©゙doubtnut

MATHS

BOOKS - ACCURATE PUBLICATION

VECTOR ALGEBRA

Questions Carrying 1 Mark Type I Multiple Choice Questions

1. In triangle $A B C$, which of the following is not true:

$$
\begin{aligned}
& \text { А. } \overrightarrow{A B}+\overrightarrow{B C}+\overrightarrow{C A}=\overrightarrow{0} \\
& \text { в. } \overrightarrow{A B}+\overrightarrow{B C}-\overrightarrow{A C}=\overrightarrow{0} \\
& \text { с. } \overrightarrow{A B}+\overrightarrow{B C}-\overrightarrow{C A}=\overrightarrow{0}
\end{aligned}
$$

$$
\text { D. } \overrightarrow{A B}-\overrightarrow{C B}+\overrightarrow{C A}=\overrightarrow{0}
$$

Answer: c

- Watch Video Solution

2. If \vec{a} and \vec{b} are two collinear vectors, then which of the following are incorrect:
A. $\vec{b}=\lambda \vec{a}$, for some scalar λ
B. $\vec{a}= \pm \vec{b}$
C. the respective components of \vec{a} and \vec{b} are proportional
D. both the vectors \vec{a} and \vec{b} have same direction, but different magnitudes

- Watch Video Solution

3. The magnitude of the vector $2 \hat{i}-6 \hat{j}-3 \hat{k}$ is:
A. 7
B. 2
C. 8
D. None of these

Answer: a
(Watch Video Solution
4. Magnitude of the vectors $\frac{1}{\sqrt{3}} \hat{i}+\frac{1}{\sqrt{3}} \hat{j}+\frac{1}{\sqrt{3}} \hat{k}$ is equal to
A. -1
B. 1
C. $\frac{1}{\sqrt{3}}$
D. 0

Answer: b

- Watch Video Solution

5. Magnitude of the vectors $\frac{2}{\sqrt{3}} \hat{i}+\frac{2}{\sqrt{3}} \hat{j}+\frac{2}{\sqrt{3}} \hat{k}$ is equal to
A. -1
B. 2
C. $\frac{1}{\sqrt{3}}$
D. 0

Answer: b
(Watch Video Solution
6. Direction ratios of vector $1 \hat{i}+3 \hat{j}+4 \hat{k}$ are
A. $<1,3,4>$
B. $<3,4,2>$
C. $<4,3,2>$
D. $<3,2,4>$

Answer: a

- Watch Video Solution

7. If $\vec{a}=2 \hat{i}-\hat{j}+\hat{k}$ and $\vec{b}=-2 \hat{i}+\hat{j}+2 \hat{k}$, then vector in the direction of $\vec{a}+\vec{b}$ with magnitude 9 is :
A. $9 \hat{k}$
B. $3 \hat{k}$
C. \hat{k}
D. $6 \hat{k}$

Answer: a
8. If $\vec{a}=2 \hat{i}-\hat{j}+\hat{k}$ and $\vec{b}=-2 \hat{i}+\hat{j}+5 \hat{k}$ then vector in the direction of $\vec{a}+\vec{b}$ with magnitude 7 is:
A. a) $6 \hat{k}$
B. b) $3 \hat{k}$
C. c) $7 \hat{k}$
D. d) $14 \hat{k}$

Answer: c

- Watch Video Solution

9. If $\vec{a}=2 \hat{i}+\hat{j}+3 \hat{k}$ and $\vec{b}=2 \hat{i}+\hat{j}+2 \hat{k}$ then the unit vector in the direction of $\vec{a}-\vec{b}$ is :
A. $9 \hat{k}$
B. $3 \hat{k}$
C. \hat{k}
D. $6 \hat{k}$

Answer: c

- Watch Video Solution

10. If $\vec{a}=2 \hat{i}+2 \hat{j}+\hat{k}$ and $\vec{b}=2 \hat{i}+\hat{j}+\hat{k}$ then the unit vector in the direction of $\vec{a}-\vec{b}$ is:
A. \hat{i}
B. \hat{k}
C. \hat{j}
D. $6 \hat{k}$

Answer: c

D Watch Video Solution

11. If position vector of mid point of vector joining the point
$P(8,3,4)$ and $Q(4,7,-2)$ is
A. $3 \hat{i}+2 \hat{j}+\hat{k}$
B. $6 \hat{i}+5 \hat{j}-\hat{k}$
C. $8 \hat{i}+3 \hat{j}-8 \hat{k}$
D. $\hat{i}+\hat{j}+\hat{k}$

Answer: b

- Watch Video Solution

12. Position vector of mid point of vector joining the points $P(2,3,6)$ and $Q(4,5,-2)$ is : $\vec{a} \cdot \vec{b}$
A. $3 \hat{i}+2 \hat{j}+\hat{k}$
B. $6 \hat{i}-\hat{j}-3 \hat{k}$
C. $8 \hat{i}+3 \hat{j}-8 \hat{k}$
D. $3 \hat{i}+4 \hat{j}+2 \hat{k}$

Answer: d
13. If $|\vec{a}|=2,|\vec{b}|=3$ and $\vec{a} \cdot \vec{b}=3$, then the angle between \vec{a} and \vec{b} equals:
A. 0
B. $\frac{\pi}{3}$
C. $\frac{\pi}{6}$
D. $\frac{\pi}{2}$

Answer: b
14. If $|\vec{a}|=2,|\vec{b}|=7$ and $\vec{a} \cdot \vec{b}=7$, then angle between \vec{a} and \vec{b} equals to,
A. 0
B. $\frac{\pi}{3}$
C. $\frac{\pi}{6}$
D. $\frac{\pi}{4}$

Answer: b

- Watch Video Solution

15. If $|\vec{a}|=2,|\vec{b}|=5$ and $\vec{a} \cdot \vec{b}=5$, then angle between \vec{a} and \vec{b} equals to,
A. $\frac{\pi}{3}$
B. $\frac{\pi}{6}$
C. $\frac{\pi}{4}$
D. 0

Answer: a

- Watch Video Solution

16. If $|\vec{a}|=1,|\vec{b}|=2$ and $\vec{a} \cdot \vec{b}=1$. Then the angle between \vec{a} and \vec{b} is :
A. 0
B. $\frac{\pi}{3}$
C. π
D. $\frac{\pi}{2}$

Answer: b
(D) Watch Video Solution
17. If $\sqrt{2}(\vec{a} \cdot \vec{b})=|\vec{a}||\vec{b}|$ then angle between \vec{a} and \vec{b} equals to,
A. 30°
B. 45°
C. 60°
D. 90°
18. The projection of $\vec{a}=2 \hat{i}-\hat{j}+\hat{k}$ on $\vec{b}=\hat{i}-2 \hat{j}+\hat{k}$ is equal to:
A. $\frac{5 \sqrt{6}}{3}$
B. $\frac{5}{\sqrt{6}}$
C. $\frac{6}{\sqrt{14}}$
D. $\frac{\sqrt{6}}{5}$

Answer: b
19. The projection of $\vec{a}=2 \hat{i}+3 \hat{j}+2 \hat{k} \quad$ on $\vec{b}=\hat{i}+2 \hat{j}+\hat{k}$ is equal to:
A. $\frac{\sqrt{6}}{14}$
B. $\frac{5 \sqrt{6}}{3}$
C. $\frac{5}{\sqrt{6}}$
D. $\frac{6}{\sqrt{14}}$

Answer: b

- Watch Video Solution

20. If $\vec{a}=\lambda \hat{i}+3 \hat{j}+2 \hat{k}$ and $\vec{b}=\hat{i}-\hat{j}+3 \hat{k}$ are per[endicular to each other, the value of λ is :
A. 3
B. -3
C. 6
D. 9

Answer: b

- Watch Video Solution

21. If $\vec{a}=2 \hat{i}+\lambda \hat{j}+\hat{k}$ and $\vec{b}=3 \hat{i}-2 \hat{j}+8 \hat{k}$ are per[endicular to each other, the value of λ is :
A. 6
B. 7
C. 8
D. 16

Answer: b

- Watch Video Solution

22. If $\vec{a}=\hat{i}+\hat{j}-\lambda \hat{k}$ and $\vec{b}=2 \hat{i}+\lambda \hat{k}$ are per[endicular to each other, the value of λ is :
A. +1
B. $\pm \sqrt{2}$
C. $\pm \sqrt{3}$
D. None of these
23. For which value of λ the vector $\vec{a}=2 \hat{i}+\hat{j}-2 \hat{k}$ and $\vec{b}=$ $\hat{i}-3 \hat{j}+\lambda \hat{k}$ are perpendicular to each other :
A. $\frac{1}{2}$
B. $\frac{1}{3}$
C. $-\frac{1}{2}$
D. 0

Answer: c

- Watch Video Solution

24. If $\vec{a}=\hat{i}+\hat{j}-\lambda \hat{k}$ and $\vec{b}=2 \hat{i}+\lambda \hat{k}$ are per[endicular to each other, the value of λ is :
A. ± 1
B. $\pm \sqrt{2}$
C. $\pm \sqrt{3}$
D. None of these

Answer: b

D Watch Video Solution

25. If \vec{a} is any vector, then $\vec{a} \cdot \vec{a}$ is :
A. 0
B. $\overrightarrow{0}$
C. $\neq 0$
D. $|\vec{a}|^{2}$

Answer: d
(D) Watch Video Solution
26. If $\vec{a} \cdot \vec{a}=0$, then \vec{a} is :
A. Proper vector
B. Free vector
C. Null vector
D. None of these

Answer: c

- Watch Video Solution

27. If $\vec{a}=3 \hat{i}-\hat{j}+2 \hat{k}$ and $\vec{b}=2 \hat{i}+3 \hat{j}+3 \hat{k}$ then $\vec{a} \cdot \vec{b}$ is equal to :
A. 3
B. 9
C. -9
D. -3

Answer: b
28. If $\vec{a}=2 \hat{i}-\hat{j}+\hat{k}$ and $\vec{b}=2 \hat{j}-\hat{k}$ then $\vec{a} \cdot \vec{b}$ is equal to :
A. 3
B. 4
C. -3
D. -1

Answer: a

D Watch Video Solution
29. If $\vec{a}=2 \hat{i}+3 \hat{j}-5 \hat{k}$ and $\vec{b}=\hat{i}+\hat{j}-\hat{k}$, then $\vec{a} \cdot \vec{b}$ is :
A. 10
B. 0
C. 5
D. 2

Answer: a

- Watch Video Solution

30. If \vec{a} is any vector, then $\vec{a} \times \vec{a}$ is :
A. 1
B. 0
C. $|\vec{a}|^{2}$
D. $\overrightarrow{0}$

Answer: d

- Watch Video Solution

31. If $|\vec{a} \cdot \vec{b}|=|\vec{a} \times \vec{b}|$,then angle between \vec{a} and \vec{b} is
A. $\frac{\pi}{4}$
B. $\frac{\pi}{2}$
C. π
D. $\frac{\pi}{6}$

Answer: a
32. If $\sqrt{3}|\vec{a} \cdot \vec{b}|=|\vec{a} \times \vec{b}|$, then angle between \vec{a} and \vec{b} is:
A. $\frac{\pi}{3}$
B. $\frac{\pi}{6}$
C. $\frac{\pi}{4}$
D. $\frac{\pi}{2}$

Answer: a

D Watch Video Solution
33. If $\vec{a} \cdot \vec{b}=\sqrt{3}|\vec{a} \times \vec{b}|$, then angle between vector \vec{a} and vector \vec{b} is:
A. $\frac{\pi}{3}$
B. $\frac{\pi}{4}$
C. $\frac{\pi}{2}$
D. $\frac{\pi}{6}$

Answer: d

D Watch Video Solution
34. The value of : $\hat{i} \cdot(\hat{j} \times \hat{k})+\hat{j} \cdot(\hat{i} \times \hat{k})+\hat{k} \cdot(\hat{i} \times \hat{j})$ is :
A. 1
B. -1
C. 3
D. 0

Answer: a

D Watch Video Solution

35. If θ is the angle between two vectors \vec{a} and \vec{b}, then $\vec{a} \cdot \vec{b} \geq 0$ only when:
A. $0<\theta<\frac{\pi}{2}$
B. $0 \leq \theta \leq \frac{\pi}{2}$
C. $0<\theta<\pi$
D. $0 \leq \theta \leq \pi$

Answer: b

- Watch Video Solution

36. Let \vec{a} and \vec{b} be two unit vectors and θ is the angle between them. Then $\vec{a}+\vec{b}$ is a unit vector if :
A. $\theta=\frac{\pi}{4}$
B. $\theta=\frac{\pi}{3}$
C. $\theta=\frac{\pi}{2}$
D. $\theta=\frac{2 \pi}{3}$

Answer: d
37. Let the vectors \vec{a} and \vec{b} be such that $|\vec{a}|=3$ and $|\vec{b}|=\frac{\sqrt{2}}{3}$, then $\vec{a} \times \vec{b}$ is a unit vector if the angle between \vec{a} and \vec{b} is :
A. $\pi / 6$
B. $\pi / 4$
C. $\pi / 3$
D. $\pi / 2$

Answer: b

38. Let the vectors \vec{a} and \vec{b} be such that $|\vec{a}|=3$ and $|\vec{b}|=\frac{\sqrt{2}}{3}$, then $\vec{a} \times \vec{b}$ is a unit vector if the angle between \vec{a} and \vec{b} is :
A. $\pi / 6$
B. $\pi / 4$
C. $\pi / 3$
D. $\pi / 2$

Answer: b

- Watch Video Solution

39. This inequality $|\vec{a} \cdot \vec{b}| \leq|\vec{a}||\vec{b}|$ is called
A. Cauchy Schwartz inequality
B. Triangle inequality
C. Rolle's Theorem
D. Lagrange's Mean Value theorem.

Answer: a

(Watch Video Solution

40. The magnitude of the vector $6 \hat{i}+2 \hat{j}+3 \hat{k}$ is :
A. 5
B. 7
C. 12
D. 1

Answer: b

- Watch Video Solution

41. The position vector of the point which divides the join of points with position vectors $\vec{a}+\vec{b}$ and $2 \vec{a}-\vec{b}$ in the ratio $1: 2$ is
A. $\frac{3 \vec{a}+2 \vec{b}}{3}$
B. \vec{a}
C. $\frac{5 \vec{a}-\vec{b}}{3}$
D. $\frac{4 \vec{a}+\vec{b}}{3}$

Answer: d

- Watch Video Solution

42. The vector with initial point $P(2,-3,5)$ and terminal point $\mathrm{Q}(3,-4,7)$ is :
A. $\hat{i}-\hat{j}+2 \hat{k}$
B. $5 \hat{i}-7 \hat{j}+12 \hat{k}$
C. $-\hat{i}+\hat{j}-2 \hat{k}$
D. None of these

Answer: a

43. The angle between the vectors $\hat{i}-\hat{j}$ and $\hat{j}-\hat{k}$ is :
A. $\frac{\pi}{3}$
B. $\frac{2 \pi}{3}$
C. $-\frac{\pi}{3}$
D. $\frac{5 \pi}{6}$

Answer: b

- Watch Video Solution

44. The value of ' λ ' for which the two vectors : $2 \hat{i}-\hat{j}+2 \hat{k}$ and $3 \hat{i}+\lambda \hat{j}+\hat{k}$ are perpendicular is:
A. 2
B. 4
C. 6
D. 8

Answer: d

(D) Watch Video Solution

45. The area of the parallelogram whose adjacent sides are $\hat{i}+\hat{k}$ and $2 \hat{i}+\hat{j}+\hat{k}$ is:
A. $\sqrt{2}$
B. $\sqrt{3}$
C. 3
D. 4

Answer: b

(Watch Video Solution

46. If $|\vec{a}|=8,|\vec{b}|=3$ and $|\vec{a} \times \vec{b}|=12$, then value of $\vec{a} \cdot \vec{b}$ is :
A. $6 \sqrt{3}$
B. $8 \sqrt{3}$
C. $12 \sqrt{3}$
D. None of these

Answer: c
47. The two vectors $\hat{j}+\hat{k}$ and $3 \hat{i}-\hat{j}+4 \hat{k}$ represent the two sides AB and AC respectively of a $\triangle A B C$. Find the lengthof the median through A
A. $\frac{\sqrt{34}}{2}$
B. $\frac{\sqrt{48}}{2}$
C. $\sqrt{18}$
D. None of these

Answer: a
48. The projection of vector $\vec{a}=2 \hat{i}-\hat{j}+\hat{k}$ along $\vec{b}=\hat{i}+2 \hat{j}+2 \hat{k}$ is
A. а) $\frac{2}{3}$
B. b) $\frac{1}{2}$
C. c) 2
D. d) $\sqrt{6}$

Answer: a

- Watch Video Solution

49. If \vec{a} and \vec{b} are unit vectors then what is the angle between \vec{a} and \vec{b} for $\sqrt{3} \vec{a}-\vec{b}$ to be a unit vector?
A. a) 30°
B. b) 45°
C. c) 60°
D. d) 90°

Answer: a

D Watch Video Solution

50. The unit vector perpendicular to the vectors $\hat{i}-\hat{j}$ and $\hat{i}+\hat{j}$ forming a right handed system is
A. a) \hat{k}
B. b) $-\hat{k}$
C. с) $\frac{\hat{i}-\hat{j}}{\sqrt{2}}$
D. d) $\frac{\hat{i}+\hat{j}}{\sqrt{2}}$

Answer: a

- Watch Video Solution

51. If $|\vec{a}|=3$ and $-1 \leq k \leq 2$, then $|k \vec{a}|$ lies in the interval
A. $[0,6]$
B. $[-3,6]$
C. $[3,6]$
D. $[1,2]$

Answer: a
52. The vector in the direction of the vector $\hat{i}-2 \hat{j}+2 \hat{k}$ that has magnitude 9 is
A. $\hat{i}-2 \hat{j}+2 \hat{k}$
B. $\frac{\hat{i}-2 \hat{j}+2 \hat{k}}{3}$
C. $3(\hat{i}-2 \hat{j}+2 \hat{k})$
D. $(\hat{i}-2 \hat{k}+2 \hat{k})$

Answer: c

- Watch Video Solution

53. The position vector of the point which divides the join of points $2 \vec{a}-3 \vec{b}$ and $\vec{a}+\vec{b}$ in the ratio $3: 1$ is
A. $\frac{3 \vec{a}-2 \vec{b}}{2}$
B. $\frac{7 \vec{a}-8 \vec{b}}{4}$
C. $\frac{3 \vec{a}}{4}$
D. $\frac{5 \vec{a}}{4}$

Answer: d

- Watch Video Solution

54. The vector having initial and terminal points as ($2,5,0$) and $(-3,7,4)$ respectively is

$$
\begin{aligned}
& \text { A. }-\hat{i}+12 \hat{j}+4 \hat{k} \\
& \text { B. } 5 \hat{i}+2 \hat{j}-4 \hat{k} \\
& \text { C. }-5 \hat{i}+2 \hat{j}+4 \hat{k} \\
& \text { D. } \hat{i}+\hat{j}+\hat{k}
\end{aligned}
$$

Answer: c

- Watch Video Solution

55. The angle between two vectors \vec{a} and \vec{b} with magnitudes $\sqrt{3}$ and 4 , respectively and $\vec{a} \cdot \vec{b}=2 \sqrt{3}$ is
A. $\frac{\pi}{6}$
B. $\frac{\pi}{3}$
C. $\frac{\pi}{2}$
D. $\frac{5 \pi}{2}$

Answer: b

- Watch Video Solution

56. Find the value of λ such that the vectors $\vec{a}=2 \hat{i}+\lambda \hat{j}+\hat{k}$ and $\vec{b}=\hat{i}+2 \hat{j}+3 \hat{k}$ are orthogonal
A. 0
B. 1
C. $\frac{3}{2}$
D. $-\frac{5}{2}$

Answer: d
57. The value of λ for which the vector $3 \hat{i}-\hat{j}+\hat{k}$ and $2 \hat{i}-4 \hat{j}+\lambda \hat{k}$ are parallel is
A. $\frac{2}{3}$
B. $\frac{3}{2}$
C. $\frac{5}{2}$
D. $\frac{2}{5}$

Answer: a

- Watch Video Solution

58. The vectors from origin to the points A and B are $\vec{a}=2 \hat{i}-3 \hat{j}+2 \hat{k}$ and $\vec{b}=2 \hat{i}+3 \hat{j}+\hat{k}$, respectively then the area of triagnle OAB is
A. 340
B. $\sqrt{25}$
C. $\sqrt{229}$
D. $\frac{1}{2} \sqrt{229}$

Answer: d
59. For any vector \vec{a} the value of $(\vec{a} \times \hat{i})^{2}+(\vec{a} \times \hat{j})^{2}+(\vec{a} \times \hat{k})^{2}$ is equal to
A. \vec{a}^{2}
B. $3 \vec{a}^{2}$
C. $4 \vec{a}^{2}$
D. $2 \vec{a}^{2}$

Answer: d

- Watch Video Solution

60. If $|\vec{a}|=10,|\vec{b}|=2$ and $\vec{a} \cdot \vec{b}=12$, then value of $|\vec{a} \times \vec{b}|$ is
A. 5
B. 10
C. 14
D. 16

Answer: d

D Watch Video Solution
61. The vectors $\lambda \hat{i}+\hat{j}+2 \hat{k}, \hat{i}+\lambda \hat{j}-\hat{k}$ and $2 \hat{i}-\hat{j}+\lambda \hat{k}$
are coplanar if
A. $\lambda=-2$
B. $\lambda=0$
C. $\lambda=1$
D. $\lambda=-1$

Answer: a

(D) Watch Video Solution

62. If $\vec{a}, \vec{b}, \vec{c}$ are unit vectors such that

$$
\begin{aligned}
& \vec{a}+\vec{b}+\vec{c}=\overrightarrow{0}, \quad \text { then the value of } \\
& \vec{a} \cdot \vec{b}+\vec{b} \cdot \vec{c}+\vec{c} \cdot \vec{a} \text { is }
\end{aligned}
$$

A. 1
B. 3
C. $-\frac{3}{2}$
D. None of these

Answer: c

- Watch Video Solution

63. Projection of a vector \vec{a} on vector \vec{b} is given by
A. $\left(\frac{\vec{a} \cdot \vec{b}}{|\vec{b}|^{2}}\right) \vec{b}$
B. $\frac{\vec{a} \cdot \vec{b}}{|\vec{b}|}$
C. $\frac{\vec{a} \cdot \vec{b}}{|\vec{a}|}$
D. $\left(\frac{\vec{a} \cdot \vec{b}}{|\vec{a}|^{2}}\right) \hat{b}$
64. If $\vec{a}, \vec{b}, \vec{c}$ are three vectors such that $\vec{a}+\vec{b}+\vec{c}=\overrightarrow{0}$ and $|\vec{a}|=2,|\vec{b}|=3,|\vec{c}|=5$ the value of $\vec{a} \cdot \vec{b}+\vec{b} \cdot \vec{c}+\vec{c} \cdot \vec{a}$ is
A. 0
B. 1
C. -19
D. 38

Answer: c
65. If $|\vec{a}|=4$ and $-3 \leq \lambda \leq 2$ then the range of $|\lambda \vec{a}|$ is
A. 1) $[0,8]$
B. 2) $[-12,8]$
C. 3) $[0,12]$
D. 4) $[8,12]$

Answer: c

- Watch Video Solution

66. The number of vectors of unit length perpendicular to the vectors $\vec{a}=2 \hat{i}+\hat{j}+2 \hat{k}$ and $\vec{b}=\hat{j}+\hat{k}$ is
A. one
B. two
C. three
D. infinite

Answer: b

D Watch Video Solution

Questions Carrying 1 Mark Type li Fill In The Blanks Questions

1. If \vec{a} is a nonzero vector of magnitude ' a ' and λ a nonzero scalar, then $\lambda \vec{a}$ is unit vector if:
2. Magnitude of the vectors $\frac{2}{\sqrt{3}} \hat{i}+\frac{2}{\sqrt{3}} \hat{j}+\frac{2}{\sqrt{3}} \hat{k}$ is equal to

- Watch Video Solution

3. Direction ratio's of vectors $3 \hat{i}+2 \hat{j}+4 \hat{k}$ are :

(Watch Video Solution

4. If $\vec{a}=2 \hat{i}-\hat{j}+\hat{k}$ and $\vec{b}=-2 \hat{i}+\hat{j}+2 \hat{k}$, then vector in the direction of $\vec{a}+\vec{b}$ with magnitude 5 is:
5. If $\vec{a}=2 \hat{i}+2 \hat{j}+3 \hat{k}$ and $\vec{b}=\hat{i}+2 \hat{j}+2 \hat{k}$ then the unit vector in the direction of $\vec{a}-\vec{b}$ is equal to

- Watch Video Solution

6. Position vector of mid-point of vector joining the points P
$(2,3,4)$ and $Q(4,1,-2)$ is:

- Watch Video Solution

7. If $|\vec{a}|=\sqrt{3},|\vec{b}|=2$ and $\vec{a} \cdot \vec{b}=\sqrt{6}$. Then the angle between \vec{a} and \vec{b} is :

- Watch Video Solution

8. If $|\vec{a}|=1,|\vec{b}|=2$ and $\vec{a} \cdot \vec{b}=1$. Then the angle between \vec{a} and \vec{b} is :

(Watch Video Solution

9. If $2(\vec{a} \cdot \vec{b})=|\vec{a}||\vec{b}|$ then angle between \vec{a} and \vec{b} equals to,

D Watch Video Solution

10. The projection of $\vec{a}=2 \hat{i}-2 \hat{j}-\hat{k} \quad$ on
$\vec{b}=3 \hat{i}-\hat{j}+2 \hat{k}$ is equal to:

- Watch Video Solution

11. If $\vec{a}=2 \hat{i}+\lambda \hat{j}+\hat{k}$ and $\vec{b}=3 \hat{i}-2 \hat{j}+8 \hat{k}$ are per[endicular to each other, the value of λ is :

- Watch Video Solution

12. The value of λ for which the vectors $\vec{a}=2 \hat{i}+\lambda \hat{j}+\hat{k}$ and $\vec{b}=\hat{i}-2 \hat{j}+3 \hat{k}$ are perpendicular to each other is :

- Watch Video Solution

13. If $\vec{a}=\hat{i}-\hat{j}+\hat{k}$ and $\vec{b}=5 \hat{i}-\hat{j}+2 \hat{k}$, then $\vec{a} \cdot \vec{b}$ is
14. If $\vec{a}=2 \hat{i}+\hat{j}+7 \hat{k}$ and $\vec{b}=5 \hat{i}-3 \hat{j}+10 \hat{k}$, then $\vec{a} \cdot \vec{b}$ is :

(Watch Video Solution

15. If $\vec{a} \cdot \vec{b}=|\vec{a} \times \vec{b}|$, then angle between vector \vec{a} and vector \vec{b} is :

- Watch Video Solution

16. If $\sqrt{3} \vec{a} \cdot \vec{b}=|\vec{a} \times \vec{b}|$ then angle between vector \vec{a} and vector \vec{b} is

D Watch Video Solution

17. If $\vec{a} \cdot \vec{b}=|\vec{a} \times \vec{b}|$ then angle between vector \vec{a} and vector \vec{b} is

- Watch Video Solution

18. The value of : $\hat{i} \cdot(\hat{j} \times \hat{k})+\hat{j} \cdot(\hat{k} \times \hat{i})+\hat{k} \cdot(\hat{i} \times \hat{j})$ is:

- Watch Video Solution

19. If θ is the angle between two vectors \vec{a} and \vec{b}, then $|\vec{a} \cdot \vec{b}|=|\vec{a} \times \vec{b}|$ when θ is equal to :

- Watch Video Solution

20. If θ is the angle between two vectors \vec{a} and \vec{b}, then $|\vec{a} \cdot \vec{b}|=|\vec{a} \times \vec{b}|$ when θ is equal to :

- Watch Video Solution

21. The vector $\vec{a}+\vec{b}$ bisects the angle between the non collinear vectors \vec{a} and \vec{b} if

- Watch Video Solution

22. If $\vec{r} \cdot \vec{a}=0, \vec{r} \cdot \vec{b}=0$ and $\vec{r} \cdot \vec{c}=0$ for some non zero vector \vec{r} then the value of $\vec{a} \cdot(\vec{b} \times \vec{c})$ is

- Watch Video Solution

23. The vector $\vec{a}=3 \hat{i}-2 \hat{j}+2 \hat{k}$ and $\vec{b}=-\hat{i}-2 \hat{k}$ are the adjacent sides of a parallelogram. The acute angle between its diagonals is

- Watch Video Solution

24. The value of k for which $|k \vec{a}|<|\vec{a}|$ and $k \vec{a}+\frac{1}{2} \vec{a}$ is parallel to \vec{a} holds true are..........

- Watch Video Solution

25. The value of the expression $|\vec{a} \times \vec{b}|^{2}+(\vec{a} \cdot \vec{b})^{2}$ is
26. If $|\vec{a} \times \vec{b}|^{2}+|\vec{a} \cdot \vec{b}|^{2}=144$ and $|\vec{a}|=3$ then $|\vec{b}|$ is equal to

- Watch Video Solution

27. If \vec{a} is any vector, then show that
$\vec{a}=(\vec{a} \cdot \hat{i}) \hat{j}+(\vec{a} \cdot \hat{j}) \hat{j}+(\vec{a} \cdot \hat{k}) \hat{j}$.

D Watch Video Solution

Questions Carrying 1 Mark Type lif True Ro False Questions

1. If $|\vec{a}|=|\vec{b}|$ then necessarily it impulies $\vec{a}= \pm \vec{b}$.
2. Position vector of a point P is vectors whose initial point is origin.

- Watch Video Solution

3. If $\vec{a} \cdot \vec{b}=-|\vec{a}||\vec{b}|$, then $\theta=$

- Watch Video Solution

4. The formula $(\vec{a}+\vec{b})^{2}=\vec{a}^{2}+\vec{b}^{2}+2 \vec{a} \times \vec{b}$ is valid for non zero vectors \vec{a} and \vec{b}.
5. If \vec{a} and \vec{b} are adjacent sides of a rhombus, then $\vec{a} \cdot \vec{b}=0$

D Watch Video Solution

6. A vector has both magnitude and direction. Does it mean that anything that has magnitude and direction is necessarily a vector ?The rotation of a body can be specified by the direction of the axis of rotation, and the angle of rotation about the axis. Does that make any rotation a vector ?
7. Answer the following ad true or false : Two vectors having same magnitude are collinear.

- Watch Video Solution

$$
\begin{aligned}
& \text { 8. The sum of the vectors } \\
& \vec{a}=\hat{i}-3 \hat{k}, \vec{b}=2 \hat{j}-\hat{k}, \vec{c}=2 \hat{i}-3 \hat{j}+2 \hat{k} \text { is } \\
& 3 \hat{i}-\hat{j}-2 \hat{k} \text {. }
\end{aligned}
$$

- Watch Video Solution

9. Find the values of ' x ' for which $x(\hat{i}+\hat{j}+\hat{k})$ is a unit vector.
10. A vector of magnitude 15 units in the direction of vector $\hat{i}-2 \hat{j}+2 \hat{k}$ is $5 \hat{i}+10 \hat{j}+10 \hat{k}$.

D Watch Video Solution

11. If θ is the angle between two vectors \vec{a} and \vec{b}, then $\vec{a} \cdot \vec{b} \geq 0$ only when:

- Watch Video Solution

12. If $\vec{a}=2 \hat{i}+\lambda \hat{j}+\hat{k}$ and $\vec{b}=3 \hat{i}-2 \hat{j}+8 \hat{k}$ are perpendicular to each other the value of λ is 6 .
13. The projection of $\vec{a}=2 \hat{i}-\hat{j}+\hat{k}$ on $\vec{b}=\hat{i}-2 \hat{j}+\hat{k}$ is equal to $\frac{5}{\sqrt{6}}$

- Watch Video Solution

14. The value of : $\hat{i} \cdot(\hat{j} \times \hat{k})+\hat{j} \cdot(\hat{k} \times \hat{i})+\hat{k} \cdot(\hat{i} \times \hat{j})$ is :

- Watch Video Solution

15. If $|\vec{a} \cdot \vec{b}|=\sqrt{3}|\vec{a} \times \vec{b}|$,then angle between \vec{a} and \vec{b} is :

Questions Carrying 2 Marks

1. Prove that the figure formed by joining the mid-points of the pairs of consecutive sides of a quadrilateral is a parallelogram.

- Watch Video Solution

2. If $\vec{a}=\hat{i}+\hat{j}+\hat{k}, \vec{b}=2 \hat{i}-\hat{j}+3 \hat{k}, \vec{c}=\hat{i}-2 \hat{j}+\hat{k}$, then find a unit vector parallel to the vector $2 \vec{a}-\vec{b}+3 \vec{c}$.

- Watch Video Solution

3.

$\vec{a}=2 \hat{i}-\hat{j}+3 \hat{k}, \vec{b}=\hat{i}+\hat{j}-\hat{k}, \vec{c}=3 \hat{i}+4 \hat{j}-5 \hat{k}$, then find a unit vector parallel to vector $3 \vec{a}+\vec{b}-\vec{c}$.

- Watch Video Solution

4. If $\vec{a}=5 \hat{i}+\hat{j}-4 \hat{k}, \vec{b}=2 \hat{i}-3 \hat{j}+\hat{k} \quad$ and
$\vec{c}=\hat{i}+3 \hat{j}-2 \hat{k}$ then find a unit vector parallel to the vector $2 \vec{a}+\vec{b}+3 \vec{c}$.

D Watch Video Solution

5. Show that the points $A(1,2,7), B(2,6,3)$ and $C(3,10,-1)$ are collinear.
6. Show that the three points with position vectors $2 \hat{i}+6 \hat{j}+3 \hat{k}, \hat{i}+2 \hat{j}+7 \hat{k}$ and $3 \hat{i}+10 \hat{j}-\hat{k}$ are collinear.

- Watch Video Solution

7. Show that the points
$A(-2 \hat{i}+3 \hat{j}+5 \hat{k}), B(\hat{i}+2 \hat{j}+3 \hat{k})$ and $C(7 \hat{i}-\hat{k})$
are collinear.

- Watch Video Solution

8. Show that . the points $(2.6,3),(1,2,7)$ and $(3,10,-1)$ are collinear. (by vector method only)

Watch Video Solution

9. Find the position vector of a point R which divides the line joining the points $P(\hat{i}+2 \hat{j}-\hat{k})$ and $Q(\hat{i}+2 \hat{j}+2 \hat{k})$ internally in the ratio 2:1.

- Watch Video Solution

10. Find the position vector of a point R which divides the line joining the points $P(\hat{i}+2 \hat{j}-2 \hat{k})$ and $Q(\hat{i}+2 \hat{j}+2 \hat{k})$ internally in the ratio 1:2.
11. Find the angle between two vectors \vec{a} and \vec{b} with magnitudes $\sqrt{3}$ and 2, respectively having $\vec{a} \cdot \vec{b}=\sqrt{6}$

D Watch Video Solution

12. For any two vectors \vec{a} and \vec{b}, prove that $|\vec{a} \cdot \vec{b}| \leq|\vec{a}||\vec{b}|$ Also write the name of this inequality.

Watch Video Solution

13. For any two vectors \vec{a} and \vec{b}, prove that : $|\vec{a}+\vec{b}| \leq|\vec{a}|+|\vec{b}|$. Also, write the name of this inequality
14. If $|\vec{a}|=3,|\vec{b}|=4$ and $|\vec{c}|=5$ and each of them is perpendicular to the sum of other two then find the value of $|\vec{a}+\vec{b}+\vec{c}|$

- Watch Video Solution

15. If $|\vec{a}|=2,|\vec{b}|=3$ and $|\vec{c}|=4$ and each of them is perpendicularto the sum of other two then find the value of $|\vec{a}+\vec{b}+\vec{c}|$
16. If $|\vec{a}|=7,|\vec{b}|=1$ and $|\vec{c}|=5$ and each of them is perpendicular to the sum of other two then find the value of $|\vec{a}+\vec{b}+\vec{c}|$

D Watch Video Solution

17. Let $\vec{a}, \vec{b}, \vec{c}$ be the three vectors of magnitude 5,3 , I respectively. If each one is perpendicular to the sum of other two vectors, prove that $|\vec{a}+\vec{b}+\vec{c}|=\sqrt{35}$.

(Watch Video Solution

18. Find the scalar projection of : $\vec{a}=2 \hat{i}-\hat{j}-3 \hat{k}$ on $\vec{b}=3 \hat{i}-5 \hat{j}+\hat{k}$.
19. Find the scalar projection of : $\vec{a}=7 \hat{i}+3 \hat{j}+6 \hat{k}$ on $\vec{b}=5 \hat{i}-2 \hat{j}+3 \hat{k}$.

- Watch Video Solution

20. Find the scalar projection of \vec{b} on \vec{a} where : $\vec{a}=2 \hat{i}-2 \hat{j}+\hat{k}$ and $\vec{b}=-\hat{i}-2 \hat{j}+4 \hat{k}$

D Watch Video Solution

21. Find the scalar projection of \vec{b} on \vec{a} where : $\vec{a}=2 \hat{i}+2 \hat{j}+\hat{k}$ and $\vec{b}=2 \hat{i}-\hat{j}+4 \hat{k}$
22. Find the scalar projection of \vec{b} on \vec{a} where : $\vec{a}=2 \hat{i}+2 \hat{j}-\hat{k}$ and $\vec{b}=2 \hat{i}-\hat{j}-4 \hat{k}$

- Watch Video Solution

23. The projection of the vector $\vec{a}=2 \hat{i}+3 \hat{j}+2 \hat{k}$ on the vector $\vec{b}=\hat{i}+2 \hat{j}+\hat{k}$ is :

- Watch Video Solution

24. If $\vec{a}=2 \hat{i}-2 \hat{j}+\hat{k}, \vec{b}=\hat{i}+2 \hat{j}-2 \hat{k} \quad$ and
$\vec{c}=2 \hat{i}-\hat{j}+4 \hat{k}$, then find the projection of $(\vec{b}+\vec{c})$
on \vec{a}.

(D) Watch Video Solution

25. If $\vec{a}=2 \hat{i}-2 \hat{j}+\hat{k}, \vec{b}=\hat{i}+2 \hat{j}-2 \hat{k} \quad$ and
$\vec{c}=2 \hat{i}-\hat{j}+4 \hat{k}$, then find the projection of $(\vec{b}+\vec{c})$ on \vec{a}.

- Watch Video Solution

26. If $\vec{a}=2 \hat{i}-2 \hat{j}+\hat{k}, \vec{b}=2 \hat{i}-\hat{j}+4 \hat{k}$, and $\vec{c}=\hat{i}+2 \hat{j}-2 \hat{k}$ then find the projection of $\vec{b}+\vec{c}$ on \vec{a}.
27. Show that the vectors : $2 \hat{i}-\hat{j}+\hat{k}, \hat{i}-3 \hat{j}-5 \hat{k}$ and $3 \hat{i}-4 \hat{j}-4 \hat{k}$ form the vertices of a right angled triangle.

- Watch Video Solution

28. With the help of vector method, prove that, $\cos C=\frac{a^{2}+b^{2}-c^{2}}{2 a b}$

- Watch Video Solution

29. With the help of vector method, prove that, $\cos A=\frac{b^{2}+c^{2}-a^{2}}{2 b c}$
30. Prove that, in any triangle $\mathrm{ABC}, \cos B=\frac{c^{2}+a^{2}-b^{2}}{2 c a}$.

- Watch Video Solution

31. Using vector method, prove that in a triangle,
$a=b \cos C+c \cos B$ (projection formula)

- Watch Video Solution

32. Use vectors to prove that in $\triangle A B C$:
$b=c \cos A+a \cos C$.

- Watch Video Solution

33. Prove that in any triangle $A B C, c=a \cos B+b \cos A$

(Watch Video Solution

34. Using vector method, prove that the angle in a semicircle is a right angle.

(Watch Video Solution

35. Show that the diagonals of a rhombus bisect each other at right angles.

- Watch Video Solution

36. If $\vec{a}=\hat{i}-\hat{j}+3 \hat{k}$ and $\vec{b}=2 \hat{i}+3 \hat{j}-5 \hat{k}$ then find $\vec{a} \times \vec{b}$. Verify that \vec{a} and $\vec{a} \times \vec{b}$ are perpendicular to each other.

D Watch Video Solution

37. If $|\vec{a}|=5,|\vec{b}|=8$ and $\vec{a} \cdot \vec{b}=24$, then find $|\vec{a} \times \vec{b}|$

- Watch Video Solution

38. If $|\vec{a}|=3,|\vec{b}|=4$ and $\vec{a} \cdot \vec{b}=9$ then find $|\vec{a} \times \vec{b}|$
39. Find a vector of magnitude 9 , which is perpendicular to both the vectors : $4 \hat{i}-\hat{j}+3 \hat{k}$ and $-2 \hat{i}+\hat{j}-2 \hat{k}$.

D Watch Video Solution

40. Find a vector of magnitude 19, which is perpendicular to both the vectors : $4 \hat{i}-\hat{j}+8 \hat{k}$ and $-\hat{j}+\hat{k}$.

(Watch Video Solution

41. Find a vector of magnitude 7 , which is perpendicular to both the vectors : $2 \hat{i}-\hat{j}+\hat{k}$ and $\hat{i}+\hat{j}-\hat{k}$
42. Determine the area of a parallelogram whose adjacent sides are represented by the vectors : $\vec{a}=\hat{i}-\hat{j}+3 \hat{k}$ and $\vec{b}=2 \hat{i}-7 \hat{j}+\hat{k}$.

- Watch Video Solution

43. Find the area of a parallelogram whose adjacent sides
are :
$3 \hat{i}-4 \hat{j}$ and $\hat{i}-\hat{j}+\hat{k}$

- Watch Video Solution

44. Find the area of a parallelogram whose adjacent sides
are $\vec{a}=2 \hat{i}-\hat{j}+3 \hat{k}$ and $\vec{b}=\hat{i}-\hat{j}+\hat{k}$
45. Find the area of the parallelogram whose adjacent sides are given by the vectors $\vec{a}=2 \hat{i}+\hat{j}+\hat{k}$ and $\vec{b}=\hat{i}+3 \hat{j}-2 \hat{k}$

- Watch Video Solution

46. Find the area of parallelogram whose adjacent sidesa are given by the vector $\vec{a}=2 \hat{i}+4 \hat{j}-\hat{k} \quad$ and $\vec{b}=\hat{i}-\hat{j}+\hat{k}$.

D Watch Video Solution

47. The two adjacent sides of a parallelogram are given by the vectors $2 \hat{i}-4 \hat{j}+5 \hat{k}$ and $\hat{i}-2 \hat{j}-3 \hat{k}$ Find a unit vector parallel to its diagonal (longer). Also find the area of parallelogram.

- Watch Video Solution

48. Find the area of the parallelogram whose diagonals are
$\vec{a}=\hat{i}+2 \hat{j}+3 \hat{k}$ and $\vec{b}=-3 \hat{i}-\hat{j}+\hat{k}$

D Watch Video Solution

49. Find the area of the parallelogram whose diagonals are
$\vec{a}=3 \hat{i}-\hat{j}-2 \hat{k}$ and $\vec{b}=\hat{i}+3 \hat{j}+4 \hat{k}$.
50. Find the area of the parallelogram whose diagonals are $: \vec{a}=\hat{i}-2 \hat{j}+3 \hat{k}$ and $\vec{b}=3 \hat{i}+2 \hat{j}+\hat{k}$

- Watch Video Solution

51. If $\vec{a}=2 \hat{i}-3 \hat{j}+4 \hat{k}$ and $\vec{b}=5 \hat{i}+\hat{j}-\hat{k}$ represents sides of a parallelogram then find both diagonals and a unit vector perpendicular to both diagonals of parallelogram.

- Watch Video Solution

52. Find the value of $a+b$, if the points $(2, a, 3),(3,-5, b)$ and (-1,11,9) are collinear.

- Watch Video Solution

53. Find the area of the triangle formed by the points
$A(1,1,1), B(1,2,3)$ and $C(2,3,1)$ with reference to a rectangular system of axes.

- Watch Video Solution

54. Find the area of triangle with vertices (1,1,2),(2,3,5),(1,5,5).
55. Using vectors find the area of the triangle $A B C$ with vertices $A(1,0,3), B(2,1,4)$ and $C(4,3,1)$.

- Watch Video Solution

56. Find the area of the triangle fonned by the points A (1,2,4), $B(3,1,-2)$ and $C(4,3,1)$ as its vartices (using vector).

D Watch Video Solution

57. Using vectors, find the area of the triangle having vertices $A(2,5,6), B(3,3,1)$ and $C(4,6,3)$
58. Using vectors, find the area of the triangle having vertices $A(3,2,6), B(1,3,5)$ and $C(5,3,1)$.

(Watch Video Solution

59. Using vectors find the area of the triangle whose vertices $\operatorname{arc}(0,1,2),(2,1,5)$ and $(1,5,2)$.

- Watch Video Solution

60. Using vectors, find the area of triangle whose vertices are (2,1,1),(2,3,1) and (1,3,4).

D Watch Video Solution

61. If $\vec{a}+\vec{b}+\vec{c}=\overrightarrow{0}$ show that
$\vec{a} \times \vec{b}=\vec{b} \times \vec{c}=\vec{c} \times \vec{a}$. Interpret the result geometrically.

- Watch Video Solution

62. If A, B and C are the vertices of a triangle $A B C$, prove sine formula that
$=\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}$

- Watch Video Solution

63. In a triangle OAC, if B is the mid point of side $A C$ and
$\overrightarrow{O A}=\vec{a}, \overrightarrow{O B}=\vec{b}$, then what is $\overrightarrow{O C}$.
64. Find a unit vector parallel to the sum of the vectors $\hat{i}+\hat{j}+\hat{k}$ and $2 \hat{i}-3 \hat{j}+5 \hat{k}$.

- Watch Video Solution

65. Find a vector of magnitude 5 units, and parallel to the resultant of the vectors $\vec{a}=2 \hat{i}+3 \hat{j}-\hat{k} \quad$ and $\vec{b}=\hat{i}-2 \hat{j}+\hat{k}$

- Watch Video Solution

66. If the sum of two unit vectors is a unit vector, show that the magnitude of their difference is $\sqrt{3}$.

- Watch Video Solution

67. Show that the points $(-2,3,5),(1,2,3)$ and $(7,0,-1)$ are collinear.

- Watch Video Solution

68. If a unit vector \vec{a}, makes angles $\frac{\pi}{3}$ with $\hat{i}, \frac{\pi}{4}$ wih \hat{j} and an acute angle θ with \hat{k}, then find θ and hence, the components of \vec{a}.

- Watch Video Solution

69. Find a vector of magnitude $5 \sqrt{2}$ units which makes an angle of $\frac{\pi}{4}$ and $\frac{\pi}{2}$ which y and z-axis respectively.

- Watch Video Solution

70. Write the value of the cosine of the angle which the vector $\vec{a}=\hat{i}+\hat{j}+\hat{k}$ makes with y-axis. Also find angle between $\hat{i}+\hat{j}+\hat{k}$ and x-axis

- Watch Video Solution

71.

$\vec{a}=2 \hat{i}+2 \hat{j}+3 \hat{k}, \vec{b}=-\hat{i}+2 \hat{j}+\hat{k}$ and $\vec{c}=3 \hat{i}+\hat{j}$
are such that $\vec{a}+\lambda \vec{b}$ is perpendicular to \vec{c}, then find the value of λ.

- Watch Video Solution

72. The vectors $\vec{a}=3 \hat{i}+x \hat{j}$ and $\vec{b}=2 \hat{i}+\hat{j}+y \hat{k}$ are mutually perpendicular. If $|\vec{a}|=|\vec{b}|$ then find the value of y.

- Watch Video Solution

73. Find the values of λ for which the angle between the vectors $\vec{a}=2 \lambda^{2} \hat{i}+4 \lambda \hat{j}+\hat{k}$ and $\vec{b}=7 \hat{i}-2 \hat{j}+\lambda \hat{k}$ is obtuse.
74. If \vec{a} and \vec{b} are two unit vectors such that $\vec{a}+\vec{b}$ is also a unit vector, then find the angle between \vec{a} and \vec{b}.

- Watch Video Solution

75. If \vec{a} and \vec{b} are two vectors such that $|\vec{a}+\vec{b}|=|\vec{a}|$, then prove that the vector $2 \vec{a}+\vec{b}$ is perpendicular to vector \vec{b}.

- Watch Video Solution

76. Write the projection of the vector $7 \hat{i}+\hat{j}+4 \hat{k}$ on the vector $2 \hat{i}+6 \hat{j}+3 \hat{k}$.

- Watch Video Solution

77. If $\vec{a}=\hat{i}+2 \hat{j}-\hat{k}, \vec{b}=2 \hat{i}+\hat{j}+\hat{k} \quad$ and $\vec{c}=5 \hat{i}-4 \hat{j}+3 \hat{k}$ then find the value of $(\vec{a}+\vec{b}) \cdot \vec{c}$.

- Watch Video Solution

78. Express the $\vec{a}=5 \hat{i}-2 \hat{j}+5 \hat{k}$ as sum of two vectors such that one is parallel to the vector $\vec{b}=3 \hat{i}+\hat{k}$ and other is perpendicular to \vec{b}.
79. Show that the point whose position vectors are $\vec{a}=4 \hat{i}-3 \hat{j}+\hat{k}, \vec{b}=2 \hat{i}-4 \hat{j}+5 \hat{k}, \vec{c}=\hat{i}-\hat{j}$ form a right angled triangle.

- Watch Video Solution

80. The scalar product of the vector $\hat{i}+\hat{j}+\hat{k}$ with a unit vector along the sum of vectors $2 \hat{i}+4 \hat{j}-5 \hat{k}$ and $\lambda \hat{i}+2 \hat{j}+3 \hat{k}$ is equal to one. Find the value of λ.

D Watch Video Solution

81. If a unit vector \vec{a} makes angle $\frac{\pi}{4}$ with $\hat{i}, \frac{\pi}{3}$ with \hat{j} and acute angle θ with \hat{k} then find the component of \vec{a} ang the
angle θ.

(Watch Video Solution

82.

$\vec{a}=\hat{i}+4 \hat{j}+2 \hat{k}, \vec{b}=3 \hat{i}-2 \hat{j}+7 \hat{k}$ and $\vec{c}=2 \hat{i}-\hat{j}+4 \hat{k}$
. Find a vector \vec{p} which is perpendicular to both \vec{a} and \vec{b} and $\vec{p} \cdot \vec{c}=18$.

- Watch Video Solution

83. Dot product of a vector with vectors
$\hat{i}-\hat{j}+\hat{k}, 2 \hat{k}+\hat{j}+3 \hat{k}$ and $\hat{i}+\hat{j}+\hat{k}$ are respectively 4,0
and 2 . Find the vector.
84. If $\vec{a}+\vec{b}+\vec{c}=\overrightarrow{0}$ and $|\vec{a}|=3,|\vec{b}|=5,|\vec{c}|=7$, show that the angle between \vec{a} and \vec{b} is 60°

- Watch Video Solution

85. If $\vec{a}, \vec{b}, \vec{c}$ are mutually perpendicular vectors of equal magnitudes, show that the vector $\vec{a}+\vec{b}+\vec{c}$ is equally inclined to \vec{a}, \vec{b} and \vec{c}.

- Watch Video Solution

86. If $\vec{a}, \vec{b}, \vec{c}$ are mutually perpendicular vectors of equal magnitudes, show that the vector $\vec{a}+\vec{b}+\vec{c}$ is equally
inclined to \vec{a}, \vec{b} and \vec{c}.

- Watch Video Solution

87. If $\vec{a}, \vec{b}, \vec{c}$ are three vectors such that: $|\vec{a}|=5,|\vec{b}|=12$ and $|\vec{c}|=13$ and $\vec{a}+\vec{b}+\vec{c}=\overrightarrow{0}$, find the value of $\vec{a} \cdot \vec{b}+\vec{b} \cdot \vec{c}+\vec{c} \cdot \vec{a}$.

- Watch Video Solution

88. If with reference to the right handed system of mutually perpendicular unit vectors $\hat{i}, \hat{j}, \hat{k}$, $\vec{\alpha}=3 \hat{i}-\hat{j}, \vec{\beta}=2 \hat{i}+\hat{j}-3 \hat{k}$, then express $\vec{\beta}$ in the form $\vec{\beta}=\vec{\beta}_{1}+\vec{\beta}_{2}$ where $\vec{\beta}_{1}$ is parallel to $\vec{\alpha}$ and $\vec{\beta}_{2}$ is perpendicular to $\vec{\alpha}$.

- Watch Video Solution

89. Using vectors, prove that a parallelogram whose diagonals are equal is a rectangle.

- Watch Video Solution

90. For any vector \vec{a} the value of
$(\vec{a} \times \hat{i})^{2}+(\vec{a} \times \hat{j})^{2}+(\vec{a} \times \hat{k})^{2}$ is equal to

- Watch Video Solution

91. Find a unit vector perpendicular to the plane of triangle
$A B C$ where the coordinates of its vertices are
$A(3,-1,2), B(1,-1,-3)$ and $C(4,-3,1)$.

D Watch Video Solution

92. Find a unit vector perpendicular to each of the vectors
$(\vec{a}+\vec{b})$ and $(\vec{a}-\vec{b})$, where $: \vec{a}=\hat{i}+\hat{j}+\hat{k}$ and
$\vec{b}=\hat{i}+2 \hat{j}+3 \hat{k}$.

- Watch Video Solution

93. Find a vector of magnitude $\sqrt{171}$, which is perpendicular to both of the vectors
$\vec{a}=\hat{i}+2 \hat{j}-3 \hat{k}$ and $\vec{b}=3 \hat{i}-\hat{j}+2 \hat{k}$
94. Find a vector of magnitude 5 units, perpendicular to each of the vectors $(\vec{a}+\vec{b})$ and $(\vec{a}-\vec{b})$ where $\vec{a}=\hat{i}+\hat{j}+\hat{k}$ and $\vec{b}=\hat{i}+2 \hat{j}+3 \hat{k}$

- Watch Video Solution

95. Find the area of a parallelogram whose adjacent sides are represented by vectors $2 \hat{i}-3 \hat{k}$ and $4 \hat{j}+2 \hat{k}$.

(D) Watch Video Solution

96. If $\vec{a}=2 \hat{i}-3 \hat{j}+\hat{k}, \vec{b}=\hat{i}+\hat{k}, \vec{c}=2 \hat{j}-\hat{k}$ are three vectors find the area fo the parallelogram having diagonals $(\vec{a}+\vec{b})$ and $(\vec{b}+\vec{c})$

- Watch Video Solution

97. With help of vectors find the area of the triangle with vertices $A(2,3,5), B(3,5,8)$ and $C(2,7,8)$

- Watch Video Solution

98. Using vectors find the area of the triange $A B C$ with vertices $A(1,2,3), B(2,-1,4)$ and $C(4,5,-1)$.

- Watch Video Solution

99. If $\vec{a} \times \vec{b}=\vec{c} \times \vec{d}$ and $\vec{a} \times \vec{c}=\vec{b} \times \vec{d}$, show that $\vec{a}-\vec{d}$ is parallel to $\vec{b}-\vec{c}$, provided $\vec{a} \neq \vec{d}$ and
$\vec{b} \neq \vec{c}$

(D) Watch Video Solution

100. If $\vec{a}=\hat{i}+\hat{j}+\hat{k}$ and $\vec{b}=\hat{j}-\hat{k}$, find a vector \vec{c} such that $\vec{a} \times \vec{c}=\vec{b}$ and $\vec{a} \cdot \vec{c}=3$.

- Watch Video Solution

101. Let $\vec{a}=\hat{i}+4 \hat{j}+2 \hat{k}, \vec{b}=3 \hat{i}-2 \hat{j}+7 \hat{k} \quad$ and $\vec{c}=2 \hat{i}-\hat{j}+4 \hat{k}$. Find a vector \vec{d}, which is perpendicular to both \vec{a} and \vec{b} and $\vec{c} \cdot \vec{d}=18$.
102.

If $\quad \vec{r}=x \hat{i}+y \hat{j}+z \hat{k}$,
$(\vec{r} \times \hat{i}) \cdot(\vec{r} \times \hat{j})+x y$.

D Watch Video Solution

