

MATHS

BOOKS - OMEGA PUBLICATION

PUNJAB BOARD-MATHEMATICS 2018

Series A

1. If * is a binary operation is defined by

$$a*b=a^2+b^2$$
 then 3*5 is equal to

A. 34

B. 9

C. 8

D. 25

Answer:

Watch Video Solution

2. $\cos^{-1}x=y$ then

A.
$$\dfrac{-\pi}{2} \leq y \leq \dfrac{\pi}{2}$$

$$\mathsf{B.}-\pi \leq y \leq \pi$$

$$\mathsf{C.}\, 0 \leq y \leq \frac{\pi}{2}$$

$$\mathsf{D}.\, 0 \leq y \leq 0$$

Answer:

Watch Video Solution

3. If A is a matrix of order 3 imes 3 and |A| = 10 then $|adj.\ A|$ is

A. 0

B. 10

C. 100

D. 1000

Answer:

Watch Video Solution

4. If $y=\sin\bigl(\sin^{-1}x+\cos^{-1}x\bigr), x\in[-1,1]$, then $\frac{dy}{dx}$ is:

A.
$$\frac{\pi}{2}$$

B.
$$\frac{-\pi}{2}$$

$$\mathsf{C}.\ 0$$

Answer:

5.
$$f(x)=\left\{egin{array}{ll} rac{\sin x}{x} & x
eq 0 \ k-1 & x=0 \end{array}
ight.$$
 is continuous at x

= 0, then k is :

A. 2

B. 0

C. -1

D. 1

Answer:

6.
$$\int \!\! e^x \! \left(\log x + \frac{1}{x} \right) \! dx$$
 is equal to :

A.
$$e^x + C$$

B. $e^x \log x + c$

$$\mathsf{C.}\; \frac{e^x}{x} + c$$

 $D.\log x + c$

Answer:

Watch Video Solution

7. Integrating factor of differential equation :

 $rac{dy}{dx} + y = 3 ext{ is :}$

- A. x
- B. e
- $\mathsf{C}.\,e^x$
- $D. \log x$

Answer:

- **8.** This ineqality $\left|\overrightarrow{a}.\overrightarrow{b}\right| \leq \left|\overrightarrow{a}\right| \left|\overrightarrow{b}\right|$ is called
 - A. Cauchy Schwartz inequality
 - B. Triangle inequality

C. Roll's Theorem

D. Lagrange's Mean value theorem

Answer:

Watch Video Solution

9. Distance between plane 3x + 4y - 20 = 0 and point (0, 0, -7) is :

A. 4 units

B. 3 units

C. 2 units

D. 4unit

Answer:

Watch Video Solution

10. If P (E) denotes probability of occurrence of event E, then:

A.
$$P(E) \in [-1,1]$$

B.
$$P(E) \in (1,\infty)$$

C.
$$P(E) \in (0,1)$$

D.
$$P(E) \in [0,1]$$

Answer:

11. If matrix $A=\left[a_{i}j
ight]_{3} imes2$ and $a_{i}j=\left(3i-2j
ight)^{2}$, then find matrix A.

12. Check whether Lagrange 's mean value theorem is applicable on :

$$f(x) = \sin x + \cos x \in \int \!\! erval \Big[0, rac{\pi}{2}\Big]$$

13. By using the properties of definte, prove that

$$\int_0^{\pi/2} rac{\sin^3 x}{\sin^3 x + \cos^3 x} dx = rac{\pi}{4}$$

14. Evaluate :
$$\int \frac{7dx}{x(x^2-1)}$$
.

15. Find particular solution of differential equation $du = 1 + u^2$

$$\frac{dy}{dx} = \frac{1+y^2}{1+x^2}$$
, given that y=1 when x=0.

16. From differential equation representing the family of lines making equal intercepts on the coordinate axes.

17. Find the angle between the plane 2x+3y-5z=10 and the line passing through the points (2, 3, - 1) and (1, 2, 1).

18.

$$P(A)=\frac{7}{13}, P(B)=\frac{9}{13} \ \ {\rm and} \ \ P(AuB)=\frac{12}{13}$$
 then find $P\Big(\frac{A}{B}\Big)$.

Watch Video Solution

- **19.** Prove that function $f\!:\!R o R, f(x)=rac{3x-2}{7}$ in one-one and onto. Also find f^{-1} .

20.

Prove

that

$$\sin^{-1}\left(\frac{5}{13}\right) + \cos^{-1}\left(\frac{4}{5}\right) = \frac{1}{2}\sin^{-1}\left(\frac{3696}{4225}\right).$$

Watch Video Solution

21. Express $\begin{bmatrix} 2 & 5 & -1 \\ 3 & 1 & 5 \\ 7 & 6 & 9 \end{bmatrix}$ as a sum of symmetric and

skew-symmetric matrices.

$$\Delta=egin{array}{c|ccc} x&x^2&1+x^3\ y&y^2&1+y^3\ z&z^2&1+z^3 \end{array}=0$$
, show that xyz=-1

23. If
$$y = x^{\tan x} + (\tan x)^x$$
, then find $\frac{dy}{dx}$.

24. Using differentials find approximate value of $(0.37)^{\frac{1}{2}}$

25. Evaluate : $\int \frac{x^2+1}{x^4+1} dx$.

Watch Video Solution

26. Evaluate $\int \frac{dx}{x^3-1}$

27. Find the area of the region bounded by the elipse $rac{x^2}{9} + rac{y^2}{4} = 1$

28. Find the particular solution of differential equations :

$$\Big[x\sin^2\Bigl(rac{y}{x}\Bigr)-y\Big]dx+xdy=0, y(1)=rac{\pi}{4}.$$

29. Find the particular solution of differential equation : $\tan x \frac{dy}{dx} + y = 2x \tan x + x^2, \, x \neq 0$, given that y=0 when $x = \frac{\pi}{2}$.

30. If \overrightarrow{a} = $2\hat{i} - 3\hat{j} + 4\hat{k}$ and \overrightarrow{b} = $5\hat{i} + \hat{j} - \hat{k}$

represents sides of a parallelogram then find both diagonals and a unit vector perpendicular to both diagonals of parallelogram.

31. Two cards are drawn (without replacement) from a well shuffled deck of 52 cards. Find probability distribution table and mean of number of kings.

32. Solve the following system of linear equations by

matrix method :
$$x-2y+3z=-5, 3x+y+z=8, 2x-y+2z=1$$

33. Using elementary transformations find the inverse of
$$\begin{bmatrix} 2 & 4 & 1 \\ 1 & 2 & 3 \\ 1 & -3 & 0 \end{bmatrix}$$

34. A window is in the form of rectangle surmounted by a semi-circular opening. The perimeter of window is 30 m. Find the dimensions of window so that it can admit maximum light through the whole opening.

35. Prove that volume of largest cone, which can be inscribed in a sphere, is $\left(\frac{8}{27}\right)^{th}$ part of volume of sphere.

36. Find the distance between the point (2, 3, - 1) and foot of perpendicular drawn from (3, 1, - 1) to the plane x-y+3z=10.

Watch Video Solution

37. Find the equation of plane passing from the point A(2,-1,1),B(4,3,2) and C(6,5,-2). Also prove that point $\left(5,-1,\frac{-25}{2}\right)$ lies on the plane given by points A,B and C.

38. Maximise and minimize Z=15x+30y subject

to the constraints

$$x + y \le 8$$

$$2x - y \ge 8$$

$$x - 2y \ge 0$$

$$x, y \geq 0$$

39. Maximum Z=4x+3y-7

subject to the constraints

$$x + y \le 10, x + y \ge 3, x \le 8, y \le 9, x, y \ge 0.$$

Series B

1. If
$$y = \sin(\sin^{-1}x + \cos^{-1}x), x \in [-1, 1]$$
,

then $\frac{dy}{dx}$ is:

A.
$$\frac{\pi}{2}$$

B.
$$\frac{-\pi}{2}$$

Answer:

2.
$$\int e^x \left(\log x + \frac{1}{x} \right) dx$$
 is equal to :

A.
$$e^x + c$$

B.
$$e^x \log x + c$$

$$\mathsf{C.}\; \frac{e^x}{x} + c$$

$$D.\log x + c$$

Answer:

3. This ineqality
$$\left|\overrightarrow{a}.\overrightarrow{b}\right| \leq \left|\overrightarrow{a}\right| \left|\overrightarrow{b}\right|$$
 is called

A. Cauchy Schwartz inequality	
B. Triangle inequality	

C. Roll's Theorem

D. Lagrange's Mean value theorem

Answer:

Watch Video Solution

4. If P (E) denotes probability of occurrence of event

E, then:

A. $P(E) \in [-1,1]$

B.
$$P(E) \in (1,\infty)$$

$$\mathsf{C.}\,P(E)\in(0,1)$$

D.
$$P(E) \in [0,1]$$

Answer:

Watch Video Solution

5. If * is a binary operation is defined by $a*b=a^2+b^2$ then 3*5 is equal to

A. 34

B. 9

C. 8

D. 5

Answer:

Watch Video Solution

6. If A is a matrix of order 3 imes 3 and |A| = 0 then

|adj.A| is

A. 0

B. 10

C. 100

D. 1000

Answer:

Watch Video Solution

7.
$$f(x)=\left\{egin{array}{ll} rac{\sin x}{x} & x
eq 0 \ k-1 & x=0 \end{array}
ight.$$
 is continuous at x

= 0, then k is:

A. 2

B. 0

C. -1

D. 1

Answer:

Watch Video Solution

- **8.** Distance between plane 3x + 4y 20 = 0 and point (0, 0, -7) is :
 - A. 4 units
 - B. 3 units
 - C. 2 units
 - D. 4 unit

Answer:

9. If $\cos^{-I} x = y$, then :

A.
$$\frac{-\pi}{2} \leq y \leq \frac{\pi}{2}$$

B.
$$\pi \leq y \leq \pi$$

$$\mathsf{C.}\, 0 \leq y \leq \frac{\pi}{2}$$

$$\mathsf{D}.\, 0 \leq y \leq 0$$

Answer:

10. Integrating factor of differential equation :

$$rac{dy}{dx}+y=3$$
 is :

A. x

B. e

 $\mathsf{C}.\,e^x$

 $D. \log x$

Answer:

11. By using the properties of definte, prove that

$$\int_0^{\pi/2} rac{\sin^3 x}{\sin^3 x + \cos^3 x} dx = rac{\pi}{4}$$

Watch Video Solution

12. Find particular solution of differential equation

$$rac{dy}{dx}=rac{1+y^2}{1+x^2}$$
,given that y=1 when x=0.

Watch Video Solution

13. Find the angle between the plane

2x + 3y - 5z = 10 and the line passing through

the points (2, 3, -1) and (1, 2, 1).

Watch Video Solution

14. If matrix $A=\left[a_{i}j
ight]_{3} imes2$ and $a_{i}j=\left(3i-2j
ight)^{2}$, then find matrix A

15. From differential equation representing the family of lines making equal intercepts on the coordinate axes.

lf

$$P(A)=rac{7}{13}, P(B)=rac{9}{13} \ ext{and} \ P(AuB)=rac{12}{13}$$
 then find $P\Big(rac{A}{B}\Big)$.

Watch Video Solution

17. Check whether Lagrange 's mean value theorem

is applicable

on

:

$$f(x) = \sin x + \cos x \in \int erval \left[0, rac{\pi}{2}
ight]$$

18. Evaluate : $\int \frac{7dx}{x(x^2-1)}$.

Watch Video Solution

19. If $y = x^{\tan x} + (\tan x)^x$, then find $\frac{dy}{dx}$.

Watch Video Solution

20. Using differentials find approximate value of $(0.37)^{\frac{1}{2}}$

21. Evaluate
$$\int \frac{x^2-1}{x^4+1} dx$$

Watch Video Solution

22. Evaluate $\int \frac{dx}{x^3-1}$

Watch Video Solution

23. If $\overrightarrow{a} = 2\hat{i} - 3\hat{j} + 4\hat{k}$ and $\overrightarrow{b} = 5\hat{i} + \hat{j} - \hat{k}$ represents sides of a parallelogram then find both diagonals and a unit vector perpendicular to both diagonals of parallelogram.

watch video Solution

24. Two cards are drawn (without replacement) from a well shuffled deck of 52 cards. Find probability distribution table and mean of number of kings.

Watch Video Solution

25. Find the particular solution of differential equations :

$$\Big[x\sin^2\Bigl(rac{y}{x}\Bigr)-y\Big]dx+xdy=0, y(1)=rac{\pi}{4}.$$

26. Find the particular solution of differential equation : $an x rac{dy}{dx} + y = 2x an x + x^2, x
eq 0$, given that y=0 when $x=\frac{\pi}{2}$.

Watch Video Solution

27. Prove that function $f\!:\!R o R, f(x)=rac{3x-2}{7}$ in one-one and onto. Also find f^{-1} .

28. Exress
$$\begin{vmatrix} 2 & 5 & -1 \\ 3 & 1 & 5 \\ 7 & 6 & 9 \end{vmatrix}$$
 as a sum of a symmetric

matrix and a skew symmetric matrices.

$$\Delta=egin{array}{c|ccc} x&x^2&1+x^3\ y&y^2&1+y^3\ z&z^2&1+z^3 \end{array}=0$$
, show that xyz=-1

Prove

that

$$\sin^{-1}\left(\frac{5}{13}\right) + \cos^{-1}\left(\frac{4}{5}\right) = \frac{1}{2}\sin^{-1}\left(\frac{3696}{4225}\right).$$

Watch Video Solution

31. Find the area of the region bounded by the elipse $\frac{x^2}{9} + \frac{y^2}{4} = 1$

Watch Video Solution

32. A window is in the form of rectangle surmounted by a semi-circular opening. The perimeter of window

is 30 m. Find the dimensions of window so that it can admit maximum light through the whole opening.

Watch Video Solution

33. Prove that volume of largest cone, which can be inscribed in a sphere, is $\left(\frac{8}{27}\right)^{th}$ part of volume of sphere.

34. Maximise and minimize Z=15x+30y subject to the constraints

$$x + y \le 8$$

$$2x-y\geq 8$$

$$x-2y \geq 0$$

 $x, y \geq 0$

35. Maximum Z = 4x + 3y - 7

subject to the constraints

 $x + y \le 10, x + y \ge 3, x \le 8, y \le 9, x, y \ge 0.$

36. Solve the following system of linear equations by

matrix method :

$$x-2y+3z = -5, 3x+y+z = 8, 2x-y+2z = 1$$

37. Using elementary transformations find the inverse of $\begin{bmatrix} 2 & 4 & 1 \\ 1 & 2 & 3 \\ 1 & -3 & 0 \end{bmatrix}$

38. Find the distance between the point (2, 3, - 1) and foot of perpendicular drawn from (3, 1, - 1) to the plane x-y+3z=10.

39. Find the equation of plane passing from the point A(2,-1,1),B(4,3,2) and C(6,5,-2). Also prove that point $\left(5,\,-1,\frac{-25}{2}\right)$ lies on the plane given by points A,B and C.

Series C

1.
$$\int e^x \left(\log x + rac{1}{x}
ight) dx$$
 is equal to :

A.
$$e^x + C$$

B.
$$e^x \log x + c$$

$$\mathsf{C.}\; \frac{e^x}{x} + c$$

$$D.\log x + c$$

Answer:

2. This ineqality
$$\left|\overrightarrow{a}.\overrightarrow{b}\right| \leq \left|\overrightarrow{a}\right| \left|\overrightarrow{b}\right|$$
 is called

- A. Cauchy Schwartz inequality
- B. Triangle inequality
- C. Roll's Theorem
- D. Lagrange's Mean value theorem

Answer:

- 3. If P (E) denotes probability of occurrence of event
- E, then:

A.
$$P(E) \in [-1,1]$$

B.
$$P(E) \in (1,\infty)$$

C.
$$P(E) \in (0,1)$$

D.
$$P(E) \in [0,1]$$

Answer:

Watch Video Solution

4. If * is a binary operation is defined by

$$a*b=a^2+b^2$$
 then 3*5 is equal to

A. 34

B. 9

C. 8

D. 5

Answer:

Watch Video Solution

5. If A is a matrix of order 3 imes 3 and |A| = 10 then

 $\left|adj.\,A\right|$ is

A. 0

B. 10

C. 100

D. 1000

Answer:

Watch Video Solution

6.
$$f(x)=egin{cases} rac{\sin x}{x} & x
eq & 0 \ k-1 & x & = & 0 \end{cases}$$
 is continuous at x

= 0, then k is :

A. 2

B. 0

 $\mathsf{C}.-1$

D. 1

Answer:

Watch Video Solution

7. Distance between plane 3x + 4y - 20 = 0 and point (0, 0, -7) is :

A. 4 units

B. 3 units

C. 2 units

D. 4 unit

Answer:

Watch Video Solution

8. Integrating factor of differential equation :

$$rac{dy}{dx}+y=3$$
 is :

A. x

B. e

 $\mathsf{C}.\,e^x$

 $D. \log x$

Answer:

9. Evaluate :
$$\int \frac{7dx}{x(x^2-1)}$$
.

is applicable on

$$f(x) = \sin x + \cos x \in \int\!\!erval \Big[0, rac{\pi}{2}\Big]$$

11. Find particular solution of differential equation

$$rac{dy}{dx}=rac{1+y^2}{1+x^2}$$
,given that y=1 when x=0.

12. Find the angle between the plane 2x+3y-5z=10 and the line passing through

the points (2, 3, -1) and (1, 2, 1).

13. Two cards are drawn (without replacement) from a well shuffled deck of 52 cards. Find probability distribution table and mean of number of kings.

Watch Video Solution

14. If $\overrightarrow{a} = 2\hat{i} - 3\hat{j} + 4\hat{k}$ and $\overrightarrow{b} = 5\hat{i} + \hat{j} - \hat{k}$ represents sides of a parallelogram then find both diagonals and a unit vector perpendicular to both diagonals of parallelogram.

15. Find the particular solution of differential

equations
$$\left[x\sin^2\left(rac{y}{x}
ight)-y
ight]dx+xdy=0,$$
 $y(1)=rac{\pi}{4}.$

Watch Video Solution

16. Find the particular solution of differential equation : $\tan x \frac{dy}{dx} + y = 2x \tan x + x^2, \, x \neq 0$, given that y=0 when $x = \frac{\pi}{2}$.

17. Prove that function $f\!:\!R o R, f(x)=rac{3x-2}{7}$ in one-one and onto. Also find f^{-1} .

- 18. that **Prove** $\sin^{-1}\left(\frac{5}{13}\right) + \cos^{-1}\left(\frac{4}{5}\right) = \frac{1}{2}\sin^{-1}\left(\frac{3696}{4225}\right).$
 - **Watch Video Solution**

19. Exress
$$\begin{bmatrix} 2 & 5 & -1 \\ 3 & 1 & 5 \\ 7 & 6 & 9 \end{bmatrix}$$
 as a sum of a symmetric matrix and a skew symmetric matrices.

