

MATHS

BOOKS - ACCURATE PUBLICATION

SAMPLE QUESTION PAPER-X (UNSOLVED)

Section A Mcq

- **1.** Let $f \colon R o R$ be defined as f(x) = 3x. Then
- a. f is one-one onto
- b. f is many-one onto
- c. f is one-one but not onto
- d. f is neither one-one nor onto
 - A. f is one-one onto
 - B. f is many-one onto
 - C. f is one-one but not onto

D. f is neither one-one nor onto

Answer: A

Watch Video Solution

2.
$$\tan^{-1}(-1) - \cot^{-1}(1)$$
 is equal to
A. π
B. 0
C. 2
D. $-\frac{\pi}{2}$

Answer: D

3. If A is a matrix of order 3×4 , then each row of matrix A contains elements :

A. 12

 $\mathsf{B.4}$

C. 3

D. None of these

Answer: C

4. If
$$X + Y = \begin{bmatrix} 1 & 0 \\ 2 & 5 \end{bmatrix}$$
, $X - Y = \begin{bmatrix} 3 & 0 \\ 0 & 3 \end{bmatrix}$ then Y is
A. $\begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix}$
B. $\begin{bmatrix} 2 & 0 \\ 1 & 1 \end{bmatrix}$
C. $\begin{bmatrix} 2 & 0 \\ 1 & 2 \end{bmatrix}$

$$\mathsf{D}. \begin{bmatrix} 2 & 0 \\ 3 & 1 \end{bmatrix}$$

Answer: C

Watch Video Solution

5. If
$$\begin{vmatrix} x & 2 \\ 18 & x \end{vmatrix} = \begin{vmatrix} 6 & 2 \\ 18 & 6 \end{vmatrix}$$
, then x is equal to:
A. 6
B. ± 6
C. -6
D. 0

Answer: B

6. If f(x) is continuous at x=3, where $f(x)=(x^{(2)}-7x+12)/(x^{(2)}-5x+6)$, for $x \neq 3$,

then f(3)=

 $\mathsf{A.}-1$

 $\mathsf{B.1}$

 $\mathsf{C}.-2$

 $\mathsf{D.}\,2$

Answer: A

7. The derivative of
$$\sqrt{\log(\cos x)}$$
 w.r.t. x is

A.
$$\frac{1}{2\sqrt{\tan x}}$$

B.
$$\frac{1}{2\sec^2 x}$$

C.
$$\frac{-\tan x}{2\sqrt{\log(\cos x)}}$$

D. None of these

Answer: C

8. Differentiate log x w.r.t
$$\frac{1}{x}$$
.

_

A. x

 $\mathsf{B.}-x$

$$\mathsf{C}.-x^2$$

 $\mathsf{D.}\,x^2$

Answer: B

9.
$$\int \frac{\cos 2x}{\left(\sin x + \cos x\right)^2} dx$$
 is equal to

A.
$$\frac{-1}{\sin x + \cos x} + C$$

B.
$$\log |\sin x + \cos x| + C$$

C.
$$\log |\sin x - \cos x| + C$$

D.
$$\frac{1}{(\sin + \cos x)^2}$$

Answer: B

Watch Video Solution

10.
$$\int_{0}^{2/3} \frac{dx}{4+9x^{2}}$$
 equals
A.
$$\frac{\pi}{6}$$

B.
$$\frac{\pi}{12}$$

C.
$$\frac{\pi}{24}$$

D.
$$\frac{\pi}{4}$$

Answer: C

11. The order and degree of the differential equation
$$\left[1+\left(\frac{dy}{dx}\right)^2\right]^{\frac{3}{2}}=5\frac{d^2y}{dx^2}$$
is
A. 1, 1
B. 1, 2
C. 2, 1
D. 2, 2

Answer: D

A.
$$\log x$$

 $\mathsf{B.}\,2\log x$

 $\mathsf{C.}\, 3\log x$

D. $4\log x$

Answer: A

Watch Video Solution

13. If \overrightarrow{a} is a nonzero vector of magnitude 'a' and λ a nonzero scalar, then $\lambda \overrightarrow{a}$ is unit vector if:

A. $\lambda=1$

- ${\tt B}.\,\lambda=\,-\,1$
- $\mathsf{C}.\,a=|\lambda|$

D.
$$a=rac{1}{|\lambda|}$$

Answer: D

14. If the angle between two vectors \overrightarrow{a} and \overrightarrow{b} with magnitude 1 and 2 respectively and when $\left|\overrightarrow{a}\times\overrightarrow{b}\right| = \sqrt{3}$ is

A. 30°

B. 60°

C. 75°

D. 90°

Answer: B

Watch Video Solution

15. Find the distance between the parallel planes 2x - 3y + z + 3 = 0

and 4x - 6y + 2z + 5 = 0

A.
$$\frac{1}{\sqrt{54}}$$

B.
$$\frac{1}{\sqrt{55}}$$

C.
$$\frac{1}{\sqrt{56}}$$

D. $\frac{1}{\sqrt{58}}$

Answer: C

1. Let $A = R - \{3\}$ and $B = R - \{1\}$. Consider the function $f: A \to B$ defined by $f(x) = \frac{x-2}{x-3}$. Then f is.....

Watch Video Solution

2. If A =
$$\begin{bmatrix} 1 \\ -4 \\ 3 \end{bmatrix}$$
, $B = \begin{bmatrix} -1 & 2 & 1 \end{bmatrix}$ verify that (AB)' = B' A'

Watch Video Solution

3. Find
$$rac{dy}{dx}$$
, if $y= an^{-1}igg(rac{3x-x^3}{1-3x^2}igg), rac{-1}{\sqrt{3}}< x<rac{1}{\sqrt{3}}$

Watch Video Solution

4. A firm has found from experience that its profit as a function of x, the

amount

produced,

given

$$p(x)=-rac{x^3}{3}+729x-2500, 0\leq x\leq 35.$$
 The value of x that

maximises the profit is.....

5.
$$\int \!\! e^x (\sin x + \cos x) dx$$
 is equal to :

Watch Video Solution

6. The integrating factor of
$$x \frac{dy}{dx} + 2y = x^2$$
 is:

Watch Video Solution

7. The three points $(x_1,y_1,z_1),(x_2,y_2,z_2),(x_3,y_3,z_3)$ are collinear

when.....

8. If A and B are two independent events such that $P(A \cup B) = 0.6$ and P(A) = 0.2, then P(B) is.....

Watch Video Solution

Section A True Or False

1.
$$an^{-1}\sqrt{x} = rac{1}{2} \cos^{-1} igg(rac{1-x}{1+x}igg), x \in [0,1]$$

Watch Video Solution

2. If
$$A=egin{bmatrix} 3&1\7&5\end{bmatrix}$$
 , then $A^{-1}=rac{1}{8}egin{bmatrix} 5&-1\-7&3\end{bmatrix}$

Watch Video Solution

3. If
$$x = a \cos^3 heta, \, y = b \sin^3 heta, \, ext{ then } \, rac{dy}{dx} = rac{b}{a} an heta.$$

4. prove
$$\int\!\!\frac{dx}{\sqrt{x^2-a^2}} = \log\!\left|x+\sqrt{x^2-a^2}
ight|+c$$

Watch Video Solution

5. If
$$\overrightarrow{a}$$
 and \overrightarrow{b} are any two vectors, then
 $\left(\overrightarrow{a} \times \overrightarrow{b}\right)^2 = \left|\overrightarrow{a}\right|^2 \left|\overrightarrow{b}\right|^2 - \left(\overrightarrow{a} \cdot \overrightarrow{b}\right)^2$.

Watch Video Solution

6. If the points (-1,3,2), (-4,2,-2) and $(5,5,\lambda)$ are collinear,

then show that $\lambda=10$

Watch Video Solution

7. The probability that A will solve a problem is $\frac{2}{3}$ and B will solve it is $\frac{5}{6}$. If both try the problem independently, then the probability that the problem will be solved is $\frac{7}{10}$.

Watch Video Solution

Section B

1. Given
$$A = \begin{bmatrix} 2 & -3 \\ -4 & 7 \end{bmatrix}$$
, compute A^{-1} and show that $2A^{-1} = 9I - A$.

Watch Video Solution

2. If
$$\begin{bmatrix} 2x & 3 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ -3 & 0 \end{bmatrix} \begin{bmatrix} x \\ 3 \end{bmatrix} = O$$
, find x.

Watch Video Solution

3. . Find two numbers whose sum is 24 and whose product is as large as possible.

5. Find
$$\int \frac{\tan^2 x \sec^2 x}{1 - \tan^6 x} dx.$$

Watch Video Solution

6. Using integration find the area of region bounded by the ellipse

$$rac{x^2}{25} + rac{y^2}{16} = 1$$

Watch Video Solution

7. If
$$\left|\overrightarrow{a}\right| = 5$$
, $\left|\overrightarrow{b}\right| = 4$ and $\overrightarrow{a} \cdot \overrightarrow{b} = 16$, find $\left|\overrightarrow{a} \times \overrightarrow{b}\right|$.

Watch Video Solution

8. Write the projection of vector $2\hat{i} + 3\hat{j} - \hat{k}$ along the vector $\hat{i} + \hat{j}$.

Section C

1. Prove that
$$\cos^{-1}\left(rac{12}{13}
ight) + \sin^{-1}\left(rac{4}{5}
ight) = \tan^{-1}\left(rac{63}{16}
ight).$$

Watch Video Solution

2. If
$$x \in \left(\frac{1}{\sqrt{2}}, 1\right)$$
, differentiate $\tan^{-1}\left(\frac{\sqrt{1-x^2}}{x}\right)$ with respect to $\cos^{-1}\left(2x\sqrt{1-x^2}\right)$.

Watch Video Solution

3. If
$$y = a\cos(\log x) + b\sin(\log x)$$
, show that $x^2 \frac{d^2y}{dx^2} + x \frac{dy}{dx} + y = 0$.

4. Find
$$\int rac{2x}{\left(x^2+1
ight)\left(x^2+2
ight)^2}dx.$$

5. Show that the differential equation

$$x - \cos\left(\frac{y}{x}\right)\left(\frac{dy}{dx}\right) = y\cos\left(\frac{y}{x}\right) + x$$
 is homogeneous and solve it.
Watch Video Solution

6. Find one-parameter families of solution-curves of the following differential equations : $x \frac{dy}{dx} + y - x + xy \cot x = 0$ $(x \neq 0)$.

Watch Video Solution

7. There are 4 cards numbered 1, 3, 5 and 7, one number on one card. Two cards are drawn at random without replacement. Let X denote the sum of the numbers on the two drawn cards. Find the mean and varience of X.

8. A and B throw a pair of dice alternately. A wins the game if he gets a total of 6 and B wins if he gets a total of 7. If A starts the game, find the probability of winning the game by A in third row of pair of dice.

$$x - y = 3, 2x + 3y + 4z = 17, y + 2z = 7.$$

3. Find the vector equation of the line passing through (1, 2, 3) and parallel to each of the planes $\overrightarrow{r} = (\hat{i} - \hat{j} + 2\hat{k}) = 5$ and $\overrightarrow{r} \cdot (3\hat{i} - \hat{j} + \hat{k}) = 6$. Also find the point of intersection of the line thus obtained with the plane $\overrightarrow{r} \cdot (2\hat{i} - \hat{j} + \hat{k}) = 4$.

Watch Video Solution

4. Find the shortest distance between the lines $\overrightarrow{r} = (8+3\lambda)\hat{i} - (9+16\lambda)\hat{j} + (10+7\lambda)\hat{k}$ and $\overrightarrow{r} = 15\hat{i} + 29\hat{j} + 5\hat{k} + 20\hat{j} + 5\hat{k} + 20\hat{j$

Watch Video Solution

5. Solve the following linear programming problem graphically :

Minimise Z = 4x + 3y

subject to the constraints

Watch Video Solution

6. Solve the following linear programming problem graphically :

Minimise Z = 6x + 3y

subject to the constraints