

MATHS

BOOKS - ACCURATE PUBLICATION

RELATION AND FUNCTIONS

Questions Carrying 1 Mark Type I

1. Let R be the relation in the set N given by $R = \{(a, b) : a - b = 5, a > 7\}$, choose correct answer :

A. $(7,2)\in R$

B. $(15, 12) \in R$

 $\mathsf{C}.\,(9,4)\in R$

 $\mathsf{D}.\,(8,2)\in R$

Answer: C

Watch Video Solution

2. Let R be the relation in the set N given by $R = \{(a, b) : a = b-2, b > 6\}$. Choose the correct answer:

A. $(2,4)\in R$

- $\mathsf{B.}\,(3,8)\in R$
- $\mathsf{C}.\,(6,8)\in R$
- $\mathsf{D}.\,(8,7)\in R$

Answer: C

Watch Video Solution

3. Let $A = \{1, 2, 3\}$. Then number of relations containing (1, 2) and (1, 3) which are reflexive and symmetric but not transitive is

A. 1

B. 2

C. 3

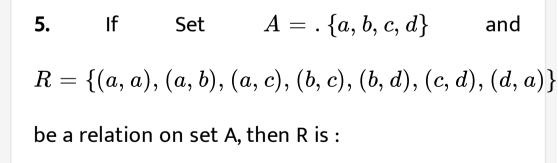
D. 4

Answer: B

Watch Video Solution

4. If
$$A = \{a, b, c, d\}$$
 then a relation $R = \{(a, a), (b, b), (c, c), (d, d)\}$ on A is :

A. Symmetric


B. Transitive

C. Reflexive

D. None of these

Answer: C

A. Reflexive

B. Symmetric

C. Transitive

D. None of these

Answer: D

Watch Video Solution

6. If Set $A = \{a, b, c, d\}$, then a relation

 $R=\{(a,b),(b,a),(a,a)\}$ on A is :

A. Symmetric and transitive only

B. Reflexive and transitive only

C. Symmetric only

D. Transitive only

Answer: A

7. Let R be the relation in the set {1, 2, 3, 4} given by R = {(1, 2), (2, 2), (1, 1), (4,4), (1, 3), (3, 3), (3, 2)}.

Choose the correct answer.

A. R is reflexive and symmetric but not transitive

B. R is reflexive and transitive but not symmetric

C. R is symmetric and transitive but not reflexive

D. R is an equivalence relation.

Answer: A

Watch Video Solution

8. Let $A = \{1, 2, 3\}$ Then number of equivalence relations containing (1, 2) is:

A. 1

B. 2

C. 3

D. 4

Answer: B

Watch Video Solution

9. The range of function
$$f(x) = rac{|x-1|}{x-1}$$

A.
$$\{\,-1,1\}$$

$$\mathsf{B.}\left\{\,-\,1,\,2\right\}$$

$$\mathsf{C}.\,\{\,-\,2,\,2\}$$

D. None of these

Answer: D

10. Let f: R - R be defined as $f(x) = x^4$, then (a) f is one-one (b) f is many-one onto (c) f is one-one but not onto (d) f is neither one-one nor onto

A. f is one-one onto

B. f is many-one onto

C. f is one-one but not onto

D. f is neither one-one nor onto.

Answer: D

11. Let $f\!:\!R o R$ be defined as f(x)=3x Choose

the correct answer.

- A. f is one-one onto
- B. f is many-one onto
- C. f is one-one but not onto
- D. f is neither one-one nor onto.

Answer: A

12. Let T be the set of all triangles in a plane with R a relation in T given by : $R = \{(T_1, T_2): T_1 \text{ is } congruent to T_2\}$. Show that R is an equivalence relation.

A. reflexive but not transitive

B. transitive but not symmetric

C. equivalence

D. none of these

Answer: C

13. Consider the non-empty set consisting of children in a family and a relation R defined as aRb if a is brother of b. Then R is

A. symmetric but not transitive

B. transitive but not symmetric

C. neither symmetric nor transitive

D. both symmetric and transitive

Answer: B

14. The maximum number of equivalence relations

on the set A = {1, 2, 3} are

A. 1

B. 2

C. 3

D. 5

Answer: C

15. If a relation R on the set {1, 2, 3} be defined by R

= {(1, 2)}, then R is

A. reflexive

B. transitive

C. symmetric

D. none of these

Answer: B

16. Let R be a relation defined by R = {(a, b) : $a \ge b$ }, where a and b are real numbers, then R is

A. an equivalence relation

B. reflexive, transitive but not symmetric

C. symmetric, transitive but not reflexive

D. neither transitive nor reflexive but symmetric

Answer: B

17. Let A = $\{1, 2, 3\}$ and consider the relation, R = $\{1, 2, 3\}$

1}, (2, 2), (3, 3), (1, 2), (2, 3), (1, 3). Then R is

A. reflexive but not symmetric

B. reflexive but not transitive

C. symmetric and transitive

D. neither transitive, nor transitive

Answer: D

18. If the set A contains 5 elements and the set B contains of 6 elements, then the number of one-one and onto mappings from A to B is

A. 720

B. 120

C. 0

D. none of these

Answer: C

19. Let $A = \{1, 2, 3, \dots, n\}$ and $B = \{a, b\}$. Then the

number of surjections from A into B is

A. $^{n}P_{2}$

B. $2^{n} - 2$

 $C. 2^n - 1$

D. none of these

Answer: C

20. Let f:R $\ o$ R be defined by $f(x)=rac{1}{x}$ $orall x\in R.$

Then f is

A. one-one

B. onto

C. bijective

D. f is not defined

Answer: D

21. Which of the following function from Z to itself

are bijections?

A.
$$f(x) = x^3$$

- $\mathsf{B.}\,f(x)=x+2$
- $\mathsf{C}.\,f(x)=2x+1$

D.
$$f(x)=x^2+1$$

Answer: C

22. Let $f \colon [2,\infty) o R$ be the function defined by $f(x) = x^2 - 4x + 5$, then the range of f is

A. R

- $\mathsf{B}.\left[1,\infty\right)$
- $\mathsf{C}.\,[4,\infty)$
- $\mathsf{D}.\,[5,\infty)$

Answer: D

23. Let R be a relation on the set N of natural numbers defined by n R m if n divides m. Then R is

A. Reflexive and symmetric

B. Transitive and symmetric

C. Equivalence

D. Reflexive, transitive but not symmetric

Answer: D

24. Let L denote the set of all straight lines in a plane. Let a relation R be defined by I Rm if and only if I is perpendicular to m \forall I, m \in 1. Then R is

A. reflexive

B. Symmetric

C. Transitive

D. none of these

Answer: B

25. Let N be the set of natural numbers and the function f:N \rightarrow N be defined by f(n) = 2n + 3 \forall n

 \in N. Then f is

A. surjective

B. injective

C. bijective

D. none of these

Answer: B

26. If n(A) = 3 and n(B) = 4, then the number of injective mapping that can be defined from A to B (a)144 (b)12 (c)24 (d)64 A. 144 B. 12 C. 24 D. 64 **Answer: C** Watch Video Solution

27. Let $f\!:\!R o R$ defined by $f(x)=x^2+1$, then

pre image of 17 and -3 respectively are

A.
$$\phi$$
, $\{-4, 4\}$
B. $\{3, -3\}, \phi$
C. $\{4, -4\}, \phi$
D. $\{4, -4\}, \{-2, -2\}$

Answer: C

28. For real numbers x and y, we write x R y \Leftrightarrow x - y + $\sqrt{2}$ is an irrational number. Then, the relation R is

A. reflexive

B. symmetric

C. transitive

D. none of these

Answer: A

29. Let T be the set of all triangles in the Euclidean plane, and let a relation R on T be defined as a R b if a is congruent to b \forall a,b \in T. Then R is

A. reflexive but not transitive

B. transitive but not symmetric

C. equivalence

D. None of these

Answer: C

30. Consider the non-empty set consisting of children in a family and a relation R defined as aRb if a is brother of b. Then R is

A. symmetric but not transitive

B. transitive but not symmetric

C. neither symmetric nor transitive

D. both symmetric and transitive

Answer: B

31. The maximum number of equivalence relations

on the set A = {1, 2, 3} are

A. 1

B. 2

C. 3

D. 5

Answer: D

32. If a relation R on the set {1, 2, 3} be defined by R

= {(1, 2)}, then R is

A. reflexive

B. transitive

C. symmetric

D. none of these

Answer: B

33. Let R be a relation defined by R = {(a, b) : $a \ge b$ }, where a and b are real numbers, then R is

A. an equivalent relation

B. reflexive, transitive but not symmetric

C. symmetric, transitive but not reflexive

D. neither transitive nor reflexive but symmetric

Answer: B

34. Let A = $\{1, 2, 3\}$ and consider the relation, R = $\{1, 2, 3\}$

1}, (2, 2), (3, 3), (1, 2), (2, 3), (1, 3). Then R is

A. reflexive but not symmetric

B. reflexive but not transitive

C. symmetric and transitive

D. neither symmetric, nor transitive

Answer: A

35. If the set A contains 5 elements and the set B contains 6 elements, then the number of one-one and onto mappings from A to B is

A. 720

B. 120

C. 0

D. none of these

Answer: C

36. The number of surjections from $A = \{1, 2, ..., n\}$,

 $n\geq 2$ onto B = {a, b} is

A. $^{n}P_{2}$

B. $2^{n} - 2$

 $C. 2^n - 1$

D. None of these

Answer: B

37. Let f:R ightarrow R be defined by $f(x)=rac{1}{x}$ $orall x\in R.$

Then f is

A. one-one

B. onto

C. bijective

D. f is not defined

Answer: D

38. Which of the following function from Z to itself

are bijections?

A.
$$f(x) = x^3$$

- $\mathsf{B.}\,f(x)=x+2$
- $\mathsf{C}.\,f(x)=2x+1$

D.
$$f(x)=x^2+1$$

Answer: B

> Watch Video Solution

39. Let $f \colon [2,\infty) o R$ be the function defined by $f(x) = x^2 - 4x + 5$, then the range of f is

A. R

- $\mathsf{B}.\left[1,\infty\right]$
- $\mathsf{C}.\left[4,\infty
 ight)$
- D. $[5,\infty)$

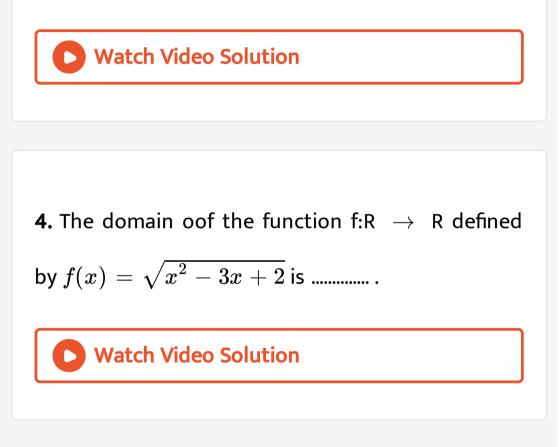
Answer: B

Questions Carrying 1 Mark Type li

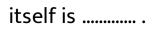
1. Let the relation R be defined in N by aRb if 2 a + 3

Watch Video Solution

2. Let the relation R be defined on the set


 $A = \{1, 2, 3, 4, 5\} \; \; ext{by} \; \; R = ig\{(a, b) \colon ig|a^2 - b^2ig| < 8ig\}$:

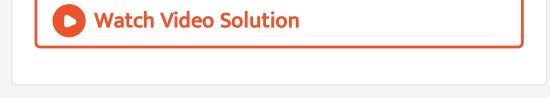
Then R is given by


3. Consider the set A = {1, 2, 3} and R be the smallest

equivalence relation on A, then R =

5. Consider the set A containing n elements. Then,

the total number of injective functions from a onto



6. Let Z be the set of integers and R be the relation defined in Z such that a R b if a - b is divisible by 3. Then R partitions the set Z into pairwise disjoint subsets.

Watch Video Solution

7. Let the relation R be defined in N by aRb if 2 a + 3

b = 30. Then R =

8. Let the relation R be defined on the set

 $A = \{1, 2, 3, 4, 5\} \; \; ext{by} \; \; R = ig\{(a, b) \colon \left|a^2 - b^2
ight| < 8ig\}$:

Then R is given by

Watch Video Solution

Questions Carrying 1 Mark Type lii

1. Consider the set A = {1, 2, 3} and the relation R =

{(1, 2), (1, 3)}. R is a transitive relation.

2. Let A be a finite set. Then, each injective function

from A into itself is not surjective.

3. Every relation which is symmetric and transitive

is also reflexive.

4. An integer m is said to be related to another integer n if m is a integral multiple of n. This relation in Z is reflexive, symmetric and transitive.

5. Let A = {0, 1} and N be the set of natural numbers.

Then the mapping f : N \rightarrow A defined by f(2n - 1) =

0, f(2n) = 1, $\forall n \in N$, is onto.

Watch Video Solution

6. The relation R on the set A = {1, 2, 3} defined as R = {(1, 1), (1, 2), (2, 1), (3, 3)} is reflexive, symmetric and transitive.

Watch Video Solution

7. A relation R in A is said to be transitive if a R b and b R c \Rightarrow a R c

Watch Video Solution

8. The relation R in the set $\{1, 2, 3\}$ given by R = $\{(1, 2, 3)\}$

2), (2, 1)} is not symmetric.

9. Let R be the relation in the set N given by $R = \{(a, b) : a = b-2, b > 6\}$. Choose the correct answer:

10. A function f:X \rightarrow Y is said to be bijective, if f is

both one-one and onto.

Watch Video Solution

11. Show that the function f: N o N given by f(x)=

3x is one-one but not onto.

Watch Video Solution