

MATHS

BOOKS - OMEGA PUBLICATION

APPLICATION OF INTEGRALS

Questions

1. Find the area of the region bounded by $x^2 = 4y, y = 2, y = 4$ and y-axis the first quadrant.

3. Find the area of the region bounded by ellipse $rac{x^2}{16} + rac{y^2}{9} = 1.$

4. Find the area of the region bounded by the

ellipse
$$\displaystyle rac{x^2}{4} + \displaystyle rac{y^2}{9}$$
 = 1

Watch Video Solution

5. Find the area of the region bounded by the curve $y^2 = x$ and the lines x = 1, x = 4 and the x-axis in the first quadrant.

6. Find the area of the region bounded by $y^2 = 9x, x = 2, x = 4$ and the x-axis in the fill quadrant.

$$y = x^2$$

8. Find the area of the region enclosed by the parabola $x^2 = y$, the liney = x + 2 and the x-axis.

10. Find the area of the region bounded by the parabola $y = x^2$ and the lines y = |x|. Watch Video Solution

12. Find the area lying above x-axis and included between the circle $x^2 + y^2 = 8x$ and the parabola $y^2 = 4x$.

Watch Video Solution

between the two circles

 $x^{2} + y^{2} = 1$ and $(x - 1)^{2} + y^{2} = 1$.

14. Find the area of the region bounded by the parabola $y = x^2 + 2$ and the lines y = x, x = 0 and x = 3. Watch Video Solution

15. Find the area of the region included between : the parabola $4y = 3x^2$ and the line 3x - 2y + 12 = 0.

16. Find the area of the region bounded by two

parabolas $y = x^2$ and $y^2 = x$.

17. Find the area of the region bounded by

 $x^2=4y, y=2, y=4$ and y-axis the first

quadrant.

18. Find the area of enclosed by the ellipse

$$rac{x^2}{a^2} + rac{y^2}{b^2} = 1.$$

Watch Video Solution

19. Find the area of the region bounded by ellipse $rac{x^2}{16}+rac{y^2}{9}=1.$

20. Find the area of the region bounded by the

ellipse
$$\displaystyle rac{x^2}{4} + \displaystyle rac{y^2}{9}$$
 = 1

Watch Video Solution

21. Find the area of the region bounded by the curve $y^2 = x$ and the lines x = 1, x = 4 and the x-axis in the first quadrant.

22. Find the area of the region bounded by $y^2 = 9x, x = 2, x = 4$ and the x-axis in the fill quadrant.

$$y = x^2$$

24. Find the area of the region enclosed by the parabola $x^2 = y$, the liney = x + 2 and the x-axis.

26. Find the area of the region bounded by the parabola $y = x^2$ and the lines y = |x|.

28. The area lying above x-axis and included between the circle $x^2 + y^2 = 8x$ and the parabola $y^2 = 4x$ is

Watch Video Solution

between the two circles

 $x^{2} + y^{2} = 1$ and $(x - 1)^{2} + y^{2} = 1$.

30. Find the area of the region bounded by the

parabola $y=x^2+2$ and the lines

y = x, x = 0 and x = 3.

Watch Video Solution

31. Find the area of the region included between : the parabola $4y = 3x^2$ and the line

3x - 2y + 12 = 0.

32. Find the area of the region bounded by two parabolas $y = x^2$ and $y^2 = x$.

1. Using integration find the area of region bounded by the triangle whose vertices are (1, 0), (2, 2) and (3, 1).

2. Using integration, find the area of the triangle ABC, co ordinate of whose vertics are A(2,0),B(4,5) and C(6,3).

3. Using integration find the area of regeion bounded by the triangle whose vertices are (-1,0), (1,3) and (3,2)

4. Sketch the graph of y = |x + 3| and evaluate the area under the curve y = |x + 3|above x-axis and between x = -6 and x = 0.

5. Make a rough sketch of the region given below and find its area, using integration : $\{(x,y): y^2 \le 4x, 4x^2 + 4y^2 \le 9\}$

6. Find the area of smaller regioni bounded by

8. Find the area enclosed between the parabola $y^2 = 4ax$ and the line y = mx

Watch Video Solution

9. Find the area of smaller region founded by the ellipse $rac{x^2}{9}+rac{y^2}{4}=1$ and the straight line $rac{x}{3}+rac{y}{2}=1$

10. Find the area bounded by curves $(x-1)^2 + y^2 = 1$ and $x^2 + y^2 = 1$. Watch Video Solution

11. Using integration find the area of region bounded by the triangle whose vertices are (1, 0), (2, 2) and (3, 1).

12. Using integration, find the area of the triangle ABC, co ordinate of whose vertics are A(2,0),B(4,5) and C(6,3).

13. Using integration find the area of the region bounded by triangle whose vertices are

AI(-1, 0), B(1, 3) and C(3, 2).

14. Sketch the graph of y = |x + 3| and evaluate the area under the curve y = |x + 3|above x-axis and between x = -6 and x = 0.

Watch Video Solution

15. Find the area of the region $\{(x,y): y^2 \leq 4x, 4x^2 + 4y^2 \leq 9\}.$

16. Find the area of smaller regioni bounded by the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ and the line $\frac{x}{a} + \frac{y}{b} = 1.$

18. Find the area enclosed between the parabola $y^2 = 4ax$ and the line y = mx

Watch Video Solution

19. Find the area of smaller region founded by the ellipse $\frac{x^2}{9} + \frac{y^2}{4} = 1$ and the straight line $\frac{x}{3} + \frac{y}{2} = 1$

20. Find the area bounded by curves $(x-1)^2 + y^2 = 1$ and $x^2 + y^2 = 1$. Watch Video Solution

Multiple Choice Questions

1. Area lying in the first quadrant and bounded by the circle $x^2 + y^2 = 4$ and the lines x = 0and x = 2 is :

B.
$$\frac{\pi}{2}$$

C. $\frac{\pi}{3}$
D. $\frac{\pi}{4}$

Answer: A

Watch Video Solution

2. Area of the region bounded by the curve $y^2=4x, \;$ y-axis and the line y=3 is

B.
$$\frac{9}{4}$$

C. $\frac{9}{3}$
D. $\frac{9}{2}$

Answer: B

3. (a) (i)Find the area of the circle
$$x^2 + y^2 = 16$$
, which is exterior to the parabola $y^2 = 6x$.

A.
$$rac{4}{3} (4\pi - \sqrt{3})$$

B. $rac{4}{3} (4\pi + \sqrt{3})$
C. $rac{4}{3} (8\pi - \sqrt{3})$
D. $rac{4}{3} (8\pi + \sqrt{3})$

Answer: C

A.
$$2(\pi-2)$$

$\mathsf{B.}\,\pi-2$

- $\mathsf{C.}\,2\pi-1$
- D. $2(\pi+2)$

Answer: B

Watch Video Solution

5. Area lying between the curve $y^2 = 4x$ and the line y = 2x is :

A.
$$\frac{2}{3}$$

B. $\frac{1}{3}$
C. $\frac{1}{4}$
D. $\frac{3}{4}$

Answer: B

Watch Video Solution

6. Area bounded by the curve $y=x^3$, the x-

axis and the ordinates x = -2, x = 1 is:

B. $\frac{-15}{4}$ C. $\frac{15}{4}$ D. $\frac{17}{4}$

 $A_{-} - 9$

Answer: D

Watch Video Solution

7. The area bounded by the curve y = x |x|,x-axis and the ordinates x = -1, x = 1 is given by:

B. $\frac{1}{3}$ C. $\frac{2}{3}$ D. $\frac{4}{3}$

A. 0

Answer: C

Watch Video Solution

8. The aera bounded by the Y-axis, $y=\cos x$ and $y=\sin x, 0\geq x\leq \left(\pi
ight)/2$ is

A.
$$2ig(\sqrt{2}-1ig)$$

B.
$$\sqrt{2}-1$$

$$\mathsf{C}.\sqrt{2}+1$$

D.
$$\sqrt{2}$$

Answer: B

Watch Video Solution

9. Area lying in the first quadrant and bounded by the circle $x^2 + y^2 = 4$ and the lines x = 0and x = 2 is : A. π

B.
$$\frac{\pi}{2}$$

C. $\frac{\pi}{3}$
D. $\frac{\pi}{4}$

10. Area of the region bounded by the curve

 $y^2=4x,\,$ y-axis and the line y=3 is

A. 2 B. $\frac{9}{4}$

C.
$$\frac{9}{3}$$

D. $\frac{9}{2}$

Answer: B

11. (a) (i)Find the area of the circle
$$x^2+y^2=16$$
, which is exterior to the parabola $y^2=6x$.

A.
$$rac{4}{3} (4\pi - \sqrt{3})$$

B. $rac{4}{3} (4\pi + \sqrt{3})$
C. $rac{4}{3} (8\pi - \sqrt{3})$
D. $rac{4}{3} (8\pi + \sqrt{3})$

Answer: C

Watch Video Solution

12. Smaller area enclosed by the circle $x^2 + y^2 = 4$ and the line x + y = 2 is:

A.
$$2(\pi-2)$$

B. $\pi-2$

- $\mathsf{C.}\,2\pi-1$
- D. $2(\pi+2)$

Answer: B

Watch Video Solution

13. Area lying between the curve $y^2=4x$ and

the line y = 2x is :

A.
$$\frac{2}{3}$$

B. $\frac{1}{3}$
C. $\frac{1}{4}$
D. $\frac{3}{4}$

Answer: B

Watch Video Solution

14. Area bounded by the curve $y=x^3$, the x-

axis and the ordinates x = -2, x = 1 is:

B. $\frac{-15}{4}$ C. $\frac{15}{4}$ D. $\frac{17}{4}$

 $A_{-} - 9$

Answer: D

Watch Video Solution

15. The area bounded by the curve y = x|x|,x-axis and the ordinates x = -1, x = 1 is given by:

B. $\frac{1}{3}$ C. $\frac{2}{3}$ D. $\frac{4}{3}$

A. 0

Answer: C

Watch Video Solution

16. The aera bounded by the Y-axis, $y = \cos x$

and $y=\sin x, 0\geq x\leq \left(\pi
ight)/2$ is

A.
$$2ig(\sqrt{2}-1ig)$$

B.
$$\sqrt{2}-1$$

$$\mathsf{C}.\sqrt{2}+1$$

D.
$$\sqrt{2}$$

Answer: B

