

MATHS

BOOKS - ACCURATE PUBLICATION

SAMPLE QUESTION PAPER-II

1. If $A = \{a, b, c, d\}$ then a relation $R = \{(a, a), (b, b), (c, c), (d, d)\}$ on A is :

A. Symmetric

B. Transitive

C. Reflexive

D. None of these

Answer: C

2. The value of $\operatorname{cosec}^{-1}(-2)$ is equal to :

A.
$$\frac{\pi}{3}$$

B. $-\frac{\pi}{6}$
C. $-\frac{\pi}{3}$
D. $\frac{\pi}{6}$

Answer: B

3. If AB = C where A is a matrix of order 2×4 and C is a matrix

of order 2 imes 5, then the order of B is :

A. 3×5 B. 4×5 C. 3×3

 $\mathsf{D}.5 imes 5$

Answer: B

Watch Video Solution

4. The number of all possible matrices of order 3×3 with each entry 0 or 1 is:

B. 18

C. 81

D. 512

Answer: D

Watch Video Solution

5. If A=[[321]] , then AA' is equal to :

A.
$$(9 \ 4 \ 1)$$

B. $\begin{pmatrix} 9 \\ 4 \\ 1 \end{pmatrix}$
C. -14

D. -6

Answer: C

Answer: B

7. If
$$y=3^x, ext{then}rac{dy}{dx}$$
 is :

A.
$$3^x$$

 $\mathsf{B.}\, 3^x \log 3$

C. 3

D.
$$\frac{3^x}{\log 3}$$

Answer: B

8. If
$$y = an x$$
 then at $x = 0, y_2$ is equal to :

A. -1

B. 1

C. 0

Answer: C

9.
$$\int \frac{\sin x}{\cos^2 x} dx$$
 equals :

A. sec x + c

B. tan x + c

C. cosec x + c

 $\mathsf{D.} \sec^2 x + c$

Answer: A

10.
$$\int_{0}^{1} \frac{1}{\sqrt{1-x^{2}}} dx$$
 is equal to :
A. $\frac{\pi}{4}$
B. $\frac{\pi}{3}$
C. $\frac{\pi}{2}$

D.
$$\frac{\pi}{6}$$

Answer: C

11. The number of arbitrary constants in the particular solution

of a differential equation of fifth order is :

A. 0

B. 2

C. 3

D. 5

Answer: A

Vatch Video Solution

12. The Integrating Factor of the differentiate equation $rac{dy}{dx} - 2y = 3x$ is :

A. e^{2x}

B. e^{-2x}

 $\mathsf{C}. e^x$

D. 2x

Answer: B

13. If
$$\overrightarrow{a} = \hat{i} + 2\lambda\hat{j} + \hat{k}$$
 and $\overrightarrow{b} = 2\hat{i} + \hat{j} - 3\hat{k}$ are

perpendicular to each other, the value of λ is :

A. 0 B. 1 C. 2 D. $\frac{1}{2}$

Answer: D

14. If
$$\theta$$
 is the angle between any two vectors \overrightarrow{a} and \overrightarrow{b} , then $\left|\overrightarrow{a} \cdot \overrightarrow{b}\right| = \left|\overrightarrow{a} \times \overrightarrow{b}\right|$ when θ is equal to :

A. 0

B.
$$\frac{\pi}{4}$$

C.
$$\frac{\pi}{2}$$

D. π

Answer: B

15. The distance of the plane
$$\overrightarrow{r}.\left(2\hat{i}+3\hat{j}-6\hat{k}
ight)=7$$
 from origin is :

A. -1

B. 0

$$\mathsf{C}.\,\frac{1}{7}$$

Answer: D

16. In a single throw of two dice, the chances of throwing a sum

of 5 is :

A. 0
B.
$$\frac{1}{36}$$

C. $\frac{1}{9}$
D. $\frac{5}{36}$

Answer: C

20. The slope of tangent to the curve $y=2-x^2$ at x = 1 is

23. The distance between the planes 3x + 2y - 6z - 18 = 0

and 3x + 2y - 6z + 10 = 0 is

24. If A and B are mutually exclusive, then $P(A \cap B)$ is equal to

27. Derivative of $\sin^{-1}(\cos x)$ w.r.t. x is 1

28. prove:
$$\int \frac{\sin^2 x}{1+\cos x} dx = x + \sin x + c.$$

Watch Video Solution

29. If
$$\overrightarrow{a} = \hat{i} + 4\hat{j} + 4\hat{k}$$
 and $\overrightarrow{b} = 4\hat{i} - \hat{j} + 2\hat{k}$, then $\overrightarrow{a} \cdot \overrightarrow{b}$ is

equal to 8.

30. If $\cos \alpha$, $\cos \beta$, $\cos \gamma$ are the direction-cosines of a line, then

the value of

$$\cos^2 lpha + \cos^2 eta + \cos^2 \gamma$$
 is _____

31. Quadrant represented by the region $x \ge 0, y \ge 0$ is first.

A. Symmetric

B. Transitive

C. Reflexive

D. None of these

Answer: C

Watch Video Solution

34. Principal value of `cosec^-1 (2) is :

A.
$$\frac{\pi}{3}$$

B. $-\frac{\pi}{6}$
C. $-\frac{\pi}{3}$
D. $\frac{\pi}{6}$

Answer: B

35. If AB = C where A is a matrix of order 2×3 and C is a matrix of order 2×5 , then the order of B is :

A. 3×5 B. 4×5 C. 3×3 D. 5×5

Answer: B

Watch Video Solution

36. The number of all possible matrices of order 3 imes3 with each

entry 0 or 1 is:

A. 27

B. 18

C. 81

D. 512

Answer: D

Watch Video Solution

37. If A=[[321]], then AA' is equal to :

A.
$$(9 \ 4 \ 1)$$

B. $\begin{pmatrix} 9 \\ 4 \\ 1 \end{pmatrix}$
C. -14

D. -6

Answer: C

B.
$$\frac{-5}{5}$$

C. $\frac{5}{3}$

Answer: B

39. If
$$y=3^x, ext{then}rac{dy}{dx}$$
 is :

A.
$$3^x$$

 $\mathsf{B.}\, 3^x \log 3$

C. 3

D.
$$\frac{3^x}{\log 3}$$

Answer: B

40. If
$$y = an x$$
 then at $x = 0, y_2$ is equal to :

A. -1

B. 1

C. 0

Answer: C

41.
$$\int \frac{\sin x}{\cos^2 x} dx$$
 equals :

A. sec x + c

B. tan x + c

C. cosec x + c

 $\mathsf{D.} \sec^2 x + c$

Answer: A

42.
$$\int_{0}^{1} \frac{1}{\sqrt{1-x^{2}}} dx$$
 is equal to :
A. $\frac{\pi}{4}$
B. $\frac{\pi}{3}$
C. $\frac{\pi}{2}$

D.
$$\frac{\pi}{6}$$

Answer: C

43. The number of arbitrary constants in the particular solution

of a differential equation of fifth order is :

A. 0

B. 2

C. 3

D. 5

Answer: A

Vatch Video Solution

44. The Integrating Factor of the differentiate equation $\frac{dy}{dx} - 2y = 3x$ is :

A. e^{2x}

B. e^{-2x}

 $\mathsf{C}. e^x$

D. 2x

Answer: B

45. If
$$\overrightarrow{a} = \hat{i} + 2\lambda\hat{j} + \hat{k}$$
 and $\overrightarrow{b} = 2\hat{i} + \hat{j} - 3\hat{k}$ are

perpendicular to each other, the value of λ is :

A. 0 B. 1 C. 2 D. $\frac{1}{2}$

Answer: D

46. If
$$\theta$$
 is the angle between any two vectors \overrightarrow{a} and \overrightarrow{b} , then $\left|\overrightarrow{a} \cdot \overrightarrow{b}\right| = \left|\overrightarrow{a} \times \overrightarrow{b}\right|$ when θ is equal to :

A. 0

$$\mathsf{B.}\,\frac{\pi}{4}$$

C.
$$\frac{\pi}{2}$$

D. π

Answer: B

47. The distance of the plane
$$\overrightarrow{r}$$
. $\left(2\hat{i}+3\hat{j}-6\hat{k}
ight)=7$ from origin is :

A. -1

B. 0

C.
$$\frac{1}{7}$$

Answer: D

48. In a single throw of two dice, the chances of throwing a sum

of 5 is :

A. 0
B.
$$\frac{1}{36}$$

C. $\frac{1}{9}$
D. $\frac{5}{36}$

Answer: C

49. If f is a bijection, then it is..... Watch Video Solution **50.** If |A| = 3. where A is a 2×2 matrix, $|Adj A| = \dots$ Watch Video Solution **51.** $\frac{d}{dx}(x^2+2x+5)^2$ = Watch Video Solution

52. The slope of tangent to the curve $y=2-x^2$ at x = 1 is

and 3x + 2y - 6z + 10 = 0 is

56. If A and B are mutually exclusive, then $P(A \cap B)$ is equal to

59. Derivative of $\sin^{-1}(\cos x)$ w.r.t. x is 1

60.
$$prove: \int \frac{\sin^2 x}{1 + \cos x} dx = x + \sin x + c.$$

Watch Video Solution

61. If
$$\overrightarrow{a} = \hat{i} + 4\hat{j} + 4\hat{k}$$
 and $\overrightarrow{b} = 4\hat{i} - \hat{j} + 2\hat{k}$, then $\overrightarrow{a} \cdot \overrightarrow{b}$ is

equal to 8.

62. If a line makes angles α , β , γ respectively with positive directions of the coordinate axes, then the value of $\cos^2 \alpha + \cos^2 \beta + \cos^2 \gamma = 1$.

63. Quadrant represented by the region $x \ge 0, y \ge 0$ is first.

2. If
$$A = egin{bmatrix} 1 & -2 \ 3 & 2 \end{bmatrix}$$
 and $f(x) = x^2 - 2x + 3$, then find f(A).

Watch Video Solution

3. Find the equation of the tangent to the curve $y = 2x^2 + 3\sin x$ at x = 0.

Watch Video Solution

4. Show that the function f given by $f(x) = x^3 - 3x^2 + 4x, x \in R$ is strictly increasing on R.

5. Evaluate :
$$\int \sin 5x \sin 3x dx$$
.

the angle between \overrightarrow{a} and \overrightarrow{b} .

9. If
$$A = egin{bmatrix} -2 & 4 \ -1 & 3 \end{bmatrix}$$
 , then find A'A.

Watch Video Solution

10. If
$$A = egin{bmatrix} 1 & -2 \ 3 & 2 \end{bmatrix}$$
 and $f(x) = x^2 - 2x + 3$, then find f(A).

Watch Video Solution

11. Find the equation of the tangent to the curve $y = 2x^2 + 3\sin x$ at x = 0.

14. Using integration, find the area of the region bounded by

the curve $x^2 + y^2 = 16$ in the first quadrant.

15. Find a vector in direction of vector $4\hat{i} - \hat{j} + 3\hat{k}$ which has magnitude 7 units.

16. If
$$\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c} = 0$$
 and $\left|\overrightarrow{a}\right| = 3$, $\left|\overrightarrow{b}\right| = 5$, $\left|\overrightarrow{c}\right| = 7$, find the angle between \overrightarrow{a} and \overrightarrow{b} .

Watch Video Solution

1. Show that
$$\sin^{-1}\!\left(rac{12}{13}
ight) + \cos^{-1}\!\left(rac{4}{5}
ight) + an^{-1}\!\left(rac{63}{16}
ight) = \pi$$

2. Differentiate : $x^{\sin x} + (\sin x)^x w. r. tx$:

4. Evaluate :
$$\int \frac{(x-4)e^x}{(x-2)^3} dx.$$

Watch Video Solution

5. Evaluate :
$$\int rac{1}{(x-1)(x+2)(x-3)} dx$$

6. Solve the differential equation:

$$\left[rac{e^{-2\sqrt{x}}}{\sqrt{x}}-rac{y}{\sqrt{x}}
ight]rac{dx}{dy}=1, (x
eq 0)$$

7. An insurance company insured 3000 scooters, 4000 cars and 5000 trucks. The probabilities of an accident involving a scooter, a car and a truck are 0.02, 0.03, 0.04 respectively. One of the insured vehicles meets with an accident. Find the probability that it is a car.

8. The probability of getting an ace froma well shuffled deck of

52 playing cards.

9. Show that
$$\sin^{-1}\!\left(rac{12}{13}
ight) + \cos^{-1}\!\left(rac{4}{5}
ight) + an^{-1}\!\left(rac{63}{16}
ight) = \pi$$

Watch Video Solution

10. Differentiate : $x^{\sin x} + (\sin x)^x w. r. tx$:

Watch Video Solution

11. If
$$y = e^{\tan^{-1}x}$$
, then prove that

$$ig(1+x^2ig)y_2+(2x-1)y_1=0$$

12. Evaluate :
$$\int \frac{(x-4)e^x}{(x-2)^3} dx.$$

13. Evaluate :
$$\int \frac{1}{(x-1)(x+2)(x-3)} dx.$$

Watch Video Solution

14. Solve the differential equation:

$$\left[rac{e^{-2\sqrt{x}}}{\sqrt{x}}-rac{y}{\sqrt{x}}
ight]rac{dx}{dy}=1, (x
eq 0)$$

15. An insurance company insured 3000 scooters, 4000 cars and 5000 trucks. The probabilities of an accident involving a scooter, a car and a truck are 0.02, 0.03, 0.04 respectively. One of the insured vehicles meets with an accident. Find the probability that it is a car.

16. Find the probability distribution of number of aces, when two cards are drawn (with replacement) at random from a wellshuffled pack of 52 cards.

1. Using matrix method, solve the following system of equations

$$x + 2y - 3z = 1, 2x - 3z = 2, x + 2y = 3.$$

Watch Video Solution

2. If
$$A = \begin{bmatrix} 3 & 4 & 2 \\ 2 & 3 & 5 \\ 1 & 0 & 1 \end{bmatrix}$$
 find A⁻¹ and hence solve the equations
 $3x + 4y + 2z = -1, 2x + 3y + 5z = 7, x + z = 2.$

Watch Video Solution

3. Find the equation of the plane passing through the line of intersection of the planes 2x + y - z = 3 and 5x - 3y + 4z = 9 and parallel to the lines $\frac{x-1}{2} = \frac{y-3}{4} = \frac{z-5}{5}$

4. Find the shortest distance between the lines given by

$$ec{r} = 3\hat{i}+8\hat{j}+3\hat{k}+\lambdaig(3\hat{i}-\hat{j}+\hat{k}ig) ext{ and } \ ec{r} = -3\hat{i}-7\hat{j}+6\hat{k}+\muig(-3\hat{i}+2\hat{j}+4\hat{k}ig)$$

Watch Video Solution

5. Graphically maximize Z = 5x + 2y subject to the constraints :

 $x-2y \leq 2, \, 3x+2y \leq 12, \, \, -3x+2y \leq 3, \, x \geq 0, \, y \geq 0$

Watch Video Solution

6. Solve the following L.P.P graphically :

Maximise Z = 20x + 10y

subject to the costraints

 $x+2y\leq 28$

 $3x + y \leq 24$

 $x \ge 2$

 $x,y\geq 0$

> Watch Video Solution

7. Using matrix method, solve the following system of equations

$$x + 2y - 3z = 1, 2x - 3z = 2, x + 2y = 3.$$

Watch Video Solution

8. If
$$A = \begin{bmatrix} 3 & 4 & 2 \\ 2 & 3 & 5 \\ 1 & 0 & 1 \end{bmatrix}$$
 find A⁻¹ and hence solve the equations
 $3x + 4y + 2z = -1, 2x + 3y + 5z = 7, x + z = 2.$

9. Find the equation of the plane passing through the line of intersection of the planes 2x + y - z = 3 and 5x - 3y + 4z + 9 = 0 and parallel to the line $\frac{x-1}{2} = \frac{y-3}{4} = \frac{5-z}{-5}$

10. Find the shortest distance between the lines given by $\overrightarrow{r} = 3\hat{i} + 8\hat{j} + 3\hat{k} + \lambda\left(3\hat{i} - \hat{j} + \hat{k}\right)$ and $\overrightarrow{r} = -3\hat{i} - 7\hat{j} + 6\hat{k} + \mu\left(-3\hat{i} + 2\hat{j} + 4\hat{k}\right).$

Watch Video Solution

11. Graphically maximize Z = 5x + 2y subject to the constraints :

$$x-2y \leq 2, 3x+2y \leq 12, \; -3x+2y \leq 3, x \geq 0, y \geq 0$$

12. Solve the following L.P.P graphically :

Maximise Z = 20x + 10y

subject to the costraints

 $x+2y\leq 28$

 $3x + y \le 24$

 $x \geq 2$

 $x,y\geq 0$