©゙" doubtnut

India's Number 1 Education App

CHEMISTRY

BOOKS - OMEGA PUBLICATION

CHEMICAL KINETICS

Questions

1. What will be the wavelength of a particle of mass 0.5 kg moving with a velocity of 10 ms -1

- Watch Video Solution

2. What are extermaely slow reactions ? Give an example.

D Watch Video Solution

3. What are extremely fast reactions ? Give an example:

D Watch Video Solution

4. What are instantaneous reactions ? Give an example.

D Watch Video Solution

5. Define average rate of a reaction.
6. What is the unit of rate of reaction?

- Watch Video Solution

7. In a reaction, $2 A \rightarrow$ Products, the concentration of A decreases from $0.5 \mathrm{~mol}^{\wedge}(-1)$ to $0.4 \mathrm{molL}^{-1}$ in 10 minutes.

Calculate the rate during this interval?

- Watch Video Solution

8. A chemical reaction $2 A \rightarrow 4 B+C$ in gas phase takes place in closed vessel. The concentration of B is found to
increase by $5 \times 10^{-3} \mathrm{molL}^{-1}$ in 10 seconds. Calculate:
A. a) the rate of appearance of B
B. b) the rate of disappearance of A
C.
D.

Answer:

- View Text Solution

9. The reaction $2 \mathrm{~N}_{2} \mathrm{O}_{5}(\mathrm{~g}) \rightarrow \mathrm{NO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})$ takes place in a closed contaner. It is found that the concentration of NO_{2} increases by $1.6 \times 10^{-2} \mathrm{molL}^{-1}$
in four seconds. Calculate the rate of change of concentration of $\mathrm{N}_{2} \mathrm{O}_{5}$.

D Watch Video Solution

10. The following results have been obtained during the kinetic studies of the reaction: $2 A+B$ rarr C + D

Experiment	$[\mathrm{A}] / \mathrm{mol} \mathrm{L}^{-1}$	$[\mathrm{~B}] / \mathrm{mol} \mathrm{L}^{-1}$	Initial rate of formation of $\mathrm{D} / \mathrm{mol} \mathrm{L}^{-1} \mathrm{~min}^{-1}$
I	0.1	0.1	6.0×10^{-3}
II	0.3	0.2	7.2×10^{-2}
III	0.3	0.4	2.88×10^{-1}
IV	0.4	0.1	2.40×10^{-2}

Determine
the rate law and the rate constant for the reaction.
11. The reaction $2 \mathrm{~N}_{2} \mathrm{O}_{5}(g) \rightarrow \mathrm{NO}_{2}(g)+\mathrm{O}_{2}(g)$ takes place in a closed contaner. It is found that the concentration of NO_{2} increases by $1.6 \times 10^{-2} \mathrm{molL} L^{-1}$ in four seconds. Calculate the rate of change of concentration of $\mathrm{N}_{2} \mathrm{O}_{5}$.

D Watch Video Solution

12. For the reaction : $\mathrm{N}_{2}+3 \mathrm{H}_{2} \rightarrow 2 \mathrm{NH}_{3}$ The rate of reaction measured as $\frac{\Delta\left[N H_{3}\right]}{\Delta t}$ we found to be $2 \times 10^{-4} \mathrm{molL}^{-1} \mathrm{sec}^{-1}$. Calculate the rate of reaction expressed in terms of N_{2}.
13. The decomposition of NH3 on platinum surface is zero order reaction. What are the rates of production of N_{2} and H_{2} if $k=2.5 \times 10^{-4} \mathrm{molL} L^{-1} s^{-1} ?$

D Watch Video Solution

14. For the reaction: $2 A+B \rightarrow A 2 B$ the rate $=k[A][B]^{2} \quad$ with $\quad k=2.0 \times 10^{-6} \mathrm{~mol}^{-2} L^{2} \mathrm{~s}^{-1}$.

Calculate the initial rate of the reaction when $[A]=0.1 \mathrm{~mol}^{-1},[B]=0.2 \mathrm{~mol}^{-1}$. Calculate the rate of reaction after [A] is reduced to $0.06 \mathrm{~mol} \mathrm{~L}^{-1}$.

Watch Video Solution

15. The rate of a reaction $2 A+B \rightarrow A_{2} B$.
has rate law : rate $=\mathrm{k}[A]^{2}$ with the rate constant equal to
$0.50 \mathrm{~mol}^{-1} \mathrm{~L} \mathrm{sec}^{-1}$. Calculate the rate of reaction when
(i) $[\mathrm{A}]=0.60 \mathrm{~mol}^{-1},[\mathrm{~B}]=-0.05 \mathrm{~mol} L^{-1}$ and
(ii) When concentration of A and B have been reduced to $1 / 4$ th

- Watch Video Solution

16. Write two three difference between average rate of reaction and instantaneous rate of reaction

- Watch Video Solution

17. Discuss the various factors affecting the rates of chemical reactions.

- Watch Video Solution

18. What is the effect of temperature on the rate constant of a reaction? How can this effect of temperature on rate constant be represented quantitatively?

- Watch Video Solution

19. What is rate law ? Explain with an example.

- Watch Video Solution

20. Discuss briefly the effect of concentration on the rate of a reaction.

D Watch Video Solution

21. Why rate of reaction does not remain constant throughout?

- Watch Video Solution

22. Define decay constant.
23. Give four characteristics of rate constant.

- Watch Video Solution

24. What is the difference between instantaneous rate of a reaction and rate constant?

- Watch Video Solution

25. What is order of reaction ? Explain.
26. For a reaction, $A+B \rightarrow$ Product, the rate law is given $b y, r=k[A]^{\wedge}(1 / 2)[B]^{\wedge} 2$. What is the order of the reaction?

- Watch Video Solution

27. What are zero order reactions ? Give example.

D Watch Video Solution

28. What are the first order reactions ? Give example.

- Watch Video Solution

29. Write an example of second order reaction.

D Watch Video Solution

30. Given the unit of firt order rate constant.

- Watch Video Solution

31. Given the unit of second order rate constant

- Watch Video Solution

32. The unit of $1^{\text {st }}$ order rate constant are
33. The unit of $1^{\text {st }}$ order rate constant are

- Watch Video Solution

34. Reaction between NO_{2} and F_{2} to give $\mathrm{NO}_{2} \mathrm{~F}$ takes
place by the following mechanism
$\mathrm{NO}_{2}+\mathrm{F}_{2} \xrightarrow{\text { Slow }} \mathrm{NO}_{2} \mathrm{~F}+\mathrm{F}$
$\mathrm{NO}_{2}+\mathrm{F} \xrightarrow{\text { Fast }} \mathrm{NO}_{2} \mathrm{~F}$
$2 \mathrm{NO}_{2}+\mathrm{F}_{2} \rightarrow 2 \mathrm{NO}_{2} \mathrm{~F}$
write order of reaction.
35. Reaction between NO_{2} and CO to give CO_{2} and NO takes place by the following mechanism:

Write the rate expression and order of the reaction. What is the unit of rate constant?

Slow

$\mathrm{NO}_{\mathbf{2}}+\mathrm{NO}_{2} \longrightarrow \mathrm{NO}+\mathrm{NO}_{3}$

Fast

$\mathrm{NO}_{3}+\mathrm{CO} \longrightarrow \mathrm{CO}_{2}+\mathrm{NO}_{2}$
 $\mathrm{NO}_{2}+\mathrm{CO} \longrightarrow \mathrm{CO}_{2}+\mathrm{NO}$

- Watch Video Solution

36. A reaction is second order with respect to a reactant.

How is the rate of reaction affected if the concentration of the reactant is: doubled
37. A reaction is second order with respect to a reactant. How is the rate of reaction affected if the concentration of the reactant is: reduced to half ?

- Watch Video Solution

38. A reaction is first order in A and second order in B.

Write the differential rate equation.

D Watch Video Solution

39. A reaction is first order in A and second order in B How is the rate affected on increasing the concentration of B three times ?

D Watch Video Solution

40. A reaction is first order in A and second order in B.

How is the rate affected when the concentrations of both
A and B are doubled?

D Watch Video Solution

41. Can overall energy of a body be negative?
42. Define molecularity of a reaction.

D Watch Video Solution

43. Distinguish between order and the molecularity of a reaction.

- Watch Video Solution

44. What are elementary reactions ? Give an example.

- Watch Video Solution

45. What is meant by an elementry reaction ?

- View Text Solution

46. What are Kolbe's Reaction ? Give one example.

- Watch Video Solution

47. Which is the rate determining step of a reaction ?

D Watch Video Solution

48. Define order of a reaction
49. For the reaction :
$\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}+\mathrm{H}_{2} \mathrm{O} \xrightarrow{\mathrm{HI}} \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}+\mathrm{O}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$
Write : (a) Rate of reaction expression.
(b) Molecularity of reaction
(c) Order of reaction

- Watch Video Solution

50. Unit of rate constant for zero order reaction is
51. for the reaction
$2 \mathrm{H}_{2}(\mathrm{~g})+2 \mathrm{NO}(\mathrm{g}) \rightarrow \mathrm{N}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
the proposed mechanism is as followed < br> (i) ${ }^{2} 2 \mathrm{NO}(\mathrm{g})$
(ii) $\mathrm{N}_{2} \mathrm{O}_{2}(\mathrm{~g})+\mathrm{H}_{2}(\mathrm{~g}) \rightarrow \mathrm{N}_{2} \mathrm{O}(\mathrm{g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
$\mathrm{N}_{2} \mathrm{O}(\mathrm{g})+\mathrm{H}_{2}(\mathrm{~g}) \rightarrow \mathrm{N}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
If the second step is the rate determining step then What is the rate law for the reaction?

- Watch Video Solution

52. for the reaction
$2 \mathrm{H}_{2}(\mathrm{~g})+2 \mathrm{NO}(\mathrm{g}) \rightarrow \mathrm{N}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
the proposed mechanism is as followed < br> (i) ' 2 NO (g)
(ii) $\mathrm{N}_{2} \mathrm{O}_{2}(\mathrm{~g})+\mathrm{H}_{2}(\mathrm{~g}) \rightarrow \mathrm{N}_{2} \mathrm{O}(\mathrm{g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
$\mathrm{N}_{2} \mathrm{O}(g)+\mathrm{H}_{2}(g) \rightarrow \mathrm{N}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
If the second step is the rate determining step then What is the rate law for the reaction?

- Watch Video Solution

53. for the reaction
$2 \mathrm{H}_{2}(g)+2 \mathrm{NO}(g) \rightarrow \mathrm{N}_{2}(g)+2 \mathrm{H}_{2} \mathrm{O}(g)$
the proposed mechanism is as followed < br> (i) ' $2 \mathrm{NO}(\mathrm{g})$
(ii) $\mathrm{N}_{2} \mathrm{O}_{2}(\mathrm{~g})+\mathrm{H}_{2}(\mathrm{~g}) \rightarrow \mathrm{N}_{2} \mathrm{O}(\mathrm{g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
$\mathrm{N}_{2} \mathrm{O}(\mathrm{g})+\mathrm{H}_{2}(\mathrm{~g}) \rightarrow \mathrm{N}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
If the second step is the rate determining step then What
is the rate law for the reaction?
54. For the reaction
$2 \mathrm{H}_{2}(g)+2 \mathrm{NO}(g) \rightarrow \mathrm{N}_{2}(g)+2 \mathrm{H}_{2} \mathrm{O}(g)$
the proposed mechanism is as followed
(i) ' ${ }^{2 N O}$ (g) (ii) $\mathrm{N}_{2} \mathrm{O}_{2}(g)+\mathrm{H}_{2}(g) \rightarrow \mathrm{N}_{2} \mathrm{O}(g)+\mathrm{H}_{2} \mathrm{O}(g)$
$\mathrm{N}_{2} \mathrm{O}(g)+\mathrm{H}_{2}(g) \rightarrow \mathrm{N}_{2}(g)+\mathrm{H}_{2} \mathrm{O}(g)$
If the second step is the rate determining step then what

Is the molecularity of the reaction

- Watch Video Solution

55. Name two hypnotic drugs?
56. Name two non-addictive neurological active analgesics?

- Watch Video Solution

57. Define zero order reaction. Derive integrated rate equation for rate constant of a zero order reaction.

- Watch Video Solution

58. Define zero order reaction. Derive integrated rate equation for rate constant of a zero order reaction.

- Watch Video Solution

59. Derive the integrated rate law equation for $1^{\text {st }}$ order reaction and write its one use.

- Watch Video Solution

60. A reaction is first order in A and second order in B.

Write the differential rate equation.

- Watch Video Solution

61. A reaction is first order in A and second order in B

How is the rate affected on increasing the concentration
of B three times ?
62. A reaction is first order in A and second order in B.

How is the rate affected when the concentrations of both
A and B are doubled?

- Watch Video Solution

63. First order reacton ha specific rate of $10^{-3} s^{-1}$. How much time will it take for 10 g of the reactant to reduce to 5 g ?

D Watch Video Solution

64. First order reaction is found to have rate constant, $k=5.5 \times 10^{-14} s^{-1}$. Find the half life to the reaction.

- Watch Video Solution

65. Show that the time required for 99% completion of a first order reaction In twice the time required for the completion of 90%.

- Watch Video Solution

66. Show that for a first order reaction, the time taken to
complete half of the change is Independent of the initial
concentration of the reactant.

(D) Watch Video Solution

67. Define half life period. Derive expression for half life period for 1st oder reaction.

(D) Watch Video Solution

68. A first order reaction takes 40 min for 30% completion. Calculate $t_{\frac{1}{2}}$.

(D) Watch Video Solution

69. The half-life for radioactive decay of.${ }^{14} C$ is 5730 years. An archaeological artifact contented wood that has
only 80% of the.${ }^{14} C$ found in living tree. Estimate the age of the sample.

- Watch Video Solution

70. The reaction $A(g) \rightarrow B(g)+2 C(g)$ is a first order reaction with rate constant $2.772 \times 10^{-3} s^{-1}$, Starting with 0.1 mole of A in 2 litre vessel, find the concentration of A after 250 sec when the reaction is allowed to take place at constant pressure and at 300 K ?
a) 0.0125 M
b) 0.025 M
c) 0.05 M
d) none of these
71. First order reaction is found to have rate constant, $k=5.5 \times 10^{-14} s^{-1}$. Find the half life to the reaction.

- Watch Video Solution

72. A first order reaction has a rate constant vlaue $10^{-3} s^{-1}$. How much time will it take for 10 g of the reactant of reduce to $2.5 g$.

- Watch Video Solution

73. A first order reaction is 20% complete in the 10 minutes. Calculate the time period for 75% completion of
the reaction.

- Watch Video Solution

74. Give relationship between half life period and concentration for different order of reactions.

- Watch Video Solution

75. A first order reaction is 40% complete in 50 minutes.

In what time will the reaction be 80% compelete ?
76. Rate constant for a first order reaction is $60 s^{-1}$. How much time will it take to reduce the concentration of the reaction on $\frac{1}{10}$ th of its initial value.

D Watch Video Solution

77. The rate constant for a first order reaction is $60 s^{\wedge}(-1)$. How much time will it take to reduce the initial concentration of the reactant to its $I / 16^{\wedge}($ th $)$ value?

D Watch Video Solution

78. Calculate the half-life of a first order reaction from its rate constant which is
$200 S^{-1}$

D Watch Video Solution

79. Calculate the half-life of a first order reaction from their rate constants given below: $2 \mathrm{~min}^{-1}$

- Watch Video Solution

80. Calculate the half-life of a first order reaction from
their rate constants given below: 4years ${ }^{-1}$
81. Calculate rate constant for the first order reaction, whose half-life period is 4.6 s .

- Watch Video Solution

82. A reaction is second order with respect to a reactant.

How is the rate of reaction affected if the concentration of the reactant is: doubled

- Watch Video Solution

83. For a reaction, $A+B \rightarrow$ Product, the rate law is given by, $r=k[A]^{\wedge}(1 / 2)[B]^{\wedge} 2$. What is the order of the reaction?

- Watch Video Solution

84. A first order reaction takes 23.1 minutes for 50% conmpletion. Calculate the time required for 75% completion of this reaction $(\log 2=0.301),(\log 3=0.4771)(\log 4=0.6021)$

- Watch Video Solution

85. The three fourth of a first order reaction is completed in 32 minutes. What is the half-life period of the reaction?

Watch Video Solution

86. One fourth of a first order reaction is completed in 32 minutes. What is the half life period of the reaction ?

- Watch Video Solution

87. A first order reaction is 50% complete in 69.3 minutes.

Calculate the time for 80% completion of the reaction.

D Watch Video Solution

88. A first order reaction is 15% complete in 20 minutes.

How long will it take to complete 60\%?
89. What are pseudochemical reactions ? Give an example.

- Watch Video Solution

90. What is temperature coefficient of resistance of the material of conductor ?

D Watch Video Solution

91. Why paracetamol is preferred over aspirin?

- Watch Video Solution

92. Name two Addictive neurological active analgesics?

- Watch Video Solution

93. What Is activated complex ?

- Watch Video Solution

94. What are haloalkanes? Give examples

95. Derive the following relation
 $: \log \frac{k_{2}}{k_{1}}=\frac{E_{a}}{2.303 R}\left[\frac{T_{2}-T_{1}}{T_{1} T_{2}}\right]$

- View Text Solution

96. What are Alkenyl Halides? give examples?

- Watch Video Solution

97. what is activated complex ?
98. The rate of reaction becomes four times when the temperature changes from 293 K to 313 K . Calculate the energy of activation $\left(E_{a}\right)$ of the reacton assuming that it does not change with temperature.
$\left[R=8.314 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}, \log 4=0.6021\right]$

D Watch Video Solution

99. The rate constant of a first order reaction increases from $4 \times 10^{-2} \rightarrow 8 \times 10^{-2}$ when the temperatur changes from $27^{\circ} \mathrm{C}$ to $37^{\circ} \mathrm{C}$. Calculate the energy of activation
$(E a) \cdot \log 2=0.301), \log 3=0.4771, \log 4=0.6021$
100. The rate constant of a reaction increases four times when the temperature changes from 300 K to 320 K , Calculate the activation energy for the reaction. $\left(R=8.314 \mathrm{Jmol}^{-1} K^{-1}\right)$

- Watch Video Solution

101. Define activation energy of a reaction.

- Watch Video Solution

102. The rate of particular reaction doubles when temperature changes from $27^{\circ} \mathrm{C}$ to $37^{\circ} \mathrm{C}$. Calculate the
energy of activation of such a reaction.

D Watch Video Solution

103. How is rate constant of a reaction related to its activation energy?

- Watch Video Solution

104. Draw a schematic graph showing rate constant changes with change in temperature.
105. Discuss the effect of catalyst on the activation energy.

- Watch Video Solution

106. What is effective collision ?

D Watch Video Solution

107. What is collision frequency?

D Watch Video Solution
108. write the relation between rate of reaction and collision frequency.

- Watch Video Solution

Multiple Choice Questions Mcq S

1. Consider the chemical reaction,
$\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NH}_{3}(\mathrm{~g})$.
The rate of this reaction can be expressed in terms of time derivative of concentration of
$N_{2}(g), H_{2}(g)$ or $\mathrm{NH}_{3}(g)$. Identify the correct relationship amongest the rate expression.
A. Rate

$$
=-d\left[N_{2}\right] / d t=-1 / 3 d\left[H_{2}\right] / d t=1 / 2 d\left[N H_{3}\right] / d t
$$

B. Rate

$$
=-d\left[N_{2}\right] / d t=-3 d\left[H_{2}\right] / d t=2 d\left[N H_{3}\right] / d t
$$

C. Rate

$$
=d \frac{N_{2}}{d} / t=1 / 3 d\left[H_{2}\right] / d t=1 / 2 d\left[N H_{3}\right] / d t
$$

D. Rate

$$
=-d\left[N_{2}\right] / d t=-d\left[H_{2}\right] / d t=d\left[N H_{3}\right] / d t
$$

Answer:

2. For a reaction involving solid, decreasing which given below will increase the rate of reaction?
A. Particle size
B. Concentration
C. Temperature
D. Pressure

Answer:

- Watch Video Solution

3. Rate of first order reaction depends upon
A. time
B. concentration of reaction
C. temperature
D. all the three.

Answer:

- Watch Video Solution

4. Under a given set of experimental conditions, with increase of concentration of the reactants, the rate of a chemical reaction
A. decreases
B. increases
C. first decreases
D. none of these.

Answer:

- Watch Video Solution

5. Rate at which a substance reacts depends upon its
A. Atomic weight
B. Equivalent weight
C. Molecular weight
D. Active Mass

Answer:

- Watch Video Solution

6. RCOOR ' $+\mathrm{NaOH} \rightarrow \mathrm{RCOONa}+\mathrm{R}^{\prime} \mathrm{OH}$. What type of reaction is this?
A. 2nd order
B. unimolecular
C. pesudo unimolecular
D. $2^{\text {nd }}$ order

Answer:

7. Units of rate constant for the first and zero order reactions in terms of molarity, M units are respectively
A. $\sec ^{-1}, M \sec ^{-1}$
B. $\sec ^{-1}, M$
C. $M \sec ^{-1}, \sec ^{-1}$
D. M, sec^{-1}

Answer:

- Watch Video Solution

8. Units of specific reaction rate for 2 nd order reaction is
A. $\sec ^{-1}$
B. $m o l L^{-1} \mathrm{sec}^{-1}$
C. $L^{2} \mathrm{~mol}^{-2} \mathrm{sec}^{-1}$
D. $L \mathrm{~mol}^{-1} \mathrm{sec}^{-1}$

Answer:

- Watch Video Solution

9. The units of rate constant for first order equation.
A. s^{-1}
B. $m o l L^{-1} s^{-1}$
C. mols ${ }^{-1}$
D. $\mathrm{mol}^{-1} s^{-1}$

Answer:

- Watch Video Solution

10. The hydrolysis of ester in alkaline medium is a
A. $1^{s t}$ order reaction with molecularity 1
B. $2^{\text {nd }}$ order reaction with molecularity 2
C. $1^{\text {st }}$ order reaction with molecularity 2
D. $2^{\text {nd }}$ order reaction with molecularity 1

Answer:

11. Given the unit of second order rate constant
A. mol liter $\sec ^{-1}$
B. mol $^{-1}$ litre $^{-1} \mathrm{sec}^{-1}$
C. $\mathrm{mol}_{\text {litre }}{ }^{-1} \mathrm{sec}^{-1}$
D. mol^{-1} litre sec^{-1}

Answer:

- Watch Video Solution

12. The half life period of a zero order reaction is independent of initial concentration
A. temperature of the reaction
B. the concentration of the reactants
C. the concentration of the products
D. the material of the vessel in which the reaction is carried out.

Answer:

- Watch Video Solution

13. What is the effect of temperature on rate of a reaction.
A. Claisen-Clapeyron equation
B. Arrhenius equation
C. Gibbs-Helmholtz equation
D. Kirchoff's equation

Answer:

- Watch Video Solution

14. The activation energy of reaction is equal to
A. Threshold energy for the reaction
B. Threshold energy + Energy of the reactants
C. Threshold energy - Energy of the reactants
D. Threshold energy + Energy of the products.

D Watch Video Solution

15. The activation energy of a reaction can be determined by
A. changing the concentration of reactants
B. evaluating rate constant at two standard
temperatures
C. evaluating rate constant at two different temperatures
D. by doubling concentration of reactants

Answer:

16. The wavelength of first spectral line in the balmer series is 6561 angstrom. Calculate the wavelength of second spectral line in balmer series.

- Watch Video Solution

17. The substance that increases the speed of a chemical reactions is called
A. inhibitor
B. promotor
C. moderator
D. catalyst.

Answer:

- Watch Video Solution

18. The reaction rate is found to depend upon two concentration terms. The order of the reaction is
A. 1
B. 2
C. 3
D. 0

Answer:

19. For which of the following, the units of r constant and rate of the reaction are same
A. First order reaction
B. Second order reaction
C. Third order reaction
D. Zero order reaction

Answer:

- Watch Video Solution

20. A zero order reaction is one whose rate independent
A. temperature of the reaction
B. presence of light
C. concentration of the reactants
D. the material of the vessel in which t reaction is carried out.

Answer:

D Watch Video Solution

21. Calculate the wavelength of spectral line in lyman series corresponding to $\mathrm{n} 2=3$.
22. For the hypothetical reaction
$A \rightarrow$ Products, rate =-k [A]
The negative sign used in the rate expression indicate that
A. The rate of reaction increases with time
B. The concentration of reactants decrease wil time
C. There are repulsive forces between reactants
D. The reaction is reversible.

Answer:

- Watch Video Solution

23. Which of the following graphs corresponds to first order reaction:

C.

Answer:

- Watch Video Solution

24. Arrhenius equation is
A. $K=-A e^{-E a / R T}$
B. $K=A e^{-E a / R T}$
C. $K=e^{-E a / R T}$
D. $K=A e^{E a / R T}$

Answer:

25. The chemical reactions in which the reactants require high amount of activation energy are generally
A. Slow
B. Fast
C. Instantaneous
D. None of these

Answer:

D Watch Video Solution

26. Which of the following does not influence the reaction rate?
A. Nature of reactants
B. Conc. of reactants
C. Temperature of the reaction
D. Molecularity of the reaction

Answer:

- Watch Video Solution

27. A reaction was found to be of second order with respect to concentration of carbon monoxide. If the concentration of carbon monoxide is doubled, the rate of reaction will :
A. triple
B. increase by a factor of 4
C. double
D. remain unchanged

Answer:

- Watch Video Solution

28. For a reaction involving solid, decreasing which given below will increase the rate of reaction?
A. Particle size
B. Concentration
C. Temperature

D. Pressure

Answer:

- Watch Video Solution

29. Rate of first order reaction depends upon
A. time
B. concentration of reactant
C. temperature
D. All the three

Answer:
30. Under a given set of experimental conditions, with increase of concentration of the reactants, the rate of a chemical reaction
A. decreases
B. increases
C. remains unaffected
D. first decreases

Answer:

- Watch Video Solution

31. Units of specific reaction rate for 2 nd order reaction is
A. $\sec ^{-1}$
B. $m o l L^{-1} \mathrm{sec}^{-1}$
C. $L^{2} \mathrm{~mol}^{-2} \mathrm{sec}^{-1}$
D. $L \mathrm{~mol}^{-1} \mathrm{sec}^{-1}$

Answer:

- Watch Video Solution

32. The hydrolysis of ester in alkaline medium is a
A. $1^{\text {st }}$ order reaction with molecularity 1
B. $2^{\text {nd }}$ order reaction with molecularity 2
C. $1^{\text {st }}$ order reaction with molecularity 2
D. $2^{\text {nd }}$ order reaction with molecularity 1

Answer:

- Watch Video Solution

33. The second order rate constant is usually expressed
A. mol litre $\sec ^{-1}$
B. mol^{-1} liter sec^{-1}
C. $\mathrm{mol}_{\text {litre }}{ }^{-1} \mathrm{sec}^{-1}$
D. mol^{-1} litre sec^{-1}

- Watch Video Solution

34. A zero order reaction is one whose rate independent
of
A. temperature of the reaction
B. the concentration of the reactants
C. the concentration of the products
D. the material of the vessel in which the reaction is carried out.
35. Rate constant of a reaction depends upon:
A. temperature
B. initial concentration of the reactants
C. time of reaction
D. extent of reaction.

Answer:

(D) Watch Video Solution
36. The unit of $1^{\text {st }}$ order rate constant are
A. conc.time ${ }^{-1}$
B. time comc. ${ }^{-1}$
C. time $^{-1}$
D. time ${ }^{-1}$ conc. ${ }^{-1}$

Answer:

(Watch Video Solution

