

MATHS

BOOKS - ACCURATE PUBLICATION

SAMPLE QUESTION PAPER-II (SOLVED)

Section A

1. If
$$A=\{a,b,c,d\}$$
 then a relation

$$R = \{(a, a), (b, b), (c, c), (d, d)\}$$
 on A is:

A. Symmetric

B. Transitive

C. Reflexive

D. None of these

Answer: C

Watch Video Solution

2. The value of $\csc^{-1}(-2)$ is equal to :

A.
$$\frac{\pi}{3}$$

$$\mathsf{B.} - \frac{\pi}{6}$$

$$\mathsf{C.} - \frac{\pi}{3}$$

D.
$$\frac{\pi}{6}$$

Answer: B

3. If AB = C where A is a matrix of order 2×4 and C is a matrix of order 2×5 , then the order of B is :

- A. 3 imes 5
- B.4 imes 5
- $\mathsf{C.}\,3 imes3$
- D. 5 imes 5

Answer: B

Watch Video Solution

4. The number of all possible matrices of order 3×3 with each entry 0 or 1 is:

A. 27

- B. 18
- C. 81
- D. 512

Answer: D

- **5.** If $A=\left[\left[321\right]\right]$, then AA' is equal to :
 - A. (9 4 1)
 - B. $\begin{pmatrix} 9 \\ 4 \\ 1 \end{pmatrix}$
 - C. -14
 - D. -6

Answer: C

Watch Video Solution

6. If
$$f(x)=egin{cases} rac{\sin 5x}{2x} & x
eq 0 \\ k & x = 0 \end{cases}$$
 is continuous at x = 0 then

value of k is:

- A. 5
- B. $\frac{3}{5}$ C. $\frac{5}{3}$
- D. 0

Answer: B

7. If
$$y=3^x$$
 , then $\dfrac{dy}{dx}$ is :

A.
$$3^x$$

B.
$$3^x \log 3$$

D.
$$\frac{3^x}{\log 3}$$

Answer: B

- **8.** If $y=\tan x$ then at $x=0,y_2$ is equal to :
 - A. -1
 - B. 1
 - C. 0

$$\frac{1}{2}$$

Answer: C

Watch Video Solution

- **9.** $\int \frac{\sin x}{\cos^2 x} dx$ equals :
 - A. sec x + c
 - B. tan x + c
 - C. cosec x + c
 - $\mathsf{D.}\sec^2x+c$

Answer: A

10.
$$\int_0^1 \frac{1}{\sqrt{1-x^2}} dx$$
 is equal to :

A.
$$\frac{\pi}{4}$$

$$\operatorname{B.}\frac{\pi}{3}$$

C.
$$\frac{\pi}{2}$$

D.
$$\frac{\pi}{6}$$

Answer: C

Watch Video Solution

11. The number of arbitrary constants in the particular solution of a differential equation of fifth order is :

A. 0

B. 2

C. 3

D. 5

Answer: A

Watch Video Solution

12. The Integrating Factor of the differentiate equation

 $rac{dy}{dx}-2y=3x$ is :

A. e^{2x}

B. e^{-2x}

 $\mathsf{C}.\,e^x$

D. 2x

Answer: B

13. If
$$\overrightarrow{a}=\hat{i}+2\lambda\hat{j}+\hat{k}$$
 and $\overrightarrow{b}=2\hat{i}+\hat{j}-3\hat{k}$ are perpendicular to each other, the value of λ is :

C. 2

D.
$$\frac{1}{2}$$

Answer: D

Watch Video Solution

If heta is the angle between any two vectors

$$\overrightarrow{a} \ \ ext{and} \ \ \overrightarrow{b}, ext{then} \Big| \overrightarrow{a}. \ \overrightarrow{b} \Big| = \Big| \overrightarrow{a} imes \overrightarrow{b} \Big| ext{ when } heta ext{ is equal to :}$$

$$\operatorname{B.}\frac{\pi}{4}$$

C.
$$\frac{\pi}{2}$$

D.
$$\pi$$

Answer: B

15. The distance of the plane
$$\overrightarrow{r}$$
 . $\left(2\hat{i}+3\hat{j}-6\hat{k}\right)=7$ from origin is :

c.
$$\frac{1}{7}$$

Answer: D

Watch Video Solution

16. In a single throw of two dice, the chances of throwing a sum of 5 is :

A. 0

 $\mathsf{B.}\;\frac{1}{36}$

 $\mathsf{C.}\,\frac{1}{9}$

D. $\frac{5}{36}$

Answer: C

17. If f is a bijection, then it is.....

18. If |A| = 3. where A is a 2×2 matrix, |Adj|A| =

19.
$$\frac{d}{dx}(x^2+2x+5)^2 = \dots$$

20. The slope of tangent to the curve $y=2-x^2$ at x = 1 is

21. The value of $\int_{-\pi}^{\pi} \sin^{2019} x \cos^{2020} x dx$ is equal to.....

Watch Video Solution

22. Degree of differential equation $\left(\frac{dy}{dx}\right)^3 + \frac{d^3y}{dx^3} = 5$ is

23. The distance between the planes 3x+2y-6z-18=0 and 3x+2y-6z+10=0 is

24. If A and B are mutually exclusive, then $P(A\cap B)$ is equal to

25. The value of the expressions $(\cos^{-1} x)^2$ is equal to $\sec^2 x$.

26.
$$\left(A^{3}
ight)^{-1}=\left(A^{-1}
ight)^{3}$$
 , where A is a square matrix and $|A|
eq 0$.

27. Derivative of $\sin^{-1}(\cos x)$ w.r.t. x is 1

28.
$$prove: \int \frac{\sin^2 x}{1+\cos x} dx = x + \sin x + c.$$

Watch Video Solution

- **29.** If $\overrightarrow{a}=\hat{i}+4\hat{j}+4\hat{k}$ and $\overrightarrow{b}=4\hat{i}-\hat{j}+2\hat{k}$, then \overrightarrow{a} . \overrightarrow{b} is equal to 8.
 - Watch Video Solution

30. If cos α , cos β , cos γ are the direction-cosines of a line, then the value of

$$\cos^2 \alpha + \cos^2 \beta + \cos^2 \gamma$$
 is ____ .

31. Quadrant represented by the region $x \geq 0, y \geq 0$ is first.

32. If A and B are two events such that P(A)>0 and P(A)+P(B)>1, then $\mathrm{P}(B\mid A)\geq 1-\dfrac{P(B')}{P(A)}$

- **1.** If $A = \begin{bmatrix} -2 & 4 \\ -1 & 3 \end{bmatrix}$, then find A'A.
 - Watch Video Solution

2. If
$$A=\begin{bmatrix}1&-2\\3&2\end{bmatrix}$$
 and $f(x)=x^2-2x+3$, then find f(A).

3. Find the equation of the tangent to the curve $y=2x^2+3\sin x$ at x = 0.

- **4.** Show that the function f given by $f(x) = x^3 3x^2 + 4x, \, x \in R$ is strictly increasing on R.
 - Watch Video Solution

6. Using integration, find the area of the region bounded by the curve $x^2+y^2=16$ in the first quadrant.

7. Find a vector in direction of vector $4\hat{i}-\hat{j}+3\hat{k}$ which has magnitude 7 units.

8. If $\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c} = 0$ and $\left| \overrightarrow{a} \right| = 3$, $\left| \overrightarrow{b} \right| = 5$, $\left| \overrightarrow{c} \right| = 7$, find the angle between \overrightarrow{a} and \overrightarrow{b} .

Section C

1. Show that
$$\sin^{-1}\!\left(\frac{12}{13}\right)+\cos^{-1}\!\left(\frac{4}{5}\right)+\tan^{-1}\!\left(\frac{63}{16}\right)=\pi$$

- **2.** Differentiate : $x^{\sin x} + (\sin x)^x w. \ r. \ tx$:
 - Watch Video Solution

- **3.** If $y=e^{ an^{-1}x}$, then prove that $ig(1+x^2ig)y_2+(2x-1)y_1=0$
 - Watch Video Solution

- **4.** Evaluate : $\int \frac{(x-4)e^x}{(x-2)^3} dx.$
 - Watch Video Solution

- **5.** Evaluate : $\int \frac{1}{(x-1)(x+2)(x-3)} dx$.
 - Watch Video Solution

6. Solve the differential equation:

$$\left[rac{e^{-2\sqrt{x}}}{\sqrt{x}}-rac{y}{\sqrt{x}}
ight]rac{dx}{dy}=1, (x
eq0)$$

7. An insurance company insured 3000 scooters, 4000 cars and 5000 trucks. The probabilities of an accident involving a scooter, a car and a truck are 0.02, 0.03, 0.04 respectively. One of the insured vehicles meets with an accident. Find the probability that it is a car.

The probability of getting an ace from a well shuffled deck of
 playing cards.

Section D

1. Using matrix method, solve the following system of equations

$$x + 2y - 3z = 1, 2x - 3z = 2, x + 2y = 3.$$

2. If
$$A = \begin{bmatrix} 3 & 4 & 2 \\ 2 & 3 & 5 \\ 1 & 0 & 1 \end{bmatrix}$$
 find A^{-1} and hence solve the equations

$$3x + 4y + 2z = -1, 2x + 3y + 5z = 7, x + z = 2.$$

3. Find the equation of the plane passing through the line of intersection of the planes 2x+y-z=3 and 5x-3y+4z=9 and parallel to the lines

$$\frac{x-1}{2} = \frac{y-3}{4} = \frac{z-5}{5}$$

4. Find the shortest distance between the lines given by

$$\overrightarrow{r}=3\hat{i}+8\hat{j}+3\hat{k}+\lambdaigg(3\hat{i}-\hat{j}+\hat{k}igg)$$
 and

$$\overrightarrow{r} = \, -3\hat{i} - 7\hat{j} + 6\hat{k} + \mu\Big(-3\hat{i} + 2\hat{j} + 4\hat{k}\Big).$$

5. Graphically maximize Z = 5x + 2y subject to the constraints :

$$x-2y \le 2, 3x+2y \le 12, -3x+2y \le 3, x \ge 0, y \ge 0$$

6. Solve the following L.P.P graphically:

Maximise Z = 20x + 10y

subject to the costraints

$$x + 2y \le 28$$

$$3x+y\leq 24$$

$$x \geq 2$$

$$x,y\geq 0$$

