

CHEMISTRY

BOOKS - OMEGA PUBLICATION

THE P-BLOCK ELEMENTS

Questions

1. How does nitrogen differ in its chemical behaviour from rest of the elements of its group?

2. Discuss the anomalous behaviour of nitrogen.

3. Nitrogen exists as diatomic molecule and phosphorous acts as tetra atomic molecule. Explain.

4. Why does the reactivity of nitrogen differ from phosphorus?

Watch Video Solution

5. Phosphorus (P_4) is more reactive than nitrogen (N_2)

6. Why nitrogen is less reactive?

Watch Video Solution

7. Why ammonia is a good complexing agent?

Watch Video Solution

8. why ammonia has higher boiling point than phosphine?

9. Why ammonia is a stronger base than phosphine?

Watch Video Solution

10. Explain why NH_3 is basic but BiH_3 is only feebly basic.

11. Why does NH_3 form hydrogen bond but PH_3 does not?

Watch Video Solution

12. PCl_5 is known but PI5 is not known. Why?

Watch Video Solution

13. Though nitrogen exhibits + 5 oxidation state, it does not form penta-halide. Given

reason.

Watch Video Solution

14. CCl_4 is not hydrolysed but $SiCl_4$ can be hydrolysed with water. Why?

Watch Video Solution

15. Account for the following: The +2 oxidation state of lead is more stable than +2 oxidation state of Tin.

16. How is nitrogen prepared in the laboratory? Write the chemical equations

Watch Video Solution

17. Give the different uses of dinitrogen.

18. How is ammonia manufactured industrially?

19. Explain cause of diagonal relationship.

20. What are the essential conditions for formation of ammonia by Haber's process/?

21. Why does nitric oxide become broen when released inn air?

Watch Video Solution

22. What is laughing gas?

23. What is laughing gas?

Watch Video Solution

24. Describe Ostwald's process for the manufacture of nitric acid. Give important uses of nitric acid.

Watch Video Solution

25. Explain the structure of nitric acid.

26. Illustrate how copper metal can give different products on reaction with HNO_3 .

27. Write two reactions of HNO_3 with organic compounds

28. Define allotropy.

Watch Video Solution

29. What is ammonia highly soluble in water?

Watch Video Solution

30. Why is yellow phosphorus kept under water?

31. Why white phosphorus is more reactive than red phosphorus?

Watch Video Solution

32. Give the different methods of preparation of carbon monoxide.

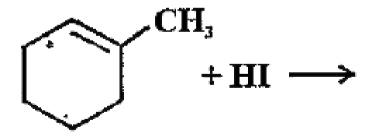
33. Give reaction of HNO_3 with following non metals

Sulphur

Watch Video Solution

34. Give reaction of HNO_3 with following non metals

Sulphur


35. Complete the following reaction :

$$C = \Theta + CHC\ell, K\ThetaH ?$$

Watch Video Solution

36. Complete the following reaction equation :

37. Give the structure of phosphorus trichloride (PCl_3)

Watch Video Solution

38. Draw the structure of PCl_3 .

Watch Video Solution

39. PCl_5 is known but PI5 is not known. Why?

40. Why does $R_3P=O$ exist but $R_3N=O$ does not? (R= alkyl group)

Watch Video Solution

41. Why all bonds in PCl_5 are not equal?

42. What is the oxidation state of phosphorous in POF_3 and Ca_3P_2 ?

Watch Video Solution

43. Define inert pair effect.

Watch Video Solution

44. How H_3PO_3 is diprotic acid?

45. Bi (V) is a stronger oxidising agent than Sb (V). Why?

Watch Video Solution

46. Which is a stronger reducing agent, SbH_3 or BiH_3 , and why ?

47. Oxygen gas is inert at room temperature why?

Watch Video Solution

48. Why oxygen is gas while sulphur is a solid at room temparture ?

- **49.** (i) why are halogens strong oxidising agents?
- (ii) Why oxygen shows anomalous behaviour from rest of members of its family?
- (iii) Ammonia acts as a good complexing agent. Explain.
 - Watch Video Solution

50. The law of multiple proportion is illustrated by the two compounds a) Sulphur

dioxide and Sulphur trioxide:

Watch Video Solution

51. Sulphur show +4 and +6 oxidation stae in their compounds but oxygen can not show these oxidation states.

Watch Video Solution

52. Explain that SO_2 can act as an oxidising agent as well as a reducing agent, but SO_3

can act as an oxidising agent only.

53. Explain why H_2O is a liquid $\mathrm{but}H_2S$ is a gas at room temperature.

54. Bond angle in $\left(PH_4\right)^+$ is higher than that in PH_3 . Why?

55. Why is H_2S less acidic than H_2 Te ?

Watch Video Solution

56. Which of the two H_2O or H_2S has higher boiling point ? Explain.

57. Write the order of thermal stability of the hydrides of Group 16 elements.

Watch Video Solution

58. Why SF_6 is known but OF_6 is not known

Watch Video Solution

59. OF_6 is not known whereas SF_6 is known.

Explain it.

60. Discuss the different methods of preparation and properties of dioxygen.

61. What is the shape of SO_2 molecule?

62. SO_2 act as both oxidising and reducing agent but H_2S acts as only reducing agent. Why?

Watch Video Solution

63. Comment on nature of two S-O bond formed in SO_2 molecule. Are the two S-O bonds in this molecule equal ?

64. SO_2 has acidic character. Explain.

Watch Video Solution

65. How is SO_2 an air pollutant?

Watch Video Solution

66. The two O-O bond lengths in ozone molecule are identical explain?

67. Why does O_3 act as a powerful oxidising agent ?

Watch Video Solution

68. Write the reactions of SO_2 with :

 $K_2Cr_2O_7$.

69. Write the reactions of SO_2 with :

 $K_2Cr_2O_7$.

Watch Video Solution

70. Discuss the preparation of ozone by Sieman's Ozoniser.

71. How does ozone react with KI and lead sulphide?

Watch Video Solution

72. How does ozone react with:

 $FesO_4$

73. How does ozone react with:

 $FesO_{A}$

74. How ozone reacts with mercury.

75. Why ozone is used for purifying air in crowded places such as cinema halls,

underground railway stations, tunnels etc.?

Watch Video Solution

76. Why does sulphur in vapour state exhibit paramagnetic character?

Watch Video Solution

77. Why does the sun looks red at the time of setting? Explain on the basis of colloidal properties.

78. How would you account for the following: Sulphur has a great tendency for catenation than oxygen.

79. Give the preparation and properties of sulphur dioxide (SO_2).

80. what is the contact process for the manufacture of sulphuric acid.

Watch Video Solution

81. Why conc. H_2SO_4 is viscous and has high boiling point ?

82. Why conc. sulphuric acid is always diluted by adding sulphuric acid to water with constant stirring and not water to the acid?

Watch Video Solution

83. How charring of sugar happens with cone. sulphuric acid?

84. Discuss the structure of sulphuric acid and sulphate ion.

Watch Video Solution

85. Halogens are highly reactive. Explain.

Watch Video Solution

86. Why electron affinity of halogens is the highest?

87. Fluorine exhibits only - 1 oxidation state whereas other halogens exhibit positive oxidation states such as +1, +3, +5, +7.

88. Why electron affinity of fluorine is less than that of chlorine ?

89. Why halogens are coloured gases and they are very reactive? Comment on it.

Watch Video Solution

90. Explain why Bond dissociation energy of F_2 is less than that of Cl_2 ?

91. Why fluorine always exhibits oxidation state of -1?

Watch Video Solution

92. Why are halogens strong oxidising agents?

Watch Video Solution

93. Which compound of halogens show positive oxidation state and why?

- A. F
- B. Cl
- C. Br
- D. I

Answer:

Watch Video Solution

94. Why electron affinity of fluorine is less than that of chlorine?

Watch Video Solution

95. Explain the following:

Iodine is more soluble in KI solution than in water.

Watch Video Solution

96. Unlike ${\rm In}^+, Tl^+$ is most stable with respect to disproportionation reaction.

97. Why does F_2 not form polyhalides ?

Watch Video Solution

98. Boiling point of HCI is lower than HF.

Explain why?

Watch Video Solution

99. HI is stronger acid than HF. Why?

100. Arrange HCl, HI, HBr, HF in increasing order of acidic strength.

Watch Video Solution

101. HI is the strongest reducing agent than Hf. Explain.

102. OF_2 should be called oxygen difluoride and not fluorine oxide. Explain.

Watch Video Solution

103. Give the preparation of chlorine.

Watch Video Solution

104. Mention all the oxidation states exhibited by chlorine in its compounds?

105. Give the structure of various oxoacids of chlorine.

Watch Video Solution

106. Draw the structure $HCIO_4$.

107. Explain why fluorine forms only one oxoacid, HOF.

Watch Video Solution

108. Give the structure of interhalogen compounds on the basis of hybridisation:

 ClF_3

109. Give the structure of interhalogen compounds on the basis of hybridisation:

 BrF_5

Watch Video Solution

110. Calculate the total number of spectral lines in balmer series from n1 = 2 and n2 = 5.

111. Arrange the following in the decreasing order of their acidic strength and also give reason for it. HF,HBr,HCl

Watch Video Solution

112. What are interhalogen compounds? Give example.

113. What are the interhalogen compounds? Why are these more reactive than halogens?

Watch Video Solution

114. Why ICI is more reactive than I_2 ?

Watch Video Solution

115. Draw structure of BrF_3 .

116. Which neutral molecule is isoelectronic with CIO-?

Watch Video Solution

117. Write two uses of ClO_2 .

118. Why ClF_3 exists, but FCl_3 does not exist

?

Watch Video Solution

119. Draw the structure of XeF_2 , and what is the state of hybridisation of Xe in it ?

120. Calculate the wavelength of an electron moving with a velocity of 2.05 ms-1

Watch Video Solution

121. Explain why

Most metal fluoride are ionic in nature than metal chloride.

122. Give the shape of IF_5 .

Watch Video Solution

123. Draw structure of IF_7 .

Watch Video Solution

124. Give reasons: SiF_6^{2-} known, out $SiCl_6^{2-}$ is not known.

125. Explain why perchloric acid is a strong acid than sulphuric acid.

Watch Video Solution

126. Explain the following:

lodine forms $I_3^- \;\; {
m but} \; F_2 \;\; {
m does} \;\; {
m not} \;\; {
m form} \;\; F_3^-$ ion. Why?

127. What are pseudohalogens? Give example.

Watch Video Solution

128. Explain why transition elements have high melting and boiling points ?

Watch Video Solution

129. Electron affinity of noble gases is negligible. Explain.

130. Noble gases have largest radii. Explain.

Watch Video Solution

131. Why do noble gases exist as monoatomic?

Watch Video Solution

132. Why zero group elements are inert?

133. Why noble gases are inert or inactive?

Watch Video Solution

134. Name the Scientist who prepared the first compound of noble gases.

135. What inspired N. Bartlett,for carrying out the reaction between Xe and PtF_6 ?

Watch Video Solution

136. Calculate the total number of spectral lines in lymen series from n1 = 1 and n2 = 4.

137. A tennis ball of mass 6.0 (10 *-2) kg is moving with a speed of 62ms-1. Calculate the wavelength associated with this moving tennis ball.

Watch Video Solution

138. Give equation for the following:

$$XeF_2 + H_2O
ightarrow$$

139. Give equation for the following:

$$XeF_6 + H_2O$$

Watch Video Solution

140. Give equations for the followings:

$$XeF_2 + PF_5 \rightarrow ?$$

141. Give equation for the following:

$$XeF_6 + NaF
ightarrow$$

Watch Video Solution

142. NCl3 is an endothermic compound while

NF3 is an exothermic compound. explain

143. Calculate the mass of a photon of sodium light having wavelength 5894 angstrom and velocity 3 (10*8)ms-1.

Watch Video Solution

144. How would you account for the following : SF_6 is kinetically inert.

145. Two particles A and B are in motion. if the wavelength associated with particle A is 5 (10*-8)m. Calculate the wavelength of particle B if its momentum is half of A.

Watch Video Solution

146. Noble gases are almost inert. Why do they form compounds with fluorine and oxygen only?

147. Out of noble gas, only xenon is known to form chemical compound. Explain.

Watch Video Solution

148. By using VSEPR theory, predict the probable structure of XeF_2 .

149. How are Xenon fluorides XeF_2 , XeF_4 and XeF_6 prepared ?

Watch Video Solution

150. How are XeO_3 and $XeOF_4$ prepared?

Watch Video Solution

151. Draw the structure of $XeOF_2$

152. Give the formula of the noble gas species which is isostructural with BrO_3^- .

Watch Video Solution

153. Give the formula of the noble gas species which is isostructural with IBr_2^- .

154. Give the formula of the noble gas species which is isostructural with lCl_4^- .

Watch Video Solution

155. List the uses of neon and argon gases.

Watch Video Solution

156. Write down the uses of helium

157. Why is helium used in diving apparatus?

Watch Video Solution

Multiple Choice Questions

1. Bauxite containing chief impurities of oxides of silicon is called

A. red bauxite

- B. white bauxite
- C. black bauxite
- D. no specific name

Answer: B

- 2. Thermite is a mixture of
 - A. Fe and Al
 - B. Ferric oxide and aluminium powder

C. barium peroxide and magnesium

powder

D. Cu and Al

Answer: B

Watch Video Solution

3. The first ionisation energy of silicon is lower than that of

A. carbon

B. potassium

C. calcium

D. aluminium

Answer: A

Watch Video Solution

4. Account for the following: The +2 oxidation state of lead is more stable than +2 oxidation state of Tin.

A. electronic configuration B. resonance C. inert pair effect D. catenation **Answer: C**

Watch Video Solution

5. Define catenation?

A. formation of cations

- B. deposition of cations
- C. formation of Jong chains of similar atoms
- D. formation of covalent bonds.

Answer: C

- **6.** Silicon hydrides are called
 - A. silanes

B. silicon-nitrogen compound

C. silicides

D. silicates

Answer: A

Watch Video Solution

7. CCl_4 is not hydrolysed but $SiCl_4$ can be hydrolysed with water. Why ?

A. $SiCl_4$

B. SiF_6

C. $\mathbb{C}l_4$

D. $PbCl_4$

Answer: C

Watch Video Solution

8. The formula of dry ice is

A. Solid $NH_{
m 3}$

B. Dry CO_2 gas

C. Solid SO_2

D. Solid CO_2

Answer: D

- **9.** Which of the following is an ore of boron?
 - A. Dolomite
 - B. Cinnabar
 - C. Asbestos

D. Borax

Answer: D

Watch Video Solution

10. Compounds of Boron with hydrogen are known as

A. Borazoles

B. Borazine

C. Boranes

D. None of the above.

Answer: C

Watch Video Solution

11. Diborane has

A. Two banana bonds and four terminal bonds

B. Four banana bonds and two terminal bonds

C. Three banana bonds and three terminal

bonds

D. None of above.

Answer: A

Watch Video Solution

12. In B_2H_6 , B-atom is

A. sp^2 hybridised

B. sp^3 hybridised

C. sp-hybridised

D. sp^3 d hybridised

Answer: B

Watch Video Solution

13. Orthoboric acid is

A. H_3BO_3

 $\mathsf{B.}\,B(OH)_4$

 $\mathsf{C.}\,Na_2B_4O_7$

 $\mathsf{D}.\,B_2O_3$

Answer: A

Watch Video Solution

14. Boron halides are

- A. Arrhenius acids
- B. Bronsted acids
- C. Lewis acids
- D. Not acids but bases

Answer: C

Watch Video Solution

15. Ammonia is, in general,

A. acidic

B. basic

C. amphoteric

D. all the above.

Answer: B

16. NH_3 can be prepared by

- A. Dow's process
- B. Haber's process
- C. Ostwald's process
- D. All the above

Answer: B

17. Boron trioxide can be reduced to boron with

A. C

B. Mg

 $\mathsf{C}.\,H_2$

D. Cu

Answer: B

$$BF_3 + 3LiBH_4
ightarrow 3LiF + X, X$$
 is

- A. $B_4 H_{10}$
- $B.B_2H_6$
- $\mathsf{C}.\,BH_3$
- D. B_3H_8

Answer: B

19. Graphite is a good conductor of electricity because

A. there is van der Waals forces between the planes of carbon atoms

B. there is covalency among carbon atoms

C. its electrons are delocalised in each layer

D. the carbon atoms of each plane are sp^2 hybridised.

Answer: C

20. The laughing gas is

- A. Nitrous oxide
- B. Nitric oxide
- C. Nitrogen trioxide
- D. Nitrogen pentaoxide

Answer: A

21. Which of the following compound is not explosive?

A. NF_3

B. NCl_3

C. NBr_3

D. NI_3

Answer: B

22. Explain why carbon differs from rest of the family members.

A. larger size and high electronegativity

B. catenation

C. availability of d-orbitals

D. low ionization enthalpy

Answer: B

23. What is the pH of a saturated solution of

$$Cu(OH)_2$$
? $(K_{sp}=2.6 imes 10^{-19}$

- A. triacid base
- B. tribasic acid
- C. diacid base
- D. monobasic acid

Answer: B

24. Which is wrongly matched?

A. Borax : $Na_2B_4O_7.10H_2O$

B. Orthoboric acid : H_3BO_3

C. Carnallite: $Na_2B_4O_7, .3H_2O$

D. Borazole: $B_3N_3H_6$

Answer: C

25. The two O-O bond lengths in ozone molecule are identical explain?

- A. 109° 28'
- B. 90°
- C. 120°
- D. 107°

Answer: D

26. Which of the following is a Lewis acid?

A.
$$BF_3>BCl_3>BBr_3$$

$$\mathsf{B.}\,BBr_3>BCl_3>BF_3$$

$$\mathsf{C}.\mathit{BCl}_3 > \mathit{BBr}_3 > \mathit{BF}_3$$

D.
$$BCl_3 > BBr_3 > BF_3$$

Answer: B

27. In XeF_2 , XeF_4 and XeF_6 the number of lone pairs on Xe is respectively

- A. 2, 3, 1
- B. 1, 2, 3
- C. 4, 1, 2
- D. 3, 2, 1

Answer: D

28.	Boron	is	used	as	metal	borides	in	nuclear
rea	ctor as							

- A. fission rods
- B. control rods
- C. coolant
- D. moderator

Answer: B

29. In diamond, carbon atom is

- A. sp hybrid
- B. sp^2 hybrid
- $\mathsf{C}.\,sp^3$ hybrid
- D. sp^3d hybrid

Answer: C

30. The purest form of coal is

- A. Peat
- B. Lignite
- C. Bituminous
- D. Anthracite

Answer: D

31. The basicity of phosphorus acid is:

A. two

B. three

C. one

D. zero

Answer: A

32. The most abundant element in the earth's crust is:

- A. Oxygen
- B. Aluminium
- C. Silicon
- D. None of these.

Answer: A

33. Which of the following element has maximum electron

gain enthapy(negative)? F, Cl, Br, I.

- A. F
- B. Cl
- C. Br
- D. I

Answer: B

34. Which of the following has highest ionisation enthalpy? P, N, As, Sb.

- A.P
- B. N
- C. As
- D. Sb

Answer: A

35. General electronic configuration of element of Group 16

is:

A.
$$ns^2np^6$$

B.
$$ns^2np^4$$

C.
$$ns^2np^5$$

D.
$$ns^2np^2$$

Answer: B

36. Among the following which is the strongest oxidising agents: Br_2, I_2, F_2, Cl_2 .

- A. Br_2
- $B. I_2$
- $\mathsf{C}.\,Cl_2$
- D. F_2

Answer: D

37. Which of the following does not exist?

 $XeOF_4$, NeF_2 , XeF_2 , XeF_6 .

- A. $XeOF_4$
- $\mathsf{B.}\,NeF_2$
- $\mathsf{C}.\,XeF_2$
- D. XeF_6

Answer: B

38. Ammonia is, in general,

A. acidic

B. basic

C. amphoteric

D. All the above.

Answer: B

39. What is laughing gas?

A. nitrous oxide

B. nitric oxide

C. nitrogen trioxide

D. nitrogen pentaoxide

Answer: A

40. Which of the following compound is explosive?

- A. NF_3
- B. NCl_3
- $\mathsf{C}.\,NBr_3$
- D. NI_3

Answer: B

- **41.** Hydrogen from HCl can be prepared by
 - A. Dow's process
 - B. Haber's process
 - C. Ostwald's process
 - D. All the above.

Answer: B

42. The bond angle H-N-H in ammonia molecule is

- A. 109° 28'
- B. 90°
- C. 120°
- D. 107°

Answer: D

43. In the structure of CIF3, the number of

lone pairs of electrons on central Cl atom is :

- A. 2, 3, 1
- B. 1, 2, 3
- C. 4, 1, 2
- D. 3, 2, 1

Answer: D

44. CH_3COCl can be obtained directly by reacting PCl_5 with

- A. CaO
- B. $CaCO_3$
- C. $CaOCl_2$
- D. $Ca(OH)_2$

Answer: D

45. Which of the following is most volatile?
A. HI
B. HBr
C. HCl
D. HF
Answer: C
Watch Video Solution

46. The oxidation number of P in $HP_2O_7^-$ ion

is

A.
$$sp^3d^3$$

B.
$$d^2sp^3$$

$$\mathsf{C}.\,sp^3d$$

$$\mathsf{D.}\, sp^3$$

Answer: A

47. Which acid would you expect to be stronger?

 CH_3COOH or HCOOH

A. F-Br

B. F-Cl

C. F-Br

D. Cl - Br.

Answer: A

48. Maximum covalency of sulphur is:

A. 2

B. 4

C. 6

D. 8

Answer: C

49. Which of the following element has maximum electron

gain enthapy(negative)? F, Cl, Br, I.

A. F

B. Cl

C. Br

D. I

Answer: B

50. Give the structure and basicity of H_3PO_2 .

A. +1

B. +2

C. +3

D. +4

Answer: A

51. The basicity of phosphorus acid is:

A. Two

B. Three

C. One

D. zero

Answer: A

