order of A is :

A. 5 imes 5

 $\text{B.}\,3\times3$ 

 $\text{C.}\,3\times5$ 

D. 5 imes 3

Answer: A

**18.** If 
$$A = \begin{bmatrix} 1 & 2 & 3 \end{bmatrix}, B = \begin{bmatrix} 2 \\ 3 \\ 1 \end{bmatrix}$$
, then AB

equals

A. 
$$(2 \ 6 \ 3)$$
  
B.  $\begin{pmatrix} 2 \\ 6 \\ 3 \end{pmatrix}$   
C.  $(12)$ 

D. None of these .

#### Answer: D

**19.** If 
$$A = \begin{bmatrix} 2 & 1 & 3 \end{bmatrix}, B = \begin{bmatrix} 3 \\ 2 \\ 1 \end{bmatrix}$$
 then AB equals

$$\mathsf{B.} \begin{pmatrix} 6\\2\\3 \end{pmatrix}$$
$$\mathsf{C.} (11)$$

D. None of these .

#### Answer: C



20. If 
$$A = egin{bmatrix} lpha & eta \ \gamma & -lpha \end{bmatrix}$$
 is such that  $A^2 = I$ , then

a. 
$$1 + \alpha^2 + \beta\gamma = 0$$
  
b.  $1 - \alpha^2 + \beta\gamma = 0$   
c.  $1 - \alpha^2 - \beta\gamma = 0$   
d.  $1 + \alpha^2 - \beta\gamma = 0$ 

A. 
$$1+lpha^2+eta\gamma=0$$
  
B.  $1-lpha^2+eta\gamma=0$   
C.  $1-lpha^2-eta\gamma=0$ 

D. 
$$1+lpha^2-eta\gamma=0$$

#### Answer: C



**21.** Assume X, Y, Z, W and P are matrices of order  $2 \times n$ ,  $3 \times k$ ,  $2 \times p$ ,  $n \times 3$  and  $p \times k$  respectively. The restriction on n, k and p so that PY + WY will be defined are:

A. 
$$k=3, p=n$$

B. k is arbitrary, p=2

C. p is arbitrary, k=3

D. k=2, p=3

#### Answer: A



22. The matrix  $A = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$  is a (a) identity matrix (b) Diagonal matrix (c) symmetric matrix (d) skew symmetric matrix

A. a unit matrix

- B. a diagonal matrix
- C. a symmetric matrix
- D. a skew-symmetric matrix

#### Answer: C



23. The matrix  $A = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$  is a (a) identity matrix (b) Diagonal matrix (c) symmetric matrix (d) skew symmetric matrix

A. a unit matrix

B. a diagonal matrix

C. a symmetric matrix

D. a skew-symmetric matrix





## **24.** If A is any square matrix then A + A' is a :

A. skew-symmetric matrix

B. symmetric matrix

C. null matrix

D. identity matrix





# 25. If A, B are symmetric matrices of same order,

then AB - BA is a :

A. Skew symmetric matrix

B. symmetric matrix

C. Zero matrix

D. identity matrix

Answer: A



**26.** If A is a matrix of order  $5 \times 2$  and B is a matrix of order  $2 \times 5$ , then the order of matrix  $(BA)^T$  is equal to :

A. 2 imes 2

 $\text{B.}\,2\times5$ 

 $\text{C.}\,3\times3$ 

D. 5 imes 5

**Answer: A** 

27. If A is a matrix of order  $3 \times 2$  and B is a matrix of order  $2 \times 3$ , then the order of matrix  $(BA)^T$  is equal to :

A. 2 imes 2

 ${\rm B.2\times3}$ 

 $\text{C.}\,4\times3$ 

 ${\rm D.}\,3\times3$ 

Answer: A

**28.** If order of matrix A is  $2 \times 3$  and order of matrix B is  $3 \times 5$ , then order of matrix B 'A' is :

- A. 5 imes 2
- $\text{B.}\,2\times5$
- $\text{C.}~5\times3$
- D. 3 imes 2

#### Answer: A



**29.** If order of matrix A is  $4 \times 3$  and order of matrix B is  $3 \times 5$ , then order of matrix B 'A ' is :

A. 5 imes 2

- $\text{B.}\,4\times5$
- $\mathrm{C.}\,5\times4$
- D. 3 imes 2

Answer: A

**30.** If the matrix A is both symmetric and skew symmetric, then :

A. A is a diagonal matrix

B. A is zero matrix

C. A is a square matrix

D. None of these .

**Answer: B** 

**31.** If A = [[123]], then AA' is equal to :

)

A. 
$$(1 \ 4 \ 9$$
  
B.  $\begin{pmatrix} 1 \\ 4 \\ 9 \end{pmatrix}$   
C.  $(14)$ 

D. (6)

#### Answer: C



32. Choose the correct option in the question :

If  $A= egin{pmatrix} 3 & 2 & 1 \end{pmatrix}$  then A A' is equal to

A.  $(4 \ 1 \ 9)$ B.  $\begin{pmatrix} 4 \\ 1 \\ 9 \end{pmatrix}$ C. (14)

D. (6)

#### Answer: C



33. If A and B are two invertible matrices, then

the inverse of AB is equal to :

A. AB

- B. BA
- C.  $A^{-1}B^{-1}$

D. 
$$B^{-1}A^{-1}$$

#### Answer: D



**34.** If A and B are square matrices of the same order, then (A + B)(A - B) is equal to

A.  $A^2-B^2$ 

 $\mathsf{B}.\,A^2 - BA - AB^2 - B^2$ 

 $\mathsf{C}.\,A^2-B^2+BA-AB$ 

 $\mathsf{D}.\,A^2 - BA + B^2 + AB$ 

Answer: C

**35.** If 
$$A = \begin{bmatrix} 2 & -1 & 3 \\ -4 & 5 & 1 \end{bmatrix}$$
 and  $B = \begin{bmatrix} 2 & 3 \\ 4 & -2 \\ 1 & 5 \end{bmatrix}$ 

, then

A. Only AB is defined

B. Only BA is defined

C. AB and BA both are defined

D. AB and BA both are not defined

Answer: C

# **36.** The matrix $\begin{bmatrix} 0 & 0 & 5 \\ 0 & 5 & 0 \\ 5 & 0 & 0 \end{bmatrix}$ is a scalar matrix.

State true or false. If false, then what type of

matrix is this?

A. scalar matrix

B. diagonal matrix

C. unit matrix

D. square matrix

Answer: D

37. If A and B are symmetric matrices of same

order then AB - BA is a :

A. Skew symmetric matrix

B. Null matrix

C. Symmetric matrix

D. None of these .

Answer: A

**38.** The matrix 
$$P = \begin{bmatrix} 0 & 0 & 4 \\ 0 & 4 & 0 \\ 4 & 0 & 0 \end{bmatrix}$$
 is a

A. square matrix

B. diagonal matrix

C. unit matrix

D. None

Answer: A

39. The number of all possible matrices of order

3 imes 3 with each element 0 or 2 is :

**A**. 9

B. 27

**C**. 81

 $\mathsf{D.}\ 512$ 

Answer: D

**40.** If 
$$\begin{bmatrix} 2x+y & 4x \\ 5x-7 & 4x \end{bmatrix} = \begin{bmatrix} 7 & 7y-13 \\ y & x+6 \end{bmatrix}$$
 then

the value of x + y is

A. 
$$x=3, y=1$$

B. 
$$x=2, y=3$$

C. 
$$x=2,y=4$$

D. 
$$x=3, y=3$$

### **Answer: B**

**41.** If matrix  $A = ig[a_{ij}ig]_{2 imes 2}$ , where

 $a_{ij} egin{array}{cccc} = 1 & ext{if} & i 
eq j \ = 0 & ext{if} & i = j \end{array}$  then  $A^2$  is equal to

- A. I
- B.O
- $\mathsf{C.}\,2\,\mathsf{I}$
- D.  $\frac{1}{2}$  I

### Answer: D

**42.** If A and B are two matrices of the order 3 imes m and 3 imes n , respectively , and m=n, then the order of matrix (5A - 2B) is

A. m imes 3

B. 3 imes 3

 $\mathsf{C}.\,m imes n$ 

D. 3 imes n

Answer: D

**43.** If 
$$A = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$
 then  $A^2$  is equal to  
A.  $\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$   
B.  $\begin{bmatrix} 1 & 0 \\ 1 & 0 \end{bmatrix}$   
C.  $\begin{bmatrix} 0 & 1 \\ 0 & 1 \end{bmatrix}$   
D.  $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ 

### Answer: D



**44.** If matrix  $A = \left[a_{ij}
ight]_{2 imes 2}$ , where

 $a_{ij} egin{array}{cccc} =1 & ext{if} & i
eq j \ =0 & ext{if} & i=j \end{array}$  then  $A^2$  is equal to

#### A. I

- B.A
- C. O
- D. None of these .

#### Answer: A

**45.** The matrix 
$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 4 \end{bmatrix}$$
 is a

A. identity matrix

B. symmetric matrix

C. skew symmetric matrix

D. none of these .

Answer: B

**46.** The matrix 
$$\begin{bmatrix} 0 & -5 & 8 \\ 5 & 0 & 12 \\ -8 & -12 & 0 \end{bmatrix}$$
 is a

A. diagonal matrix

B. symmetric

C. skew symmetric matrix

D. scalar matrix

Answer: C

**47.** If A is a matrix of order  $m \times n$  and B is a matrix such that AB' and B'A are both defined, then order of matrix B is

A. m imes m

 $\mathsf{B}.\,n imes n$ 

 $\mathsf{C.}\,n imes m$ 

D. m imes n

Answer: D

48. If A and B are symmetric matrices of same

order then AB - BA is a :

A. Skew symmetric matrix

B. Null matrix

C. Symmetric matrix

D. unit matrix

Answer: A

49. If A is square matrix suct that  $A^2 = I$ , then  $(A - I)^3 + (A + I)^3 - 7$  A is equal to A. A B. I-A C. I+A

 $\mathsf{D}.\,3\,\mathsf{A}$ 

Answer: A

50. For any two matrices A and B, we have

A. AB=BA

 $\mathsf{B.}\,AB\neq BA$ 

C. AB=0

D. None of the above

**Answer: D** 



# Questions Carrying 1 Mark Type Ii Fill In The Blanks Questions

1. 
$$A = ig[a_{ij}ig]_{m imes n}$$
 is a square matrix, if

- a. m < n
- b. m > n
- c. m = n
- d. none of these



2. The number of all possible matrices of order

3 imes 3 with each entry 0 or 3 is

Watch Video Solution

3. If A is a matrix of order 3 imes 4, then each

column of matrix A contains elements :

4. If A+B=C where A and B are matrices of order

4 imes 6 then order of C is ......

(ii) If A+B=C where B and A are matrices of order

3 imes 3 then the order of matrix C is .....



5. X, Z are matrices of order 2 imes n, 2 imes p respectively.

If n = p, then the order of the matrix 7X - 5Z is :

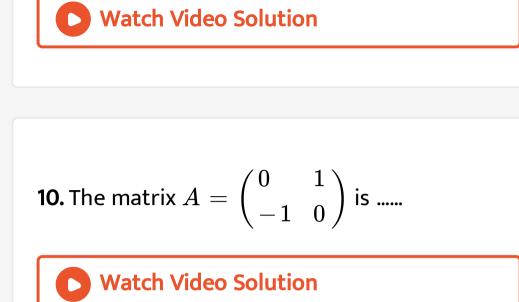
6. If A is a matrix of order  $3 \times 4$  and B is a matrix of order  $4 \times 3$ , find the order of the matrix (AB).



### 7. If AB = C, where B and C are matrices of order

2 imes 4 , then order of A is :

8. If 
$$A = \begin{bmatrix} 2 & 3 & 1 \end{bmatrix}, B = \begin{bmatrix} 3 \\ 1 \\ 2 \end{bmatrix}$$
, then AB

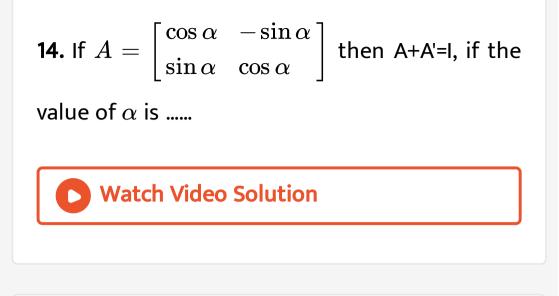

equals



9. If A is square matrix such that  $A^2 = A$ , then  $(I + A)^3 - 7A$  is equal to a. A b. I - A

c. l

d. 3A




**11.** If A and B are symmetric matrices of same order then AB + BA is a :

12. If A is a matrix of order  $3 \times 4$  and B is a matrix of order  $4 \times 3$ , then the order of matrix  $(BA)^T$  is equal to :

Watch Video Solution

13. If order of matrix A is 3 imes 3 and order of matrix B is 3 imes 5, then order of matrix B 'A ' is :



**15.** Choose the correct option in the question :

If  $A= egin{pmatrix} 3 & 2 & 1 \end{pmatrix}$  then A A' is equal to

16. Matrices A and B will be inverse of each other only if
Watch Video Solution

17. If A and B are two skew symmetric matrices

of same order, then AB is symmetric matrix if

18. If A and B are matrices of same order, then

(3A-2B) is equal to .....

Watch Video Solution

19. Addition of matrices is defined if order of the

matrices is .....

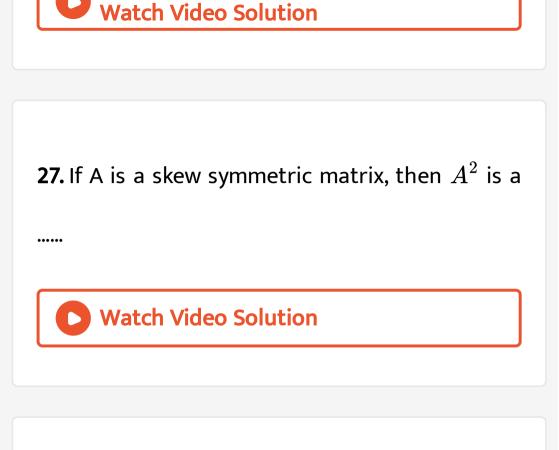
20. ..... Matrix is both symmetric and skew symmetric matrix .

 Watch Video Solution

21. Sum of two skew symmetric matrices is

always ..... matrix .

22. The negative of a matrix is obtained by multiplying it by ......Watch Video Solution


23. The product of any matrix by the scalar ......

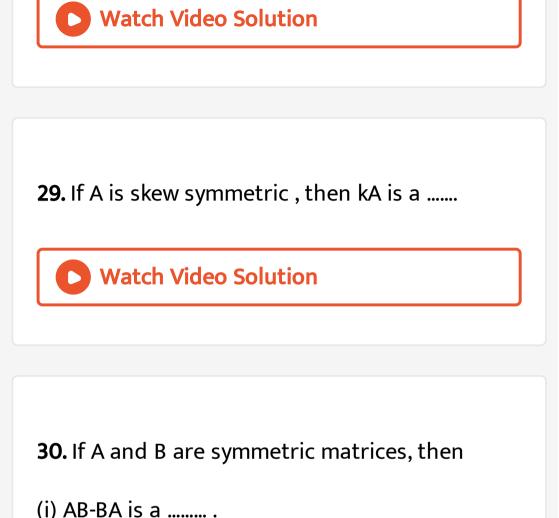
Is the null matrix .

24. A matrix which is not a square matrix is called a .... Matrix . Watch Video Solution 25. Matrix multiplication is ...... over addition . Watch Video Solution **26.** If A is a symmetric matrix , then  $A^3$  is a .....

matrix .






28. If A and B are square matrices of the same

order, then

(i) (AB)= .....

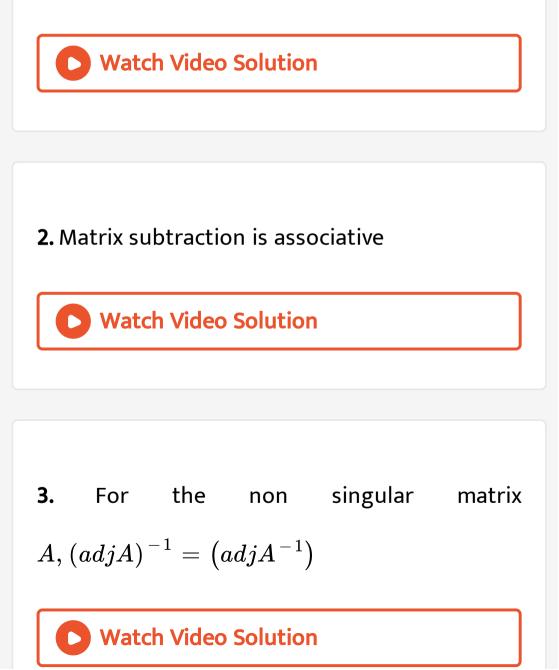
(ii) (kA) = .....

(iii) [k(A-B)] = ......



- (ii) BA-2 BA is a ...........

31. If A is symmetric matrix, then B' AB is ........


## > Watch Video Solution

**32.** If A and B are symmetric matrices of the same order, then show that AB is symmetric if and only if A and B commute, that is AB = BA.

## Watch Video Solution

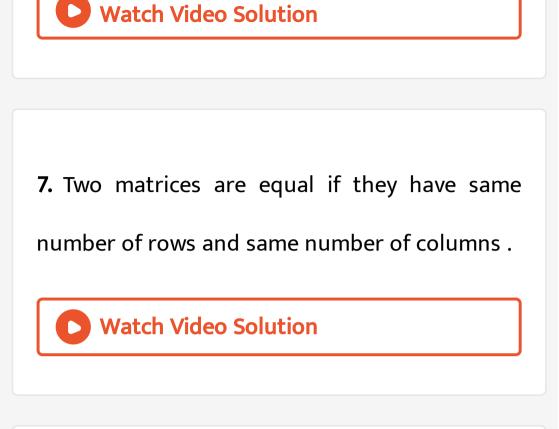
Questions Carrying 1 Mark Type Iii True Or False Questions 1. If two matrices A and B are of the same order,

then 2A + B = B + 2A.

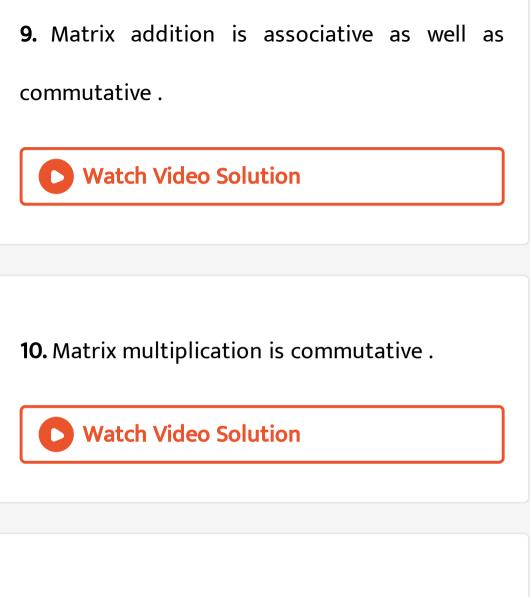


## **4.** $AB = AC \Rightarrow B = C$ for any three matrices

of same order.




### 5. A matrix denotes a number




6. Matrices of any order can be added .





**8.** Matrices of different order can not be subtracted .



11. A square matrix where every element is unity

is called an identity matrix .





12. If A and B are two square matrices of the

same order, then A+B=B+A.

Watch Video Solution

13. If A and B are two matrices of the same

order, then A-B=B-A.

14. If matrix AB=O, then A=O or B=O or both A

and B are null matrices .

Watch Video Solution

**15.** Transpose of a column matrix is a column matrix .

16. If A and B are two square matrices of the

same order, then AB=BA.



**17.** If each of the three matrices of the same order are symmetric then their sum is a symmetric matrix.

18. If A and B are two square matrices of the

same order, then AB=BA.



**19.** If (AB)=B'A', where A and B are not square matrices, then number of rows in A is equal to number of column in B and number of columns in A is equal to number of rows in B.

20. If A, B and C are square matrices of same

order, then AB=AC always implies that B=C.

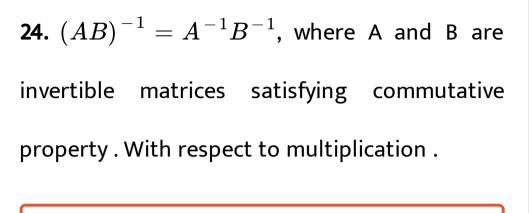


21. A A' is always a symmetric matrix for any

matrix A .

**22.** If 
$$A = \begin{bmatrix} 2 & 3 & -1 \\ 1 & 4 & 2 \end{bmatrix}$$
 and  $B = \begin{bmatrix} 2 & 3 \\ 4 & 5 \\ 2 & 1 \end{bmatrix}$ 

,


then AB and BA are defined and equal.



## **23.** If A is skew symmetric matrix, then $A^2$ is a

symmetric matrix.







## 25. The number of all possible matrices of order

3 imes 3 with each entry 0 or 1 is 27 .



**26.** If matrix A is of order 4 imes 3, then each row

of matrix A contains elements :



# **27.** If A + B = C, where A and B are matrices

of order 2 imes 3, then order of C is :



**28.** The solution of matrix equation  $\begin{bmatrix} x & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ -2 & 0 \end{bmatrix} = O$  is 5.

Watch Video Solution

**29.** Choose the correct option in the question :

If 
$$\begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} \begin{pmatrix} 3 & 1 \\ 2 & 5 \end{pmatrix} = \begin{pmatrix} 7 & 11 \\ k & 23 \end{pmatrix}$$
, then k

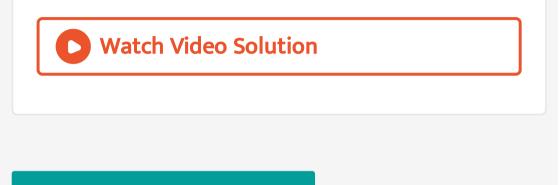
equals

**30.** AB=AC implies B=C .



**31.** If A is matrix of a order  $2 \times 3$  and B is a matrix of order  $3 \times 2$ , then AB is a matrix of order:

**32.** If AB = C, where B and C are matrices of


order 3 imes 5, then order of A is :



**33.** If A is square matrix such that  $A^2 = A$ ,then  $\left(I + A
ight)^3 - 7A$  is equal to:

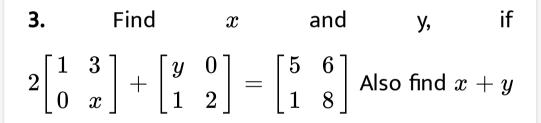
34. The necessary and sufficient condition for a

matrix A to be skew symmetric is that A=-A.



Questions Carrying 2 Marks

1. Find the values of a, b, c and d from the


following equations

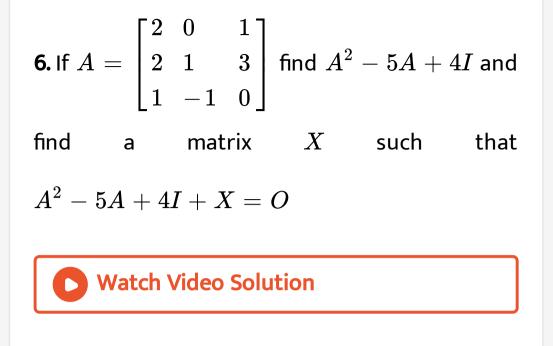
$$egin{bmatrix} a-b & 2a+c \ 2a-b & 3c+d \end{bmatrix} = egin{bmatrix} -1 & 5 \ 0 & 13 \end{bmatrix}$$

2. If 
$$\begin{bmatrix} a+4 & 3b \\ 8 & -6 \end{bmatrix} = \begin{bmatrix} 2a+2 & b+2 \\ 8 & a-8b \end{bmatrix}$$
 write

the value of  $a-2\,\mathrm{b}$  .

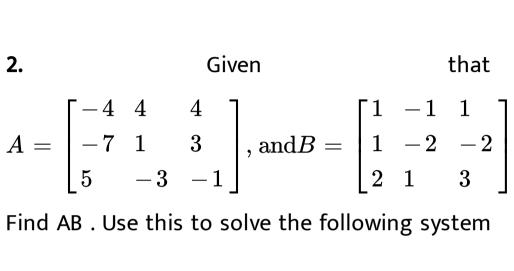
Watch Video Solution




**4.** If A is square matrix such that  $A^2 = A$  , then write the value of  $7A - (I + A)^3$  , where I is an identity matrix

identity matrix .

Watch Video Solution


5. Let
$$A = \begin{bmatrix} 2 & -1 \\ 3 & 4 \end{bmatrix}, B = \begin{bmatrix} 5 & 2 \\ 7 & 4 \end{bmatrix}, C = \begin{bmatrix} 2 & 5 \\ 3 & 8 \end{bmatrix}$$

Find a matrix D such that CD – AB = O.



## Questions Carrying 6 Marks

1. If 
$$A = \begin{bmatrix} 1 & -2 & 0 \\ 2 & 1 & 3 \\ 0 & -2 & 1 \end{bmatrix}$$
,  $B = \begin{bmatrix} 7 & 2 & -6 \\ -2 & 1 & -3 \\ -4 & 2 & 5 \end{bmatrix}$ , find AB Also solve  $x - 2y = 10, 2x + y + 3z = 8, -2y + z = 7$ 



of linear equations :

x-y+z=4, x-2y-2z=9, 2x+y+3z=1

# Watch Video Solution

3. Express the matrix A as the sum of a

symmetric and skew-symmetric matrix, where :

$$A = egin{bmatrix} 3 & -1 & 0 \ 2 & 0 & 3 \ 1 & -1 & 2 \end{bmatrix}$$

Watch Video Solution

4. if 
$$A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 1 & -1 \\ a & 2 & b \end{bmatrix}$$
 is a matrix satisfying  $AA' = 9l_3$ , find the value of  $|a| + |b|$ .