

MATHS

BOOKS - ACCURATE PUBLICATION

SAMPLE QUESTION PAPER - II (UNSOLVED)

Section A Choose The Correct Option In The Following Questions

1. Range of the function
$$f(x) = rac{|x-2|}{|x-2|}$$
 is

- A. $\{\,-1,1\}$
- $\mathsf{B}.\,\{\,-\,1,\,2\}$
- $\mathsf{C}.\,\{\,-\,2,\,2\}$

D. None of these

Answer: A

2.
$$an^{-1} ig(\sqrt{3}ig) - \cos^{-1} igg(rac{1}{2}ig)$$
 is equal to :

A.
$$\frac{\pi}{3}$$

B. $\frac{2\pi}{3}$
C. O
D. $\frac{\pi}{6}$

Answer: C

O Watch Video Solution

3. If AB=C where A is a matrix of order 2 imes 2 and C is a matrix of order

2 imes 5 , then the order of B is :

A. 3 imes 5

 $\text{B.}\,2\times5$

 ${\sf C.3 imes 3}$

 ${\rm D.5\times5}$

Answer: B

$$A = \begin{bmatrix} 0 & 1 & -2 \\ -1 & 0 & 3 \\ x & -3 & 0 \end{bmatrix}$$
 a skew-symmetric matrix.
A. -2
B. -3
C. -4

$$D.-5$$

Answer: A

5. If area of triangle is 35 sq. units with vertices (2,-6), (5, 4) and (k,4) then k is :

A. 12

 $\mathsf{B.}-2$

C. - 12, -2

D. 12, -2

Answer: D

Watch Video Solution

6. If
$$f(x)= egin{cases} rac{x^2-25}{x-5} &, x
eq 5 \\ k &, x=5 \end{cases}$$
 is continuous at x=5, then k is equal

to:

A. 10

B. 5

C. 0

D. 4

Answer: A

7. Derivative of
$$(\sin^{-1}x + \cos^{-1}x)$$
 w.r.t 'x' is equal to :

 $\mathsf{A.}-1$

B. 0

C. 1

D. 2

Answer: B

8. If
$$y = \left(3x^2+2
ight)^2$$
, then $rac{dy}{dx}$ is
A. $3x^2+2$
B. $x\left(3x^2+2
ight)$
C. $10x\left(3x^2+2
ight)$
D. $12x\left(3x^2+2
ight)$

Answer: D

9.
$$\int \frac{10x^9 + 10^x \log_e 10}{x^{10} + 10^x} dx$$
 is equal to :
A. $\log |x^{10} + 10^x| + c$
B. $10^x + 10^{10} + c$
C. $10^x - x^{10} + x$
D. $(10^x - x^{10})^{-1} + c$

Answer: A

10. Choose the correct answer:
$$\int e^x \sec x (1 + \tan x) dx$$
 equals :

A. $e^x \cos x + C$

B. $e^x \sec x + C$

 $\mathsf{C}.\,e^x\sin x+C$

D. $e^x \tan x + C$

Answer: B

11. The number of arbitrary constants in the particular solution of a differential equation of Third order is :

A. 0		
B. 2		
C. 3		
D. 5		

Answer: A

Watch Video Solution

12. Solve the following differential equations

 $\frac{dy}{dx} - \frac{y}{x} = 2x^2$ A. x
B. x^2 C. $\frac{1}{x}$ D. $\frac{2}{x}$

Answer: C

13. The projection of $\overrightarrow{a}=2\hat{i}-\hat{j}+\hat{k}$ on $\overrightarrow{b}=\hat{i}-2\hat{j}+\hat{k}$ is equal to :

A.
$$\frac{5\sqrt{6}}{3}$$

B.
$$\frac{5}{\sqrt{6}}$$

C.
$$\frac{6}{\sqrt{14}}$$

D.
$$\frac{\sqrt{6}}{5}$$

Answer: B

14. If
$$\left|\overrightarrow{a}\right| = 5$$
, $\left|\overrightarrow{b}\right| = 4$ and \overrightarrow{a} . $\overrightarrow{b} = 16$, then $\left|\overrightarrow{a} \times \overrightarrow{b}\right|$ is

A. 10

B. 12

C. 14

D. 16

Answer: B

15. The distance between the planes, 3x+ 2y-6z-14=0 and 3x+ 2y-6z+21=0 is, A. 35 B. 7 C. 1 D. 5

Answer: D

16. In a single throw of two dice, the probability of getting total of 7 or 9 is :

A. 0 B. $\frac{1}{36}$ C. $\frac{1}{9}$ D. $\frac{1}{6}$

Answer: D

Watch Video Solution

Section A Fill In The Blanks From The Given Options

1. Consider the set A = {1, 2, 3} and R be the smallest equivalence relation

2.

$$0,\,rac{\pi}{2},rac{x}{\left(1-x^2
ight)^{rac{3}{2}}},R=\{(3,8),\,(6,6),\,(9,4),\,(12,2)\},\,2x-y+1=0,\,\left|rac{
ightarrow b}{-}
ight.$$

Let the relation R be defined in N by aRb if 2a+3b=30, Then R = \ldots ...

Watch Video Solution

4. Show that the tangents to the curve y= $7x^3 + 11$ at the points x = 2 and

x =-2 are parallel.

5.
$$\int_{0}^{\pi/2} \left(\frac{\sqrt{\cos x}}{\sqrt{\sin x} + \sqrt{\cos x}} \right) dx$$
 is equal to
Watch Video Solution
6. The number of arbitrary constants in the general solution of a differential equation of fourth order are:
Watch Video Solution
7. The two lines $\overrightarrow{r}_{2} = \overrightarrow{a}_{1} + \lambda \overrightarrow{b}, \overrightarrow{r}_{2} = \overrightarrow{a}_{2} + \mu \overrightarrow{b}$ will intersect if d = ...
.....
Watch Video Solution
8. If A and B are independent events and if $P(A) = \frac{1}{2}, P(B) = \frac{2}{5}, then$
P(A cap B) is equal to :

Section A State True Or False For The Following Statements

1. The value of `sin^-1 (sin (2 π /3)) is :

Watch Video Solution

2. Value of
$$\begin{vmatrix} 1 & \omega & \omega^2 \\ \omega & \omega^2 & 1 \\ \omega^2 & 1 & \omega \end{vmatrix}$$
 is zero, where ω, ω^2 are imaginary cube roots of

unity.

Watch Video Solution

3. Derivative of $\sin^{-1}(\sin 2x)$ w.r.t x is 2

4. Solve
$$\int rac{2x}{1+x^2} \ dx$$

Watch Video Solution

5. If
$$\overrightarrow{a} = \hat{i} + 5\hat{j} + 4\hat{k}$$
 and $\overrightarrow{b} = 5\hat{i} - \hat{j} + 2\hat{k}$, then $\overrightarrow{a} \cdot \overrightarrow{b}$ is equal to 8

6. If a line makes angles α, β, γ respectively with positive directions of the

coordinate axes, then the value of $\cos^2lpha+\cos^2eta+\cos^2\gamma=1.$

Watch Video Solution

7. Let P (A) > 0 and P (B) > 0. Then A and B can be both mutually exclusive and independent."

8. Quadrant represented by the region $x \ge 0, y \le 0$ is

Section **B**

1. Find the values of a, b, c and d from the equation : $\begin{bmatrix} a-b & 2a+c \\ 2a-b & 3c+d \end{bmatrix} = \begin{bmatrix} -1 & 5 \\ 0 & 13 \end{bmatrix}$ and write correct answer from the following:

Watch Video Solution

2. If A is a square matrix such that $A^2 = I$, then find the simplified value of $(A - I)^3 + (A + I)^3 - 7A$.

strictly increasing on R.

7. Show that the vectors $2\hat{i} - \hat{j} + \hat{k}$ and $\hat{i} - 3\hat{j} - 5\hat{k}$ are at right angles.

8. Find
$$\lambda$$
 if $\left(2\hat{i}+6\hat{j}+14\hat{k}
ight) imes\left(\hat{i}-\lambda\hat{j}+7\hat{k}
ight)=\overrightarrow{0}.$

Watch Video Solution

Section C

1. Prove that
$$\cot^{-1}\left(rac{\sqrt{1+x}-\sqrt{1-x}}{\sqrt{1+x}+\sqrt{1-x}}
ight) = rac{\pi}{4} + rac{1}{2} \cos^{-1}x$$

Watch Video Solution

2. Differentiate the following w.r.t. x:

$$x^{\sin x} + (\sin x)^{\cos x}$$

3. If
$$x = a\cos\theta + b\sin\theta$$
 and $y = a\sin\theta - b\cos\theta$, then prove that $y^2 \frac{d^2y}{dx^2} - \frac{dy}{dx} + y = 0$

4. If [x] stands for integral part of x, then show that $\int_0^1 [5x] dx = 2$.

Watch Video Solution

5. Find :
$$\int \frac{x^3 dx}{x^4 + 3x^2 + 2} dx.$$

Watch Video Solution

6. Find the particular solution of the following differential equation : $rac{dy}{dx}=1+x^2+y^2+x^2y^2$, given that y=1 when x=0.

7. Suppose a girl throws a die. If she gets a 5 or 6, she tosses a coin three times and notes the numbers of heads. If she gets 1,2,3, or 4, she tosses a coin once and notes whether a head or a tail is obtained. If she attained exactly one head what is the probability that she threw 1,2,3, or 4 with the die?

8. Two numbers are selected at random (without replacement) from the first six positive integers. Let X denote the larger of the two numbers obtained. Find E(X).

1. If
$$A = \begin{bmatrix} 1 & -2 & 1 \\ 0 & -1 & 1 \\ 2 & 0 & -3 \end{bmatrix}$$
, find A^{-1} and solve the system of equations $x - 2y + z = 0, -y + z = -2, 2x - 3z = 10$

2. Prove the following identities :

$$egin{array}{c|c} a & a^2 & a^3 \ b & b^2 & b^3 \ c & c^2 & c^3 \end{array} = abc(a-b)(b-c)(c-a).$$

Watch Video Solution

3. Find the direction ratios of the normal to the plane, which passes through the points (1, 0, 0) and (0, 1, 0) and makes angle $\frac{\pi}{4}$ with the plane x + y = 3. Also find the equation of the plane.

4. Find the coordinates of the foot of perpendicular and the length of the perpendicular drawn from the point P(5, 4, 2) to the line $\overrightarrow{R} = -\hat{i} + 3\hat{j} + \hat{k} + \lambda (2\hat{i} + 3\hat{j} - \hat{k})$. Also find the image of P in this line.

Watch Video Solution

5. Solve the following linear programming problems graphically

Minimize Z = 5x + 7y subject to the constraints

 $2x+y\geq 8, x+2y\geq 10, x, y\geq 0$

Watch Video Solution

6. Maximize z = 9x + 3y subject to the constraints

 $2x + 3y \leq 13$

 $2x+y\leq 5$

 $x,y\geq 0$

