

MATHS

BOOKS - OMEGA PUBLICATION

SAMPLE QUESTION PAPER

1. The principal value of $\sin^{-1}\left(\sin\frac{2\pi}{3}\right)$ is

A.
$$\frac{-2\pi}{3}$$

B. $\frac{2\pi}{3}$

C.
$$\frac{\pi}{3}$$

D. none of these

Answer:

Watch Video Solution

2. If
$$A = ig[a_{ij}ig]_{\mathrm{mxn}}$$
 is a rectangular matrix, then

A.
$$m > n$$

 $\mathsf{B.}\,m=n$

 $\mathsf{C}.\,m < n$

D. none of these

Answer:

4. Find the rate of change of the area of a circle per second with respect to its radius r when r = 5 cm.

- A. $8\pi cm^2/\sec$
- B. $10\pi cm^2/\sec$
- C. $11\pi cm^2/\sec$
- D. none of these

Answer:

5. Evaluate :
$$\int\!\!\frac{dx}{x^2-6x+13}$$
 .

A.
$$\tan^{-1} \frac{x-3}{2} + c$$

B. $\frac{1}{3} \tan^{-1} \frac{x-3}{2} + c$
C. $\frac{x+3}{2} \tan^{-1} x + c$
D. $\frac{1}{3} \tan^{-1} (x-3) + c$

Answer:

6. The degree of differential equation
$$xy\frac{d^2y}{dx^2} + x\left(\frac{dy}{dx}\right)^2 - y\frac{dy}{dx} = 0$$
 is

A. 0

B. 2

C. 1

D. none of these

Answer:

7. Write the value of:
$$(\hat{i}.(\hat{j} \times \hat{k}) + \hat{j}(\hat{i} \times \hat{k}) + \hat{k}.(\hat{I} \times \hat{j})$$

A. 0

B. - 1

C. 1

D. 3

Answer:

A. 1

B.
$$\frac{1}{\sqrt{2}}$$

C. 0

D. none of these

Answer:
Watch Video Solution
9. Direction casines of z-axis are
A (0.01)
A. (0,0,1)
B. (1,0,0)
C. (0,0,0)
D. (0,1,0)
Answer:
Watch Video Solution

10. If $P(A) = rac{1}{2}, P(B) = 0$ then $P(A \mid B)$ is :

A. 0

 $\mathsf{B.}\,\frac{1}{2}$

C. not defined

D. 1

Answer:

14. Prove that the function 'f' given by f (x) = log sin x is

strictly increasing on $\left(0, \frac{\pi}{2}\right)$

15. Form the differential equation of the family of

circles touching the y-axis at origin.

16. Find gof and fog if :

$$f(x) = |x| \; ext{ and } \; g(x) = (5x-2)$$

17. Prove that
$$an^{-1}rac{2}{11}+ an^{-1}rac{7}{24}= an^{-1}rac{1}{2}.$$

18. Express
$$an^{-1}igg(\frac{\cos x}{1-\sin x} igg), \ -\frac{\pi}{2} < x < \frac{\pi}{2}$$
 in

the simplest form.

Watch Video Solution

19. By using properties of determinants, show that :

$$egin{array}{c|c|c|c|c|c|c|c|} 1 & 1 & 1 \ a & b & c \ a^3 & b^3 & c^3 \end{array} = (a-b)(b-c)(c-a)(a+b+c)$$

22. Evaluate
$$\int rac{5x}{x+1(x^2+9)} dx$$

23. Evaluate
$$\int_0^4 |x-1| dx.$$

24. Evlauate
$$\int (x+1)\sqrt{2x^2+3}dx$$

Watch Video Solution

25. Solve:
$$x^2 rac{dy}{dx} = x^2 - 2y^2 + xy$$

26. I.F. of
$$x \frac{dy}{dx} + y = x \log x$$
 is
Watch Video Solution

27. Find λ if the vectors
 $\hat{i} - \hat{j} + \hat{k}, 3\hat{i} + \hat{j} + 2\hat{k}$ and $\lambda\hat{j} - 3\hat{k}$ are coplanar

Watch Video Solution

Watch Video Solution

28. Find the equation of the plane through the intersection of the planes 3x - y + 2z - 4 = 0 and x + y + z - 2 = 0 and the point (2, 2, 1).

29. One card is drawn at random from a well shuffled deck of 52 cards. If E is the even "the card drawn is back"." F is the event " the card drawn is King, Are E and F independent ?

Watch Video Solution

30. From a lot of 30 bulbs which include 6 defectives, a sample of 4 bulbs is drawn at random with replacement. Find the probability distribution of the number of defective bulbs.

31. Let E and F be events with
$$P(E) = \frac{3}{5}, P(F) = \frac{3}{10}$$
 and $P(E \cap F) = \frac{1}{5}$. Are E

and F independent?

32. Solve the following system of linear equations by

matrix

method

:

x-y+2z=7, 3x+4y-5z=-5, 2x-y+3z=12

33. A man of height 2m walks at a uniform speed of

 $5k\frac{m}{h}$ away from a lamp post which is 6m high. Find

the rate at which the length of his shadow increases.

Watch Video Solution

34. Find the equation of the tangent line to the curve $y = x^2 - 2x + 7$, which is parallel to the line 2x - y + 9 = 0.

35. Find the area of smaller region bounded by the ellipse $\frac{x^2}{9} + \frac{y^2}{4} = 1$ and straight line $\frac{x}{3} + \frac{y}{2} = 1$. **Vatch Video Solution**

36. Using integration find the area of regeion bounded

by the triangle whose vertices are (-1,0), (1,3) and (3,2)

37. Find the shortest distance between the lines given

by

$$ec{r} = 3\hat{i}+8\hat{j}+3\hat{k}+\lambda\Big(3\hat{i}-\hat{j}+\hat{k}\Big) ext{ and } \ ec{r} = -3\hat{i}-7\hat{j}+6\hat{k}+\mu\Big(-3\hat{i}+2\hat{j}+4\hat{k}\Big).$$

38. Find the co-ordinates of the point where the line through the points A(3,4,1) and B(5,1,6) crosses the xy-plane.

(D) Watch Video Solution

39. Solve the following linear programming problem graphically:

Maximise Z = 4x+y subject to the constraints :

 $x+y\leq 50$

 $3x + y \le 90$

 $x \geq 0, y \geq 0$

Watch Video Solution

40. The principal value of
$$\sin^{-1} \left(\sin rac{2\pi}{3}
ight)$$
 is

A.
$$\frac{-2\pi}{3}$$

B. $\frac{2\pi}{3}$
C. $\frac{\pi}{3}$

D. none of these

Answer:

41. If $D = ig[a_{ij}ig]_{m imes n}$ is a rectangular matrix, then

A. m > n

- B. m = n
- $\mathsf{C}.m < n$
- D. none of these

Answer:

42. The derivative of a^x is

A. $a^x \log a$

 $\mathsf{B.}\,a^x$

C.
$$\frac{a^x}{\log a}$$

D. none of these

Answer:

43. Find the rate of change of area of the circle with respect to its radius r when r = 5 cm is

A. $8\pi cm^2/\sec$

- B. $10\pi cm^2/\sec$
- $\mathsf{C.}\,11\pi cm^2\,/\,\mathrm{sec}$
- D. none of these

Answer:

44. Evaluate :
$$\int \frac{dx}{x^2-6x+13}$$

A. $\tan^{-1} \frac{x-3}{2}+c$
B. $\frac{1}{3} \tan^{-1} \frac{x-3}{2}+c$

C.
$$rac{x+3}{2} an^{-1}x+c$$

D. $rac{1}{3} an^{-1}(x-3)+c$

Answer:

Watch Video Solution

45. The degree of differential equation $xy\frac{d^2y}{dx^2} + x\left(\frac{dy}{dx}\right)^2 - y\frac{dy}{dx} = 0$ is

A. 0

B. 2

C. 1

D. none of these

Answer:

46. If $(\hat{i}, \hat{j}, \hat{k})$ are the usual three perpendicular unit vectors, then the value of $\hat{i} \cdot (\hat{j} \times \hat{k}) + \hat{j} \cdot (\hat{i} \times \hat{k}) + \hat{k} \cdot (\hat{i} \times \hat{j})$ is A. 0

B. -1

C. 1

D. 3

Answer:

A. 1

 $\mathsf{B.}\,\frac{1}{\sqrt{2}}$

C. 0

D. none of these

Answer:

48. Direction casines of z-axis are

A. (0,0,1)

B. (1,0,0)

C. (0,0,0)

D. (0,1,0)

Answer:

49. If
$$P(A) = rac{1}{2}, P(B) = 0$$
 then $P(A \mid B)$ is :

A. 0

 $\mathsf{B}.\,\frac{1}{2}$

C. not defined

D. 1

Answer:

Watch Video Solution

50. If
$$A = \begin{bmatrix} -1 & 2 & 3 \\ 5 & 7 & 9 \\ -2 & 1 & 1 \end{bmatrix}$$
 and $B = \begin{bmatrix} -4 & 1 & -5 \\ 1 & 2 & 0 \\ 1 & 3 & 1 \end{bmatrix}$, then verify that $(A - B)' = A' - B'$

51. Examine the consistency of the system of equations

: x + 3y = 5, 2x + 6y = 8

52. Disuss the continuity of the function f where f is

defined by

$$f(x) \left\{egin{array}{ll} 3 & ext{if} & 0 \leq x \leq 1 \ 4 & ext{if} & 1 < x < 3 \ 5 & ext{if} & 3 \leq x \leq 10 \end{array}
ight.$$

53. Prove that the function 'f' given by f (x) = log sin x is

strictly increasing on $\left(0, \frac{\pi}{2}\right)$

54. Form the differential equation of the family of

circles touching the y-axis at origin.

56. Prove that
$$\tan^{-1} \frac{2}{11} + \tan^{-1} \frac{7}{24} = \tan^{-1} \frac{1}{2}$$

57. Express
$$an^{-1} igg[rac{\cos x}{1-\sin x} igg] x - rac{\pi}{2} < x < rac{\pi}{2}$$
 in

simples form

Watch Video Solution

58. using properties of determinates, prove that : $\begin{vmatrix} 1 & 1 & 1 \\ a & b & c \\ a^3 & b^3 & c^3 \end{vmatrix} = (a-b)(b-c)(c-a)(a+b+c)$

62. Evaluate
$$\int_0^4 |x-1| dx$$
.

63. Evlauate
$$\int (x+1)\sqrt{2x^2+3}dx$$

Watch Video Solution

64. Solve:
$$x^2 rac{dy}{dx} = x^2 - 2y^2 + xy$$

65.
$$xrac{dy}{dx}+2y=x^2\log x$$

67. Find the equation of the plane through the intersection of the planes 3x - y + 2z - 4 = 0 and x + y + z - 2 = 0 and the point (2, 2, 1).

68. One card is drawn at random from a well shuffled deck of 52 cards. If E is the even "the card drawn is back"." F is the event " the card drawn is King, Are E and F independent ?

Watch Video Solution

69. From a lot of 30 bulbs which include 6 defectives, a sample of 4 bulbs is drawn at random with replacement. Find the probability distribution of the number of defective bulbs.

70. Let E and F be events with
$$P(E)=rac{3}{5}, P(F)=rac{3}{10}$$
 and $P(E\cap F)=rac{1}{5}.$ Are E

and F independent?

71. Solve the following system of linear equations by

matrix

method

:

x-y+2z=7, 3x+4y-5z=-5, 2x-y+3z=12

72. A man height 2 metres walks a uniform speed of 5 km/h away from the lamp post which is m metres high. Find the rate at which the length of his shadow increases

Watch Video Solution

73. Find the equation of the tangent line to the curve $y = x^2 - 2x + 7$, which is parallel to the line 2x - y + 9 = 0.

74. Find the area of smaller region bounded by the ellipse $\frac{x^2}{9} + \frac{y^2}{4} = 1$ and straight line $\frac{x}{3} + \frac{y}{2} = 1$. **Vatch Video Solution**

75. Using integration find the area of regeion bounded

by the triangle whose vertices are (-1,0), (1,3) and (3,2)

76. Find the shortest distance between the lines $\vec{r} = \hat{i} + 2\hat{j} + 3\hat{k}\lambda(\hat{i} - 3\hat{j} + 2\hat{k})$ and $\vec{r} = (4\hat{i} + 5\hat{j} + 6\hat{k}) + \mu(2\hat{i} + 3\hat{j} + \hat{k})$

77. Find the co-ordinates of the point where the line through the points A(3,4,1) and B(5,1,6) crosses the xy-plane.

Watch Video Solution

78. Solve the following linear programming problem graphically:

Maximise Z = 4x+y subject to the constraints : $x+y \leq 50$

 $3x+y\leq 90$

 $x \geq 0, y \geq 0$