

MATHS

BOOKS - OMEGA PUBLICATION

HP BOARD MARCH 2017

1. Principal value of `cos^-1 (-1/2) is :

A.
$$\frac{\pi}{3}$$

B. $\frac{2\pi}{3}$

C.
$$-\frac{\pi}{3}$$

D. $\frac{\pi}{6}$

Answer:

2. If the matrix A is both symmetric and skew symmetric, then :

A. A is a diagonal matrix

B. A is zero matrix

C. A is a square matrix

D. None of the above

Answer:

A.
$$\frac{1}{2}$$

B. $\cos 30^{\circ}$

C. $-\cos 30^{\circ}$

D. 0

Answer:

4. Find the approximate change in the volume V of a cube of side 'x' metres caused by increasng the side by 2%.

A. $0.06x^3m^3$

B. $0.002x^3m^3$

 $\mathsf{C.}\, 0.6x^3m^3$

D. $0.006x^3nt^3$

5. An antiderivative of sin 2x is

A. $\cos 2x$

$$\mathsf{B.} - \cos 2x$$

$$\mathsf{C.}-rac{\cos 2x}{2}$$

D. $2\cos 2x$

6. The order of the differential equation:

$$2x^2rac{d^2y}{dx^2}-3rac{dy}{dx}+y=0$$
 is:

A. 1

B. 2

C. 3

D. Cannot be defined.

Answer:

7. Find the projection of the vector $\hat{i} - \hat{j}$ on the vector $\hat{i} + \hat{j}$.

A. 0

$$B. -1$$

C.
$$\frac{1}{\sqrt{2}}$$

D. None of the above

8. If the angle between two vector \overrightarrow{a} and \overrightarrow{b} is zero

then

A.
$$\overrightarrow{a}$$
. $\overrightarrow{b} = \left| \overrightarrow{a} \right| \left| \overrightarrow{b} \right|$
B. \overrightarrow{a} . $\overrightarrow{b} = 0$

$$\mathsf{C}.\left|\overrightarrow{a}\right|\left|\overrightarrow{b}\right|=1$$

D. None of the above

9. Find the distance of the plane 3x-4y+12z=3 from the origin.

A.
$$\frac{3}{13}$$

B. $\frac{13}{3}$

$$\mathsf{C}.-2$$

10. If
$$P\left(rac{A}{B}
ight) > P(A)$$
, then which of the following

is correct : :

A. $P(B \, / \, A) < P(B)$

 $\mathsf{B}.\, P(A \cap B) < P(A).\, P(B)$

 $\mathsf{C}.\, P(B/A) > P(B)$

 $\mathsf{D}.\, P(B/A) = P(B)$

Answer:

11. Using elementary transformation, find the inverse of the matrix $A = \begin{bmatrix} 3 & -1 \\ -4 & 2 \end{bmatrix}$

Watch Video Solution

12. If
$$A = \begin{bmatrix} 8 & 0 \\ 4 & -2 \\ 3 & 6 \end{bmatrix}$$
 and $B = \begin{bmatrix} 2 & -2 \\ 4 & 2 \\ -5 & 6 \end{bmatrix}$ then
find the matrix X such that $2A + 3X = 5B$

13. Find the relationship between a and b so that

the function f defined by

$$f(x) = \left\{egin{array}{ccc} ax+1 & ext{if} & x\leq 3 \ bx+c & ext{If} & x>3 \end{array}
ight.$$

14. Find the intervals in which the function f, given by $f(x) = 2x^3 - 3x^2 - 36x + 7$ is strictly

increasing and strictly decreasing.

15. Form the differential equation representing the

family of curve $y = a \sin(x + b)$, where a and b are

artibrary constants.

16. Let L be the set of all lines in XY plane and R be the relation in L defined as $R = \{(L_1, L_2), L_1 \text{ is}$ parallel to $L_2\}$. Show that R is an equilavence relation.

17. Show that
$$\cos^{-1}\frac{4}{5} + \cos^{-1}\frac{12}{13} = \cos^{-1}\frac{33}{65}$$

Watch Video Solution
18. Express $\tan^{-1}\left(\frac{\cos x - \sin x}{\cos x + \sin x}\right)$ in the simplest form, $x < \pi$

19. Using the propertis of derminants, prove tha

Watch Video Solution

20. Find
$$rac{dy}{dx}$$
, if $\sin^2 x + \cos^2 y = 1$

Watch Video Solution

22. Evaluate
$$\int (1+x-x^2) dx$$

23. Evaluate
$$\int e^3 \left(an^{-1}x + rac{1}{1+x^2}
ight) dx$$

Watch Video Solution

26. Solve the differential equation:

$$\frac{dy}{dx} = (1 + x^2)(1 + y^2)$$

Watch Video Solution

27. Show that the four points A,B,C and D with position vectors $4\hat{i}+5\hat{j}+\hat{k},\ -\left(\hat{j}+\hat{k}
ight),\left(3\hat{i}+9\hat{j}+4\hat{k}
ight)$ and

 $4\Big(-\hat{i}+\hat{j}+\hat{k}\Big)$ respectively are coplanar.

28. Find the angle between the pair of lines

x-2	y - 1	z+3	bac
2	$=$ $\overline{5}$	= -3	dilu
x+2	$_ y-4$	$_ z-5$	
-1	$-\frac{1}{8}$	- $ 4$	

Watch Video Solution

29. A family has two children. What is the probability that both the children are boys given that at least one of them is a boy ?

30. Find the probability distribution of number of

heads in two tosses of a coin.

31. Five cards are drawn successively with replacement from a well shuffled deck of 52 cards. What is the probability that a. all the five cards are spades: b. only three cards are spades?

32. Solve the following system of equations using matrix method:

x - y + 2z = 1

2y - 3z = 1

3x - 2y + 4z = 2

Watch Video Solution

33. Find the equations of tangent and normal to

the curve $x^{2\,/\,3} + y^{2\,/\,3} = 2$ at (1,1)

34. Two positive numbers whose sum is 16 and sum

of whose cubes is minimum are.....

36. Find the area of the region bounded by the

curve
$$y=x^2+2, y=x, x=0$$
 and x=3.

37. Find the shortest distance between the lines $\vec{r} = 6\hat{i} + 2\hat{j} + 2\hat{k} + \lambda\left(\hat{i} - 2\hat{j} + 2\hat{k}\right)$ and $\vec{r} = -4\hat{i} + \hat{k} + \mu\left(3\hat{i} - 2\hat{j} - \hat{k}\right).$

Watch Video Solution

38. Find the coordinates of the point where the line

through the points A(3,4,1) and B(5,1,6) crosses the

Xy plane.

39. Solve the following linear programming problem graphically: Minimise Z = 200x + 500ysubject to the constraints: $x + 2y \ge 10, 3x + 4y \le 24, x \ge 0, y \ge 0$

Watch Video Solution

40. Principal value of `cos^-1 (-1/2) is :

A.
$$\frac{\pi}{3}$$

B. $\frac{2\pi}{3}$
C. $-\frac{\pi}{3}$

Answer:

Watch Video Solution

41. If the matrix A is both symmetric and skew symmetric, then :

A. A is a diagonal matrix

B. A is zero matrix

C. A is a square matrix

D. None of the above

42. The deriavative of $\sin 30^\circ\,$ is

- B. $\cos 30^{\circ}$
- C. $-\cos 30^{\circ}$

D. 0

43. Find the approximate change in the volume V of a cube of side 'x' metres caused by increasng the side by 2%.

A. $0.06x^3m^3$

B. $0.002x^3m^3$

 $\mathsf{C}.\,0.6x^3m^3$

D. $0.006x^3nt^3$

Answer:

44. An antiderivative of sin 2x is

A. $\cos 2x$

 $B.-\cos 2x$

$$\mathsf{C.}-rac{\cos 2x}{2}$$

D. $2\cos 2x$

45. The order of the differential equation

$$2x^2rac{d^2y}{dx^2}-3rac{dy}{dx}+y=0$$
 is 2.

A. 1

B. 2

C. 3

D. Cannot be defined.

46. Find the projection of the vector $\hat{i} - \hat{j}$ on the vector $\hat{i} + \hat{j}$.

A. 0

 $\mathsf{B.}-1$

$$\mathsf{C}.\,\frac{1}{\sqrt{2}}$$

D. None of the above

47. If the angle between two vector \overrightarrow{a} and \overrightarrow{b} is zero then

A.
$$\overrightarrow{a}$$
. $\overrightarrow{b} = \left| \overrightarrow{a} \right| \left| \overrightarrow{b} \right|$
B. \overrightarrow{a} . $\overrightarrow{b} = 0$
C. $\left| \overrightarrow{a} \right| \left| \overrightarrow{b} \right| = 1$

D. None of the above

48. Find the distance of the plane 3x-4y+12z=3 from

the origin.

A.
$$\frac{3}{13}$$

B. $\frac{13}{3}$

 $\mathsf{C}.-2$

49. If $P\left(rac{A}{B}
ight) > P(A)$, then which of the following

is correct : :

A. P(B/A) < P(B)

 ${\tt B}.\, P(A\cap B) < P(A).\, P(B)$

 $\mathsf{C}.\, P(B/A) > P(B)$

 $\mathsf{D}.\, P(B/A) = P(B)$

Answer:

50. Using elementary transformation, find the inverse of the matrix $A = \begin{bmatrix} 3 & -1 \\ -4 & 2 \end{bmatrix}$

Watch Video Solution

51. If
$$A = \begin{bmatrix} 8 & 0 \\ 4 & -2 \\ 3 & 6 \end{bmatrix}$$
 and $B = \begin{bmatrix} 2 & -2 \\ 4 & 2 \\ -5 & 6 \end{bmatrix}$ then
find the matrix X such that $2A + 3X = 5B$

52. Find the relationship between a and b so that

the function f defined by

$$f(x) = egin{cases} ax+1 & ext{if} & x\leq 3 \ bx+c & ext{If} & x>3 \end{cases}$$

53. Find the intervals in which the function f, given by $f(x) = 2x^3 - 3x^2 - 36x + 7$ is strictly

increasing and strictly decreasing.

54. Form the differential equation representing the

family of curve $y = a \sin(x + b)$, where a and b are

artibrary constants.

55. Let L be the set of all lines in XY plane and R be the relation in L defined as $R = \{(L_1, L_2), L_1 \text{ is}$ parallel to $L_2\}$. Show that R is an equilavence relation.

56. Show that
$$\cos^{-1}\frac{4}{5} + \cos^{-1}\frac{12}{13} = \cos^{-1}\frac{33}{65}$$

Watch Video Solution

57. Express
$$an^{-1} igg(\frac{\cos x - \sin x}{\cos x + \sin x} igg)$$
 in the simplest

form , $x < \pi$

58. Using the propertis of derminants, prove tha
59. Find
$$rac{dy}{dx}$$
, if $\sin^2 x + \cos^2 y = 1$

Watch Video Solution

61. Evaluate
$$\int \!\! e^3 \! \left(an^{-1} x + rac{1}{1+x^2}
ight) \! dx$$

62. Evaluate
$$\int_0^{\pi/2} rac{\cos^5 x}{\sin^5 x + \cos^5 x} dx$$

Watch Video Solution

65. Show that the four points A,B,C and D with position vectors

$$4\hat{i}+5\hat{j}+\hat{k},\;-\left(\hat{j}+\hat{k}
ight),\left(3\hat{i}+9\hat{j}+4\hat{k}
ight)$$
 and

 $4ig(-\hat{i}+\hat{j}+\hat{k}ig)$ respectively are coplanar.

66. Find the angle between the pair of lines

$$\frac{x-2}{2} = \frac{y-1}{5} = \frac{z+3}{-3}$$
and

$$\frac{x+2}{-1} = \frac{y-4}{8} = \frac{z-5}{4}$$

67. A family has two children. What is the probability that both the children are boys given that at least one of them is a boy ?

Watch Video Solution

68. Find the probability distribution of number of

heads in two tosses of a coin

69. Five cards are drawn successively with replacement from a well shuffled deck of 52 cards. What is the probability that a. all the five cards are spades: b. only three cards are spades?

70. Solve the following system of equations using matrix method:

x - y + 2z = 1

2y - 3z = 1

3x - 2y + 4z = 2

Match Mides Colution

71. Find the equations of tangent and normal to

the curve $x^{2\,/\,3} + y^{2\,/\,3} = 2$ at (1,1)

Watch Video Solution

72. Two positive numbers whose sum is 16 and sum

of whose cubes is minimum are.....

73. Find the area bounded by the curve $x^2 = 4y$

and the line x = 4y - 2.

Watch Video Solution

74. Find the area of the region bounded by the

curve
$$y=x^2+2, y=x, x=0$$
 and $x=3$

Watch Video Solution

75. Find the shortest distance between the lines $ec{r}=6\hat{i}+2\hat{j}+2\hat{k}+\lambdaig(\hat{i}-2\hat{j}+2\hat{k}ig)$ and

77. Solve the following linear programming problem graphically: Minimise Z=200x+500y

subject to the constraints:

 $x+2y\geq 10,$ $3x+4y\leq 24,$ $x\geq 0,$ $y\geq 0$

Watch Video Solution

Series B

1. The principal value of
$$\cos^{-1} rac{\sqrt{3}}{2}$$
 is

A.
$$\frac{\pi}{6}$$

B. $\frac{\pi}{3}$
C. $-\frac{\pi}{6}$
D. $\frac{\pi}{4}$

2. If A and B are invertible matrices , then:

A. BA

- $\mathsf{B.}\,B^{-1}A$
- C. BA^{-1}
- D. $B^{-1}A^{-1}$

3. The derivative of $\cos 30^\circ$ is

A. $-\sin 30^{\,\circ}$

B. $\sin 30^{\circ}$

4. The approximate change in the volume of a cube of side x metres caused by increasing the side by 3% is

A. $0.06x^3m^3$

 $\mathsf{B}.\,0.6x^3m^3$

C. $0.09x^3m^3$

 $\mathsf{D}.\,0.9x^3m^3$

5. An antiderivative of cos 5x is

- $\mathsf{B.}-5\sin 5x$
- $C.\sin 5x$

D. $5\cos 5x$

A. 1

B. 2

C. 3

D. Cannot be defined.

Answer:

Watch Video Solution

7. The projection of the vector $2\hat{i}+3\hat{j}+2\hat{k}$ on the vector $\hat{i}+2\hat{j}+\hat{k}$

A.
$$\frac{5\sqrt{6}}{3}$$

B.
$$\frac{6\sqrt{5}}{3}$$

C. $\frac{8\sqrt{5}}{3}$

D. 0

A.
$$\left| \overrightarrow{a} \right| \left| \overrightarrow{b} \right| \cos \theta$$

B. $\left| \overrightarrow{a} \right| = \left| \overrightarrow{b} \right| \cos \theta$
C. $\left| \overrightarrow{b} \right| = \left| \overrightarrow{a} \right| \cos \theta$

D. None of the above

Answer:

Watch Video Solution

9. The distance of the plane x+2y-2z=9 from

the point (2,3,-5) is

A. 3

B. 4

C. 0

Answer:

10. If A and B are two events such that
$$P(A) \neq 0$$
 and $P\left(\frac{B}{A}\right) = 1$, then

- A. $A\subset B$
- $\mathsf{B}.\,B\subset A$
- $\mathsf{C}.\,B=\phi$
- $\mathrm{D.}\, A=\phi$

13. Find the values of a and b such that the function defined by $f(x) egin{cases} 5 & ext{if} \quad x \geq 2 \ ax+b & ext{if} \quad 2 < x < 10 \ ext{is continuous.} \ 21 & ext{if} \quad x \geq 10 \end{cases}$

Watch Video Solution

14. Find the intervals in which the function f, given

by $f(x) = -2x^3 - 9x^2 - 12x + 1$ is strictly

increasing and strictly decreasing.

15. Form the differential equation representing the

family of curves $\displaystyle rac{x}{a} + \displaystyle rac{y}{b} = 1$ where a and b are

arbitrary constants.

Watch Video Solution

16. Show that the relation R defined in the set A of all triangles as $R = \{(T_1, T_2) : T_1 \text{ is similar to } T_2\}$ is an equivalence relation.

17. Show that
$$\sin^{-1}\frac{8}{17} + \sin^{-1}\frac{3}{5} = \tan^{-1}\frac{77}{36}$$

Watch Video Solution
18. Express $\tan^{-1}\frac{x}{\sqrt{a^2 - x^2}}$, $|x| < a$ in the simples form
Watch Video Solution

19. Using the properties of determinats, show that

$$egin{array}{c|cccc} y+k & y & y \ y & y+k & y \ y & y & y+k \ \end{array} = k^2(3y+k)$$

. . .

20. Find
$$rac{dy}{dx}$$
 if $\sin^2 y + \cos xy = \pi$

21. If
$$= 3e^{2x} + 2e^{3x}$$
 then prove that $\frac{d^2y}{dx^2} - 5\frac{dy}{dx} + 6y = 0$
(Vatch Video Solution

22. Evlauate
$$\int (x+1)\sqrt{2x^2+3}dx$$

23. Evaluate
$$\int rac{x e^x}{\left(1+x
ight)^2} dx$$

Watch Video Solution

24. Evaluate
$$\int_{0}^{rac{\pi}{2}} rac{\sqrt{\sin x}}{\sqrt{\sin x} + \sqrt{\cos x}} dx$$

25. Solve differential equation
$$rac{dy}{dx} + \sec xy = an x \Big(0 \le x \le rac{\pi}{2} \Big)$$

27. Show that the points A(3,2,1),B(4,5,5),C(4,2,-2)

and D(6,5,-1) are coplanar.

28. Find the angle between the pair of lines

$$ec{r}=2\hat{i}-5\hat{j}+\hat{k}+\lambda\Big(3\hat{i}+2\hat{j}+6\hat{k}\Big)$$
 and $ec{r}=7\hat{i}-6\hat{k}+\mu\Big(\hat{i}+2\hat{j}+2\hat{k}\Big)$

29. Assume that each child born is equally likely to be a boy or a girl. If a family has two children, what is the conditional probability that both are girls? Given that (i) the youngest is a girl, (ii) at least one is a girl.

30. Find the probabiltiy distribution of number of

tails in the simultaneous tosses of three coins.

31. A and B throw a die alternatively till one of them

gets a '6' and wins the game. Find their respective

probabilities of winning, if A starts first.

33. Find the equations of the tangent and normal to the parabola $y^2 = 4ax$ at the point $(at^2, 2at)$.

34. Find two positive numbers x and y such that their sum is 35 and product x^2y^5 is maximum.

35. Find the area of the region bounded by
$$x^2 = 4y, y = 2, y = 4$$
 and y-axis the first quadrant.

36. Find the area of the region bounded by two

parabolas
$$y = x^2$$
 and $y^2 = x$.

Watch Video Solution

37. Find the distance between the lines l_1 and l_2 given by : $\overrightarrow{r} = \hat{i} + 2\hat{j} - 4\hat{k} + \lambda\left(2\hat{i} + 3\hat{j} + 6\hat{k}\right)$ and $\overrightarrow{r} = 3\hat{i} + 3\hat{j} - 5\hat{k} + \mu\left(2\hat{i} + 3\hat{j} + 6\hat{k}\right)C\widetilde{O}$

38. Find the coordinates of the point where the line through the points A(3, 4, 1) and B(5, 1, 6) crosses the XY-plane.

Watch Video Solution

39. Solve the following linear programming problem graphically:

Miximise Z = 5x + 3y subject to the constraints :

 $3x + 5y \le 15$

 $5x+2y\leq 10$

 $x \geq 0, y \geq 0$

Match Mides Colution

A.
$$\frac{\pi}{6}$$

B. $\frac{\pi}{3}$
C. $-\frac{\pi}{6}$
D. $\frac{\pi}{4}$

Answer:

41. If A and B are invertible matrices , then:

A. BAB. $B^{-1}A$ C. BA^{-1}

D.
$$B^{-1}A^{-1}$$

Answer:

42. The derivative of $\cos 30^\circ$ is

A. $-\sin 30^{\circ}$

B. $\sin 30^{\circ}$

$$\mathsf{C}.\,\frac{\sqrt{3}}{2}$$

D. 0

Answer:

43. The approximate change in the volume of a cube of side x metres caused by increasing the side by 3% is

A. $0.06x^3m^3$

 $\mathsf{B}.\,0.6x^3m^3$

 $\mathsf{C.}\, 0.09 x^3 m^3$

 $\mathsf{D}.\, 0.9 x^3 m^3$

Answer:

Watch Video Solution

44. An antiderivative of cos 5x is

A.
$$\frac{\sin 5x}{5}$$

 $\mathsf{B.}-5\sin 5x$

 $C.\sin 5x$

D. $5\cos 5x$

Answer:

45. The degree of the differential equation $\left(\frac{dy}{dx}\right)^2 + \left(\frac{dy}{dx}\right) - \sin^2 y = 0$ is

A. 1

B. 2

C. 3

D. Cannot be defined.

Answer:

46. The projection of the vector $2\hat{i} + 3\hat{j} + 2\hat{k}$ on the vector $\hat{i} + 2\hat{j} + \hat{k}$

A.
$$\frac{5\sqrt{6}}{3}$$

B. $\frac{6\sqrt{5}}{3}$
C. $\frac{8\sqrt{5}}{3}$
Answer: Watch Video Solution

47. The dot product of the two vectors \overrightarrow{a} and \overrightarrow{b} is

A.
$$\left| \overrightarrow{a} \right| \left| \overrightarrow{b} \right| \cos \theta$$

B. $\left| \overrightarrow{a} \right| = \left| \overrightarrow{b} \right| \cos \theta$
C. $\left| \overrightarrow{b} \right| = \left| \overrightarrow{a} \right| \cos \theta$

D. None of the above

48. The distance of the plane x + 2y - 2z = 9 from the point (2,3,-5) is

A. 3

B. 4

C. 0

D. 5

49. If A and B are two events such that P(A)
eq 0

and
$$Piggl(rac{B}{A}iggr)=1$$
, then

A.
$$A\subset B$$

- $\mathrm{B.}\,B\subset A$
- $\mathsf{C}.\,B=\phi$
- D. $A = \phi$

50. Using elementary transformation, find the inverse of the matrix $A = \begin{bmatrix} 2 & -6 \\ 1 & -2 \end{bmatrix}$.

Watch Video Solution

52. Find the values of a and b such that the function defined by

$$f(x) egin{cases} 5 & ext{if} \quad x \geq 2 \ ax+b & ext{if} \quad 2 < x < 10 \ ext{is continuous.} \ 21 & ext{if} \quad x \geq 10 \end{cases}$$

53. Find the intervals in which the function f, given by $f(x) = -2x^3 - 9x^2 - 12x + 1$ is strictly increasing and strictly decreasing.

Watch Video Solution

54. Form the differential equation representing the

family of curves $rac{x}{a}+rac{y}{b}=1$ where a and b are

55. Show that the relation R defined in the set A of all triangles as $R = \{(T_1, T_2) : T_1 \text{ is similar to } T_2\}$ is an equivalence relation.

56. Show that
$$\sin^{-1}\frac{8}{17} + \sin^{-1}\frac{3}{5} = \tan^{-1}\frac{77}{36}$$

Watch Video Solution

57. Express
$$an^{-1}rac{x}{\sqrt{a^2-x^2}}, |x| < a$$
 in the

simples form

Watch Video Solution

58. Using the properties of determinats, show that

$$egin{array}{c|cccc} y+k & y & y \ y & y+k & y \ y & y & y+k \ \end{array} = k^2(3y+k)$$

59. Find
$$rac{dy}{dx}$$
 if $\sin^2 y + \cos xy = \pi$

60. If
$$= 3e^{2x} + 2e^{3x}$$
 then prove that
 $\frac{d^2y}{dx^2} - 5\frac{dy}{dx} + 6y = 0$
Watch Video Solution

61. Evlauate
$$\int (x+1)\sqrt{2x^2+3}dx$$

62. Evaluate
$$\int \frac{x e^x}{\left(1+x
ight)^2} dx$$

63. Evaluate
$$\int_{0}^{rac{\pi}{2}} rac{\sqrt{\sin x}}{\sqrt{\sin x} + \sqrt{\cos x}} dx$$

66. Show that the points A(3,2,1),B(4,5,5),C(4,2,-2)

and D(6,5,-1) are coplanar.

Watch Video Solution

67. Find the angle between the pair of lines

$$\overrightarrow{r}=2\hat{i}-5\hat{j}+\hat{k}+\lambda\Big(3\hat{i}+2\hat{j}+6\hat{k}\Big)$$
 and

 $\overrightarrow{r}=7\hat{i}-6\hat{k}+\muig(\hat{i}+2\hat{j}+2\hat{k}ig)$

68. Assume that each child born is equally likely to be a boy or a girl. If a family has two children, what is the conditional probability that both are girls? Given that (i) the youngest is a girl, (ii) at least one is a girl.

69. Find the probabiltiy distribution of number of

tails in the simultaneous tosses of three coins.

70. A and B throw a die alternatively till one of them gets a '6' and wins the game. Find their respective probabilities of winning, if A starts first.

71. Solve the following system of equations using matrix method:

x - y + 2z = 1

2y - 3z = 1

3x - 2y + 4z = 2

Watch Video Solution

72. Find the equations of the tangent and normal

to the parabola $y^2=4ax$ at the point $ig(at^2,2atig).$

74. Find the area of the region bounded by
$$x^2 = 4y, y = 2, y = 4$$
 and y-axis the first quadrant.

75. Find the area of the region bounded by two parabolas $y = x^2$ and $y^2 = x$.

76. Find the distance between the lines
$$l_1$$
 and l_2
given by : $\overrightarrow{r} = \hat{i} + 2\hat{j} - 4\hat{k} + \lambda\left(2\hat{i} + 3\hat{j} + 6\hat{k}\right)$
and $\overrightarrow{r} = 3\hat{i} + 3\hat{j} - 5\hat{k} + \mu\left(2\hat{i} + 3\hat{j} + 6\hat{k}\right)C\widetilde{O}$

77. Find the coordinates of the point where the line through the points A(3, 4, 1) and B(5, 1, 6) crosses the XY-plane.

78. Solve the following linear programming problem graphically: Miximise Z = 5x + 3y subject to the constraints : $3x + 5y \le 15$ $5x + 2y \le 10$ $x \ge 0, y \ge 0$

1. The principal value of $\cos^{-1}\left(\frac{1}{\sqrt{2}}\right)$ is

A.
$$\frac{3\pi}{4}$$

B. $\frac{\pi}{4}$
C. $-\frac{\pi}{4}$
D. $\frac{5\pi}{4}$

2. If A and B are symmetric matrices of same order

then AB - BA is a :

A. skew symmetric matrix

B. symmetric matrix

C. zero matrix

D. identity matrix

3. The drivateive of $an 45^\circ$ is

A. 1

B. $\cot 45^{\circ}$

C. $-\cot 45^{\circ}$

D. 0

4. Find the approximate change in the volume V of a cube of side x metres caused by increasing the side by 1%.

A. $0.03x^3m^3$

 $\mathsf{B}.\, 0.3 x^3 m^3$

 $C. 0.003 x^3 m^3$

D. $0.001x^3m^3$

5. An antiderivative of sin mx is

A. $-\frac{\cos mx}{m}$

 $B.-\cos mx$

 $C. -m \cos mx$

D. cosmx

Answer:

Watch Video Solution

6. The degree of the differential equation $rac{d^3y}{dx^3} + 2\left(rac{d^2y}{dx^2}
ight)^2 - rac{dy}{dx} + y = 0$ is

A. 1

B. 2

C. 3

D. Cannot be defined.

Answer:

Watch Video Solution

7. Find the projection of the vector $\hat{i}+3\hat{j}+7\hat{k}$ on the vector $7\hat{i}-\hat{j}+8\hat{k}.$

A.
$$\frac{60}{\sqrt{114}}$$

~ ~

B.
$$\frac{60}{114}$$

C. $\frac{66}{\sqrt{114}}$

D. None of the above

Answer:

Watch Video Solution

8. The dot product of the two vectors \overrightarrow{a} and \overrightarrow{b} is

A.
$$\left| \overrightarrow{a} \right| \left| \overrightarrow{b} \right| \sin \theta \widehat{n}$$

B. $\left| \overrightarrow{a} \right| = \left| \overrightarrow{b} \right| \sin \theta \widehat{n}$
C. $\left| \overrightarrow{a} \right| = \left| \overrightarrow{b} \right| \tan \theta \widehat{n}$

D. None of the above

Answer:

9. The distance of the plane 2x - y + 2z + 3 = 0 from the point (3,2,1) is

A.
$$\frac{3}{13}$$

B. $\frac{13}{3}$

C. 0

D. 13

Answer:

10. If A and b are any two events such that $P(A) + P(B) - P(A ext{and} B) = P(A)$, then

A.
$$P(B/A) = 1$$

- B. P(A / B) = 1
- $\mathsf{C}.\, P(B/A)=0$
- D. P(A/B) = 0

12. Find the values of x and y from the equation

$$2igg[egin{array}{cc} x & 5 \ y & -3 \end{array} + igg[egin{array}{cc} 3 & -4 \ 1 & 2 \end{array} \end{bmatrix} = igg[egin{array}{cc} 7 & 6 \ 15 & 14 \end{array} \end{bmatrix}$$

13. Find the values of k so that the function f, defined by $f(x) = \begin{cases} kx+1 & ext{if } x \leq 5 \\ 3x-5 & ext{if } x > 5 \end{cases}$ is

continuous at x=5.

14. Find the intervals in which the function f given by $f(x) = 4x^3 - 6x^2 - 72x + 30$ is strictly

increasing and strictly decreasing.

Watch Video Solution

15. Form a differential equation representing the family of curves $y^2 = a \left(b^2 - x^2 \right)$ by eliminating a and b.

16. Let T be the set of all triangles in a plane with R a relation in T given by : $R = \{(T_1, T_2): T_1 \text{ is congruent to T_2}\}$. Show that R is an equivalence relation.

17. Prove that
$$\cos^{-1} rac{12}{13} + \sin^{-1} rac{3}{5} = \sin^{-1} rac{56}{65}$$

18. Write
$$\tan^{-1}\left(\frac{\sqrt{1+x^2}-1}{x}\right), x \neq 0$$
 simplest

form.

Watch Video Solution

19. Using the properties of determinants, show that

20. Find
$$rac{dy}{dx}$$
 if $xy^2+y^2= an x+y$

21. If
$$y=500e^7x+600e^{-7}x$$
 show that $\left(d^2rac{y}{dx^2}
ight)=49y$

22. Evaluate
$$\int (x+3)\sqrt{3-4x-x^2}dx$$

Watch Video Colution

23. Evaluate
$$\int e^{x} \left(\frac{1}{x} - \frac{1}{x^{2}} \right) dx.$$

24. Evaluate :
$$\int_0^{\frac{\pi}{2}} \frac{\sin^{\frac{3}{2}}x}{\sin^{\frac{3}{2}}x + \cos^{\frac{3}{2}}x} dx.$$

25. Solve the differntial equation
$$\displaystyle rac{dy}{dx} + \displaystyle rac{y}{x} = x^2$$

27. Show that the four points with position vectors $4\hat{i}+8\hat{j}+12\hat{k},2\hat{i}+4\hat{j}+6\hat{k},3\hat{i}+5\hat{j}+4\hat{k}$ and $5\hat{i}+8\hat{j}+5\hat{k}$ are coplanar.

28. Find the angle between the pair of lines $\frac{x-5}{7} = \frac{y+2}{-5} = \frac{z}{1} \text{ and } \frac{x}{1} = \frac{y}{2} = \frac{z}{3}$ Watch Video Solution

29. A family has two children. What is the probability that both the children are boys given that at least one of them is a boy ?

30. Find the probability distribution of number of

heads in four tosses of a coin.

31. If is known that 10% of certain articles manufactured are defective. What is the probability that in a random sample of 12 such articles ,9 are defective?

33. Find the equations of the tangent and normal to the hyperbola $rac{x^2}{a^2}-rac{y^2}{b^2}=1$ at the point (x_0,y_0)

34. Find two positive numbers x and y such that

x+y=60 and xy^3 is maximum.

35. Find the area of region bounded by

The parabola $y^2 = 4ax$ and its latus rectum

Watch Video Solution

36. Area lying between the curve $y^2 = 4x$ and the line y = 2x is :
37. Find the shortest distance between the lines $\vec{r} = \hat{i} + 2\hat{j} + 3\hat{k} + \lambda(\hat{i} - 3\hat{j} + 2\hat{k})$ and $\vec{r} = 4\hat{i} + 5\hat{j} + 6\hat{k} + \lambda(2\hat{i} + 3\hat{j} + \hat{k})$

Watch Video Solution

38. Find the coordinates of the points where the

line through (5,1,6) and (3,4,1) crosses YZ-plane.

40. The principal value of
$$\cos^{-1}\left(\frac{1}{\sqrt{2}}\right)$$
 is

A.
$$\frac{3\pi}{4}$$

B. $\frac{\pi}{4}$
C. $-\frac{\pi}{4}$
D. $\frac{5\pi}{4}$

41. If A and B are symmetric matrices of same order

then AB - BA is a :

A. skew symmetric matrix

B. symmetric matrix

C. zero matrix

D. identity matrix

42. The drivateive of $an 45^\circ$ is

A. 1

B. $\cot 45^{\circ}$

C. $-\cot 45^{\circ}$

D. 0

43. Find the approximate change in the volume V of a cube of side x metres caused by increasing the side by 1%.

A. $0.03x^3m^3$

 $\mathsf{B}.\,0.3x^3m^3$

C. $0.003x^3m^3$

D. $0.001x^3m^3$

Answer:

44. An antiderivative of sin mx is

A. $-\frac{\cos mx}{m}$

 $B.-\cos mx$

 $C. -m \cos mx$

D. cosmx

45. The degree of the differential equation $\frac{d^3y}{dx^3} + 2\left(\frac{d^2y}{dx^2}\right)^2 - \frac{dy}{dx} + y = 0$ is

A. 1

B. 2

C. 3

D. Cannot be defined.

46. Find the projection of the vector $\hat{i} + 3\hat{j} + 7\hat{k}$ on the vector $7\hat{i} - \hat{j} + 8\hat{k}$.

D. None of the above

47. The dot product of the two vectors \overrightarrow{a} and \overrightarrow{b} is

A.
$$\left| \overrightarrow{a} \right| \left| \overrightarrow{b} \right| \sin \theta \widehat{n}$$

B. $\left| \overrightarrow{a} \right| = \left| \overrightarrow{b} \right| \sin \theta \widehat{n}$
C. $\left| \overrightarrow{a} \right| = \left| \overrightarrow{b} \right| \tan \theta \widehat{n}$

D. None of the above

48. The distance of the plane 2x - y + 2z + 3 = 0

from the point (3,2,1) is

A.
$$\frac{3}{13}$$

B. $\frac{13}{3}$

C. 0

D. 13

49. If A and b are any two events such that

$$P(A) + P(B) - P(A \text{ and } B) = P(A)$$
, then
A. $P(B/A) = 1$
B. $P(A/B) = 1$
C. $P(B/A) = 0$
D. $P(A/B) = 0$

50. By using elementary transformation find the

inverse of the matrix :
$$A = egin{bmatrix} 2 & -3 \ -1 & 2 \end{bmatrix}$$

Watch Video Solution

$$2iggl[egin{array}{cc} x & 5 \ y & -3 \ \end{bmatrix} + iggl[egin{array}{cc} 3 & -4 \ 1 & 2 \ \end{bmatrix} = iggl[egin{array}{cc} 7 & 6 \ 15 & 14 \ \end{bmatrix}$$

Watch Video Solution

52. Find the values of k so that the function f, defined by $f(x) = \begin{cases} kx+1 & \text{if } x \leq 5 \\ 3x-5 & \text{if } x > 5 \end{cases}$ is

53. Find the intervals in which the function f given by $f(x) = 4x^3 - 6x^2 - 72x + 30$ is strictly increasing and strictly decreasing.

Watch Video Solution

54. Form a differential equation representing the family of curves $y^2 = a(b^2 - x^2)$ by eliminating a and b.

55. Let T be the set of all triangles in a plane with R a relation in T given by : $R = \{(T_1, T_2): T_1 \text{ is } congruent to T_2\}$. Show that R is an equivalence relation.

Watch Video Solution

56. Prove that
$$\cos^{-1} \frac{12}{13} + \sin^{-1} \frac{3}{5} = \sin^{-1} \frac{56}{65}$$

57. Write
$$an^{-1}\left(rac{\sqrt{1+x^2}-1}{x}\right), x
eq 0$$
 simplest

form.

Watch Video Solution

59. Find
$$rac{dy}{dx}$$
 if $xy^2+y^2= an x+y$

60. If
$$y=500e^{7x}$$
 , show that $\displaystyle rac{d^2y}{dx^2}$ = 49 y

Watch Video Solution

61. Evaluate
$$\int (x+3)\sqrt{3-4x-x^2}dx$$

Watch Video Solution

62. Evaluate
$$\int e^{x} \left(\frac{1}{x} - \frac{1}{x^{2}} \right) dx.$$

66. Show that the four points with position vectors $4\hat{i} + 8\hat{j} + 12\hat{k}, 2\hat{i} + 4\hat{j} + 6\hat{k}, 3\hat{i} + 5\hat{j} + 4\hat{k}$ and $5\hat{i} + 8\hat{j} + 5\hat{k}$ are coplanar.

Watch Video Solution

67. Find the angle between the pair of lines $\frac{x-5}{7} = \frac{y+2}{-5} = \frac{z}{1}$ and $\frac{x}{1} = \frac{y}{2} = \frac{z}{3}$

68. A couple has two children, find the probability that both children are females, if it is known that the elder childis a female.

Watch Video Solution

69. Find the probability distribution of number of

heads in four tosses of a coin.

70. If is known that 10% of certain articles manufactured are defective. What is the probability that in a random sample of 12 such articles ,9 are defective?

71. Solve the following system of linear equations

by matrix method

3x - 2y + 3z = 8, 2x + y - z = 1, 4x - 3y + 2z = 4

:

73. Find two positive numbers x and y such that x + y = 60 and xy^3 is maximum.

74. Find the area of the region bounded by $ig(y^2=4axig)$ and its latus rectum (x=a)

76. Find the shortest distance between the lines

$$\vec{r} = \hat{i} + 2\hat{j} + 3\hat{k} + \lambda\left(\hat{i} - 3\hat{j} + 2\hat{k}\right)$$
 and
 $\vec{r} = 4\hat{i} + 5\hat{j} + 6\hat{k} + \lambda\left(2\hat{i} + 3\hat{j} + \hat{k}\right)$

77. Find the coordinates of the point where the line

through (5,1,6) and (3,4,1) crosses the ZX-plane.

78. Solve the following linear programming problem graphically : Maximize : z = 3x + 2ysubject to the constraints : $x + 2y \le 10, 3x + y \le 15, x \ge 0, y \ge 0$