

MATHS

BOOKS - ACCURATE PUBLICATION

SAMPLE QUESTION PAPER - I

- **1.** Let $f \colon R o R$ be defined as f(x) = 3x. Choose the correct answer.
 - A. f is one one onto
 - B. f is many one onto
 - C. f is one one but not onto
 - D. f is neither one one nor onto

Answer: A

2. Find the Principle value of
$$\sin^{-1}\left(-\frac{\sqrt{3}}{2}\right)$$

A.
$$\frac{2\pi}{3}$$

B. $\frac{\pi}{3}$
C. $-\frac{\pi}{3}$
D. $-\frac{2\pi}{3}$

Answer: C

3. If AB = C where A is a matrix of order 2×3 and C is a matrix of order

2 imes 5 , then the order of B is :

A. 3 imes 5

 $\text{B.}\,4\times5$

 ${\rm C.3\times3}$

 ${\rm D.5\times5}$

Answer: A

Watch Video Solution

4. Which of the given values of x and y make the following pair of matrices equal

$$egin{bmatrix} 3x+7 & 5 \ y+1 & 2-3x \end{bmatrix}, egin{bmatrix} 0 & y-2 \ 8 & 4 \end{bmatrix}$$

A.
$$x=rac{-1}{3},y=7$$

B. Not possible to find

C.
$$y = 7, x = \frac{-2}{3}$$

D. $x = \frac{-1}{3}, y = \frac{-2}{3}$

Answer: B

5. If
$$A = \begin{pmatrix} \alpha & 3 \\ 3 & \alpha \end{pmatrix}$$
 and $|A|^3 = -125$, then α equals :
A. ± 1
B. ± 2
C. ± 3
D. ± 4

Answer: B

Watch Video Solution

6. If function defined by :
$$f(x) = \begin{cases} rac{\sin 3x}{4x} & x
eq 0 \\ k+1 & x = 0 \end{cases}$$
 is continuous at

x = 0, then value of k is :

A.
$$\frac{1}{2}$$

B. $-\frac{1}{2}$
C. $\frac{1}{4}$

$$\mathsf{D.}-rac{1}{4}$$

Answer: D

7. If
$$y = n^x, n > 0$$
 then $\frac{dy}{dx}$ is equal to
A. xn^{x-1}
B. $\frac{x}{\log n}$
C. $n^x \log n$
D. None of these

Answer: C

8. The derivative of f(x) = |x| at x = 2 equals

A. 1

 $\mathsf{B.}-1$

- C. 0
- D. 2

Answer: A

Watch Video Solution

9.
$$\int \frac{\sin^2 x - \cos^2 x}{\sin^2 x \cos^2 x} dx$$
 is equal to :

A. $\tan x + \cot x + C$

 $B.\tan x + \csc x + C$

 $\mathsf{C}.- an x+\cot x+C$

 $\mathsf{D}.\tan x + \sec x + C$

Answer: A

10.
$$\int e^x (\cot x + \log \sin x) dx$$
 is equal to :

A. $e^x \cot x + c$

B. $e^x \log \sin x + c$

 $\mathsf{C}.\, e^x + \cot x + c$

D. None of these

Answer: B

Watch Video Solution

11. The number of arbitrary constants in the particular solution of a differental equation of fourth order is :

A. 0

B. 2

C. 3

Answer: A

Watch Video Solution

12. I.F. factor of
$$\frac{dy}{dx} + \frac{1}{x \log x}y = \frac{1}{x}$$
 is
A. $\frac{1}{x}$
B. x^2
C. x^3
D. $\log x$

Answer: D

13. If
$$\sqrt{2} \left(\overrightarrow{a} \cdot \overrightarrow{b} \right) = \left| \overrightarrow{a} \right| \left| \overrightarrow{b} \right|$$
, then angle between \overrightarrow{a} and \overrightarrow{b} is equal to :

A. 30°

B. 45°

 $\mathsf{C.}\,60^{\,\circ}$

D. 90°

Answer: B

Watch Video Solution

14. Let the vectors a and b be such that |a| = 3, $|b| = \frac{\sqrt{2}}{3}$ and $a \times b$ is a unit vector, then find the angle between a and b.

A. $\pi/6$

B. $\pi/4$

C. $\pi/3$

D. $\pi/2$

Answer: B

15. Distance between the point (0, 1, 7) and the plane 3x + 4y + 1 = 0 is

A. 1 unit

B. 2 unit

C. 3 unit

D. 4 unit

Answer: A

Watch Video Solution

16. In a single throw of two dice, the chances of throwing a sum of 5 is :

A. 0 B. $\frac{1}{36}$ C. $\frac{1}{9}$

D.
$$\frac{5}{36}$$

Answer: C

1.

Section A Fill In The Blanks

$$0, rac{\pi}{2}, rac{x}{(1-x^2)^{rac{3}{2}}}, R = \{(3,8), (6,6), (9,4), (12,2)\}, 2x-y+1 = 0, \left|rac{\overrightarrow{b}}{\overrightarrow{b}}
ight|$$

Let the relation R be defined in N by aRb if 2a+3b=30, Then R = \ldots ...

2. If |A|=2, where A is a 2 imes 2 matrix, then |adjA| is

3. If
$$y=\sin^{-1}x$$
 , then $\displaystyle rac{d^2y}{dx^2}=~\dots\dots$

5.
$$\int_0^\infty rac{1}{1+x^2} dx$$
 is equal to :

Watch Video Solution

6. Degree of differential equation
$$x^2 \left(\frac{dy}{dx} \right)^2 - y \frac{d^3y}{dx^3} = 2$$
 is \dots

7. The shortest distance between two parallel line

$$\overrightarrow{r}_2 = \overrightarrow{a}_1 + \lambda \overrightarrow{b}, \ \overrightarrow{r}_2 = \overrightarrow{a}_2 + \mu \overrightarrow{b}$$
 is given by

8. If
$$P(A)=rac{2}{7}, P(B)=rac{3}{7} ext{ and } P(A\cup B)=rac{5}{7},$$
 then P (A/B) equals .

Watch Video Solution

Section A True Or False

.

 $1.\tan 1>\tan^{-1}1$

2.
$$(A + B)' = A' + B$$

3. Derivative of
$$\sin^{-1}(\sin x)$$
 w.r.t. x is 1

4. If
$$f(a-x)=\ -f(x)$$
 , then $\int_{0}^{2a}f(x)dx=0$

5. If
$$\overrightarrow{a} = \hat{i} + 4\hat{j} + 4\hat{k}$$
 and $\overrightarrow{b} = 4\hat{i} - \hat{j} + 3\hat{k}$, then $\overrightarrow{a} \cdot \overrightarrow{b}$ is equal to 12

Watch Video Solution

6. If a line makes angles α , β , γ respectively with positive directions of the coordinate axes, then the value of $\cos^2 \alpha + \cos^2 \beta + \cos^2 \gamma = 1$.

2. If the matrix $A = \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix}$ and $A^2 = kA$, then write the value of k.

3. Find the equation of the normal at the point $\left(am^2, am^3
ight)$ for the curve

$$ay^2 = x^3$$

Watch Video Solution

4. Show that the function $f(x) = x^7 + 8x^5 + 1$ is increasing function for

all values of x.

Watch Video Solution

5. Find
$$\int \sqrt{1-\sin 2x} dx, rac{\pi}{4} < x < rac{\pi}{2}$$

6. Find the area of the region bounded by $x^3 = y - 3, y = 4, y = 6$ and y-axis in the first quadrant.

7. Write a vector of magnitude 9 units in the direction vector $-2\hat{i}+\hat{j}+2\hat{k}.$

Watch Video Solution

8. If
$$\left(\overrightarrow{a} \times \overrightarrow{b}\right)^2 + \left(\overrightarrow{a} \cdot \overrightarrow{b}\right)^2 = 225$$
 and $\left|\overrightarrow{a}\right| = 5$, then write the value of $\left|\overrightarrow{b}\right|$.

9. Find the values of a, b, c and d from the equation : $\begin{bmatrix} a-b & 2a+c \\ 2a-b & 3c+d \end{bmatrix} = \begin{bmatrix} -1 & 5 \\ 0 & 13 \end{bmatrix}$ and write correct answer from the following:

10. If A is a square matrix such that $A^2 = I$, then find the simplified value of $\left(A - I\right)^3 + \left(A + I\right)^3 - 7A.$

Watch Video Solution

11. Show that the function f given by $f(x)=x^3-3x^2+4x, x\in R$ is

strictly increasing on R.

12. Maximum value of the function sin x + cos x is.

16. Find
$$\lambda$$
 if $\left(2\hat{i}+6\hat{j}+14\hat{k}
ight) imes\left(\hat{i}-\lambda\hat{j}+7\hat{k}
ight)=\overrightarrow{0}$.

Section C

1. Prove that
$$an^{-1}x+ an^{-1}rac{2x}{1-x^2}= an^{-1}igg(rac{3x-x^3}{1-3x^2}igg), |x|<rac{1}{\sqrt{3}}$$

Watch Video Solution

2. If $x = a \sin 2t(1 + \cos 2t)$ and $y = b \cos 2t(1 - \cos 2t)$, show that

$$\left(rac{dy}{dx}
ight)_{t=rac{\pi}{4}}=rac{b}{a}$$
 Also find $rac{dy}{dx}$ at $t=rac{\pi}{3}$

Watch Video Solution

3. If
$$y=e^{a\cos^{-1}3x}$$
, prove that $ig(1-9x^2ig)rac{d^2y}{dx^2}-9xrac{dy}{dx}-9a^2y=0.$

4. Evaluate
$$\int x \sin^{-1} x dx$$

5. Find :
$$\int \frac{dx}{x(x^3+8)}$$

•

6. Solve the differential equation
$$: x \frac{dy}{dx} + 2y = x^2.$$

Watch Video Solution

7. Solve the differential equation $:x \sec^2 \Bigl(rac{y}{x} \Bigr) dy = \Bigl\{ y \sec^2 \Bigl(rac{y}{x} \Bigr) + x \Bigr\} dx.$

8. Bag A contains 3 red and 2 black balls, while bag B contains 2 red and 3 black balls. A ball drawn at random from bag A is transferred to bag B and one ball is drawn at randon from bag B. If this ball was found to be red ball, find the probability that the ball drawn from bag A was red.

Watch Video Solution

9. Three cards are drawn successively with replacement from a well shuffled pack of 52 cards. Find the probability distribution of the number spades.

Watch Video Solution
10. Prove that
$$\cot^{-1}\left(\frac{\sqrt{1+x}-\sqrt{1-x}}{\sqrt{1+x}+\sqrt{1-x}}\right) = \frac{\pi}{4} + \frac{1}{2}\cos^{-1}x$$

Watch Video Solution

11. Differentiate the following w.r.t. x:

$$x^{\sin x} + (\sin x)^{\cos x}$$

Watch Video Solution

12. If $x = a \cos \theta + b \sin \theta$ and $y = a \sin \theta - b \cos \theta$, then prove that

$$y^2rac{d^2y}{dx^2}-rac{dy}{dx}+y=0$$
 .

Watch Video Solution

13. If [x] stands for integral part of x, then show that
$$\int_0^1 [5x] dx = 2.$$

14. Find :
$$\int rac{x^3 dx}{x^4 + 3x^2 + 2} dx.$$

15. Find the particular solution of the following differential equation : $rac{dy}{dx}=1+x^2+y^2+x^2y^2$, given that y=1 when x=0.

Watch Video Solution

16. Suppose a girl throws a die. If she gets a 5 or 6, she tosses a coin three times and notes the numbers of heads. If she gets 1,2,3, or 4, she tosses a coin once and notes whether a head or a tail is obtained. If she attained exactly one head what is the probability that she threw 1,2,3, or 4 with the die?

Watch Video Solution

17. Two numbers are selected at random (without replacement) from the first six positive integers. Let X denote the larger of the two numbers obtained. Find E(X).

Section D

1. Using matrices, solve the following of linear equations :

x + 2y - 3z = -4

2x + 3y + 2z = 2

3x - 3y - 4z = 11

Watch Video Solution

2. If
$$A = \begin{bmatrix} 1 & -2 & 1 \\ 0 & -1 & 1 \\ 2 & 0 & -3 \end{bmatrix}$$
, find A^{-1} and solve the system of equations $x - 2y + z = 0, -y + z = -2, 2x - 3z = 10$

Watch Video Solution

3. Find the equation of the plane passing through the line of intersection of the planes 2x + y - z = 3 and 5x - 3y + 4z + 9 = 0 and parallel to the line $\frac{x-1}{2} = \frac{y-3}{4} = \frac{5-z}{-5}$

4. Find the shortest distance (S.D.) between the lines :

$$\overrightarrow{r}=2\hat{i}+3\hat{j}+\hat{k}+\lambda\Big(2\hat{i}-\hat{j}+3\hat{k}\Big) ~~ ext{and}~~ec{r}=7\hat{i}+5\hat{j}+6\hat{k}+\mu\Big(\hat{i}+3\hat{k}\Big)$$

Watch Video Solution

5. Solve the following linear programming problems graphically :

Minimise and Maximise Z = 5x + 10y

subject to constraints

 $x+2y\leq 120$

 $x+y\geq 60$

 $x-2y\geq 0$

 $x,y\geq 0$

6. Solve the following linear programming problem graphically:

Maximise z = 7x+10y subject to the constraints : $2x+3y \leq 120, 2x+y \leq 80, x \geq 10, x, y \geq 0$

Watch Video Solution

7. If
$$A = \begin{bmatrix} 1 & -2 & 1 \\ 0 & -1 & 1 \\ 2 & 0 & -3 \end{bmatrix}$$
, find A^{-1} and solve the system of equations

$$x-2y+z=0,\;-y+z=\;-2,2x-3z=10$$

Watch Video Solution

8. Prove the following identities :

$$egin{array}{c|c} a & a^2 & a^3 \ b & b^2 & b^3 \ c & c^2 & c^3 \end{array} = abc(a-b)(b-c)(c-a).$$

9. Find the direction ratios of the normal to the plane, which passes through the points (1, 0, 0) and (0, 1, 0) and makes angle $\frac{\pi}{4}$ with the plane x + y = 3. Also find the equation of the plane.

10. Find the coordinates of the foot of perpendicular and the length of the perpendicular drawn from the point P(5, 4, 2) to the line $\overrightarrow{R} = -\hat{i} + 3\hat{j} + \hat{k} + \lambda \left(2\hat{i} + 3\hat{j} - \hat{k}\right)$. Also find the image of P in this ...

line.

Watch Video Solution

11. Solve the following linear programming problems graphically

Minimize Z=5x+7y subject to the constraints $2x+y\geq 8, x+2y\geq 10, x, y\geq 0$

12. Maximize z = 9x + 3y subject to the constraints

 $2x+3y\leq 13$

 $2x+y\leq 5$

 $x,y\geq 0$

Watch Video Solution

Section A Choose The Correct Option In The Following Questions

1. Range of the function
$$f(x) = rac{|x-2|}{|x-2|}$$
 is

A. $\{-1, 1\}$

- $\mathsf{B}.\,\{\,-\,1,\,2\}$
- $\mathsf{C}.\,\{\,-\,2,\,2\}$
- D. None of these

Answer: A

2.
$$\tan^{-1}(\sqrt{3}) - \cos^{-1}\left(\frac{1}{2}\right)$$
 is equal to :
A. $\frac{\pi}{3}$
B. $\frac{2\pi}{3}$
C. O
D. $\frac{\pi}{6}$

Answer: C

3. If AB=C where A is a matrix of order 2 imes 2 and C is a matrix of order

2 imes 5 , then the order of B is :

A. 3 imes 5

 ${\rm B.2\times5}$

 $\mathsf{C.3}\times 3$

 ${\rm D.5}\times5$

Answer: B

$$A = \begin{bmatrix} 0 & 1 & -2 \\ -1 & 0 & 3 \\ x & -3 & 0 \end{bmatrix}$$
 a skew-symmetric matrix.
A. -2
B. -3
C. -4

$$\mathsf{D.}-5$$

Answer: A

5. If area of triangle is 35 sq. units with vertices (2,-6), (5, 4) and (k,4) then k is :

A. 12

 $\mathsf{B.}-2$

C. - 12, -2

D. 12, -2

Answer: D

Watch Video Solution

6. If
$$f(x)=egin{cases} rac{x^2-25}{x-5}&, x
eq 5\ k&, x=5 \end{cases}$$
 is continuous at x=5, then k is equal

to:

A. 10

B. 5

C. 0

D. 4

Answer: A

7. Derivative of
$$(\sin^{-1}x + \cos^{-1}x)$$
 w.r.t 'x' is equal to :

 $\mathsf{A.}-1$

B. 0

C. 1

D. 2

Answer: B

8. If
$$y = \left(3x^2+2
ight)^2$$
, then $rac{dy}{dx}$ is
A. $3x^2+2$
B. $x\left(3x^2+2
ight)$
C. $10x\left(3x^2+2
ight)$
D. $12x\left(3x^2+2
ight)$

Answer: D

9.
$$\int \frac{10x^9 + 10^x \log_e 10}{x^{10} + 10^x} dx$$
 is equal to :
A. $\log |x^{10} + 10^x| + c$
B. $10^x + 10^{10} + c$
C. $10^x - x^{10} + x$
D. $(10^x - x^{10})^{-1} + c$

Answer: A

10. Choose the correct answer:
$$\int e^x \sec x (1 + \tan x) dx$$
 equals :

A. $e^x \cos x + C$

B. $e^x \sec x + C$

 $\mathsf{C}.\,e^x\sin x+C$

D. $e^x \tan x + C$

Answer: B

11. The number of arbitrary constants in the particular solution of a differential equation of Third order is :

A. 0		
B. 2		
C. 3		
D. 5		

Answer: A

Watch Video Solution

12. Solve the following differential equations

 $\frac{dy}{dx} - \frac{y}{x} = 2x^2$ A. x
B. x^2 C. $\frac{1}{x}$ D. $\frac{2}{x}$

Answer: C

13. The projection of $\overrightarrow{a}=2\hat{i}-\hat{j}+\hat{k}$ on $\overrightarrow{b}=\hat{i}-2\hat{j}+\hat{k}$ is equal to :

A.
$$\frac{5\sqrt{6}}{3}$$

B.
$$\frac{5}{\sqrt{6}}$$

C.
$$\frac{6}{\sqrt{14}}$$

D.
$$\frac{\sqrt{6}}{5}$$

Answer: B

14. If
$$\left|\overrightarrow{a}\right| = 5$$
, $\left|\overrightarrow{b}\right| = 4$ and \overrightarrow{a} . $\overrightarrow{b} = 16$, then $\left|\overrightarrow{a} \times \overrightarrow{b}\right|$ is

A. 10

B. 12

C. 14

D. 16

Answer: B

15. The distance between the planes, 3x+ 2y-6z-14=0 and 3x+ 2y-6z+21 =0 is,	,
A. 35	
B. 7	
C. 1	
D. 5	

Answer: D

16. In a single throw of two dice, the probability of getting total of 7 or 9 is :

A. 0 B. $\frac{1}{36}$ C. $\frac{1}{9}$ D. $\frac{1}{6}$

Answer: D

Watch Video Solution

Section A Fill In The Blanks From The Given Options

1. Consider the set A = {1, 2, 3} and R be the smallest equivalence relation

2.

$$0, rac{\pi}{2}, rac{x}{(1-x^2)^{rac{3}{2}}}, R = \{(3,8), (6,6), (9,4), (12,2)\}, 2x-y+1 = 0, \left|rac{
ightarrow b}{-}
ight.$$

Let the relation R be defined in N by aRb if 2a+3b=30, Then R = \ldots ...

Watch Video Solution

4. Show that the tangents to the curve y= $7x^3 + 11$ at the points x = 2 and

x =-2 are parallel.

5.
$$\int_{0}^{\pi/2} \left(\frac{\sqrt{\cos x}}{\sqrt{\sin x} + \sqrt{\cos x}} \right) dx \text{ is equal to}$$

• Watch Video Solution

6. The number of arbitrary constants in the general solution of a differential equation of fourth order are:

• Watch Video Solution

7. The two lines $\overrightarrow{r}_{2} = \overrightarrow{a}_{1} + \lambda \overrightarrow{b}, \overrightarrow{r}_{2} = \overrightarrow{a}_{2} + \mu \overrightarrow{b}$ will intersect if d = ...

.....

• Watch Video Solution

8. If A and B are independent events and if $P(A) = \frac{1}{2}, P(B) = \frac{2}{5}, then$

P(A cap B)` is equal to :

Section A State True Or False For The Following Statements

1. The value of `sin^-1 (sin (2 π /3)) is :

Watch Video Solution

2. Value of
$$\begin{vmatrix} 1 & \omega & \omega^2 \\ \omega & \omega^2 & 1 \\ \omega^2 & 1 & \omega \end{vmatrix}$$
 is zero, where ω, ω^2 are imaginary cube roots of

unity.

Watch Video Solution

3. Derivative of $\sin^{-1}(\sin 2x)$ w.r.t x is 2

4. Solve
$$\int rac{2x}{1+x^2} \ dx$$

Watch Video Solution

5. If
$$\overrightarrow{a} = \hat{i} + 5\hat{j} + 4\hat{k}$$
 and $\overrightarrow{b} = 5\hat{i} - \hat{j} + 2\hat{k}$, then $\overrightarrow{a} \cdot \overrightarrow{b}$ is equal to 8

6. If a line makes angles α, β, γ respectively with positive directions of the

coordinate axes, then the value of $\cos^2lpha+\cos^2eta+\cos^2\gamma=1.$

Watch Video Solution

7. Let P (A) > 0 and P (B) > 0. Then A and B can be both mutually exclusive and independent."

8. Quadrant represented by the region $x \ge 0, y \le 0$ is