

MATHS

BOOKS - OMEGA PUBLICATION

THREE DIMENSIONAL GEOMETRY

Questions

1. If a line has direction ratios $-18,\,12,\,-4$, then what are its direction cosines ?

2. Find the direction cosines of the sides of the triangle whose vertices are (3, 5, -4), (-1, 1, 2) and (-5, -5, -2).

Watch Video Solution

3. A line passes through the point with position vector $2\hat{i} - \hat{j} + 4\hat{k}$ and is in the direction of $\hat{i} + \hat{j} + 2\hat{k}$. Find the equation of line in vector and in cartesian form.

4. Show that the line through the points : (4,7,8), (2,3,4) is parallel to the line through the points (-1,-2,1) and (1,2,5).

Watch Video Solution

5. Find the cartesian equation of the line which passes through the point (- 2, 4, - 5) and parallel to the line given by $\frac{x+3}{3} = \frac{y-4}{5} = \frac{z+8}{6}$

6. The vector equation of the line

7. Find the vector and the cartesian equations of the line that passes through the points (3, -2, -5), (3, -2, 6).

8. Find the angle between the pair of line

$$\overrightarrow{r}=2\hat{i}-5\hat{j}+\hat{k}+\lambda\Big(3\hat{i}+2\hat{j}+6\hat{k}\Big)$$
 and $\overrightarrow{r}=7\hat{i}-6\hat{k}+\mu\Big(\hat{i}+2\hat{j}+2\hat{k}\Big).$

9. Find the angle between the pairs of lines

$$\overrightarrow{r}=3\hat{i}+\hat{j}-2\hat{k}+\lambda\Big(\hat{i}-\hat{j}-2\hat{k}\Big)$$

$$\overrightarrow{r}=2\hat{i}-\hat{j}-56\hat{k}+\mu\Big(3\hat{i}-5\hat{j}-4\hat{k}\Big)$$

10. Find the angle between the pair of lines

$$rac{x+3}{3}=rac{y-1}{5}=rac{z+3}{4}$$
 and $rac{x+1}{1}=rac{y-4}{1}=rac{z-5}{2}$

11. Find the angle between the pair of lines

and

$$rac{x-2}{2} = rac{y-1}{5} = rac{z+3}{-3} = rac{x+2}{-1} = rac{y-4}{8} = rac{z-5}{4}$$

12. Find the angle between the lines $\frac{x}{2} = \frac{y}{2} = \frac{z}{1}$ and $\dfrac{x-5}{4}=\dfrac{y-2}{1}=\dfrac{z-3}{8}$

Watch Video Solution

13. Find the angle between the lines

$$\frac{x+1}{2} = \frac{y}{3} = \frac{z-3}{6}$$
 and the planes

$$3x + y + z = 7.$$

14. The vector equation of two lines are

$$\overrightarrow{r}=\hat{i}+2\hat{j}+\hat{k}+\lambda\Big(\hat{i}-\hat{j}+\hat{k}\Big)$$
 and $\overrightarrow{r}=2\hat{i}-\hat{j}-\hat{k}+\mu\Big(2\hat{i}+\hat{j}+2\hat{k}\Big).$ Find the shortest distance between these lines.

Watch Video Solution

15. Find the shortest distance between the lines

whose vector equations are

$$\overrightarrow{r}=\hat{i}+2\hat{j}+3\hat{k}+\lambdaig(\hat{i}-3\hat{j}+2\hat{k}ig)$$
 and

$$\overrightarrow{r}=4\hat{i}+5\hat{j}+6\hat{k}+\mu\Big(2\hat{i}+3\hat{j}+\hat{k}\Big).$$

16. Find the shortest distance between

following two lines
$$\overrightarrow{r}=(1+2\lambda)\,\hat{i}+(1-\lambda)\hat{j}+\lambda\hat{k}$$

the

17. The vector equation of two lines are

 $\overrightarrow{r}=2\hat{i}+\hat{j}-\hat{k}+\muigl(3\hat{i}-5\hat{j}+2\hat{k}igr).$

$$\overrightarrow{r} = (1-t)\hat{i} + (t-2)\hat{j} + (3-2t)\hat{k}$$
 and

 $\overrightarrow{r} = (s+1)\hat{i} + (2s-1)\hat{j} - (2s-1)\hat{j} - (2s+1)\hat{k}$

Find the shortest distance between these lines.

watch video Solution

18. Find the equation of plane passing through (a,b,c) and parallel to the plane \overrightarrow{r} . $\left(\hat{i}+\hat{j}+\hat{k}
ight)=2$

Watch Video Solution

19. In the following cases, find the co-ordinates of the foot of the perpendicular drawn from the origin: x + y + z = 1

20. In the following case, find the coordinates of the foot of the perpendicular drawn from the origin: 2x + 3y + 4z - 12 = 0

Watch Video Solution

21. Find the length and the foot of the perpendicular from the point P(7,14,5) to the plane 2x+4y-z=2. Also find the image of point P in the plane.

22. Find the vector equation of the line passing through (1, 2, 3) and perpendicular to the plane

$$\overrightarrow{r}\cdot\left(\hat{i}+2\hat{j}-5\hat{k}
ight)+9=0$$

23. Find the shortest distance between the lines

and

$$\left(\frac{x+1}{7} = \frac{y+1}{-6} = \frac{z+1}{1}\right)$$
 $\frac{x-3}{1} = \frac{y-5}{-2} = \frac{z-7}{1}$

24. Find the co-ordinates of the points where the line through the points (3,-4,-5) and (2,-3,1) crosses the plane 2x + y + z = 7

Watch Video Solution

25. Find the vector equation of the plane which is at a distance of 7 units from the origin and which is normal to the vector $3\hat{i}+5\hat{j}-6\hat{k}$.

26. Find the cartesian equation of plane
→ (^ ^ ^)

$$\overrightarrow{r}\cdot\left(\hat{i}+\hat{j}-\hat{k}
ight)=2$$

27. Find the co-ordinates of the foot of the perpendicular drawn from the origin to the plane 5y+8=0.

28. Find the equations of the plane that passes through three points: (1,1,-1), (6,4,-5), (-4,-2,3)

29. Find the equation of the plane passing through the point (1, -1, 2) and perpendicular to the planes 2x + 3y - 2z = 5 and x + 2y - 3z = 8.

30. Find the intercepts cut off by the plane

$$2x + y - z = 5$$

Watch Video Solution

31. Find the vector equation of the plane through intersection of the planes the

$$\overrightarrow{r}\cdot\left(\hat{i}+\hat{j}+\hat{k}
ight)=6$$
 and

$$\overrightarrow{r}\cdot\left(2\hat{i}+3\hat{j}+4\hat{k}
ight)=\ -5$$
 and the point (1,1,1).

32. Find the vector equation of plane passing through the intersection of the planes $\overrightarrow{r}\cdot\left(2\hat{i}+2\hat{j}-3\hat{k}\right)=7$ and $\overrightarrow{r}\cdot\left(2\hat{i}+5\hat{j}+3\hat{k}\right)=9$ and through the point (2,1,3).

33. Find the equation of the plane through the intersection of the planes 3x-y+2z-4=0 and x+y+z-2=0 and the point (2, 2, 1).

34. Find the equation of the plane passing through the line of intersection of the planes

$$2x+y-z=3$$
 and $5x-3y+4z+9=0$ and parallel to the line $\dfrac{x-1}{2}=\dfrac{y-3}{4}=\dfrac{5-z}{-5}$

35. Find the angle between the planes whose vector equations are

$$\overrightarrow{r}\left(2\hat{i}+2\hat{j}-3\hat{k}
ight)=5$$
 and

$$\overrightarrow{r}\cdot\left(3\hat{i}-3\hat{j}+5\hat{k}
ight)=3.$$

watch video Solution

36. Find the vector equation of plane that passes through the point (1,0,-2) and the normal to the plane is $\hat{i}+\hat{j}-\hat{k}$.

Watch Video Solution

37. If a line has direction ratios -18, 12, -4, then what are its direction cosines ?

38. Find the direction cosines of the sides of the triangle whose vertices are (3, 5, -4), (-1, 1, 2) and (-5, -5, -2).

Watch Video Solution

39. A line passes through the point with position vector $2\hat{i}-\hat{j}+4\hat{k}$ and is in the direction of $\hat{i}+\hat{j}+2\hat{k}$. Find the equation of line in vector and in cartesian form.

40. Show that the line through the points : (4,7,8), (2,3,4) is parallel to the line through the points (-1,-2,1) and (1,2,5).

Watch Video Solution

41. Find the cartesian equation of the line which passes through the point (- 2, 4, - 5) and parallel to the line given by $\frac{x+3}{3} = \frac{y-4}{5} = \frac{z+8}{6}$

42. The vector equation of the line

$$\frac{x-5}{3} = \frac{y+4}{7} = \frac{z-6}{2}$$
 is

43. Find the vector and the cartesian equations of the line that passes through the points (3, -2, -5), (3, -2, 6).

44. Find the angle between the pair of lines

$$\overrightarrow{r}=2\hat{i}-5\hat{j}+\hat{k}+\lambda\Big(3\hat{i}+2\hat{j}+6\hat{k}\Big)$$
 and $\overrightarrow{r}=7\hat{i}-6\hat{k}+\widehat{h}\Big(\hat{i}+2\hat{j}+2\hat{k}\Big)$

45. Find the angle between the pairs of lines

$$\overrightarrow{r} = 3\hat{i} + \hat{j} - 2\hat{k} + \lambda \Big(\hat{i} - \hat{j} - 2\hat{k}\Big)$$

$$\overrightarrow{r}=2\hat{i}-\hat{j}-56\hat{k}+\mu\Big(3\hat{i}-5\hat{j}-4\hat{k}\Big)$$

46. Find the angle between the pair of lines

$$rac{x+3}{3}=rac{y-1}{5}=rac{z+3}{4}$$
 and $rac{x+1}{1}=rac{y-4}{1}=rac{z-5}{2}$

47. Find the angle between the pair of lines

$$rac{x-2}{2} = rac{y-1}{5} = rac{z+3}{-3} = rac{x+2}{-1} = rac{y-4}{8} = rac{z-5}{4}$$

and

48. Find the angle between the lines

$$\frac{x}{2} = \frac{y}{2} = \frac{z}{1}$$
 and $\frac{x-5}{4} = \frac{y-2}{1} = \frac{z-3}{8}$

49. Find the angle between the line

$$rac{x+1}{2} = rac{y}{3} = rac{z-3}{6}$$
 and the plane

$$10x + 2y - 11z = 3$$

50. The vector equation of two lines are

$$\overrightarrow{r}=\hat{i}+2\hat{j}+\hat{k}+\lambda\Big(\hat{i}-\hat{j}+\hat{k}\Big)$$
 and $\overrightarrow{r}=2\hat{i}-\hat{j}-\hat{k}+\mu\Big(2\hat{i}+\hat{j}+2\hat{k}\Big).$ Find the shortest distance between these lines.

Watch Video Solution

51. Find the shortest distance between the lines

whose vector equations are

$$\overrightarrow{r}=\hat{i}+2\hat{j}+3\hat{k}+\lambda\Big(\hat{i}-3\hat{j}+2\hat{k}\Big)$$
 and

$$\overrightarrow{r}=4\hat{i}+5\hat{j}+6\hat{k}+\mu\Big(2\hat{i}+3\hat{j}+\hat{k}\Big).$$

52. Find the shortest distance between

following

the

lines

$$egin{aligned} \overrightarrow{r} &= (1+2\lambda)\hat{i} + (1-\lambda)\hat{j} + \lambda\hat{k} \ \overrightarrow{r} &= 2\hat{i} + \hat{j} - \hat{k} + \muigg(3\hat{i} - 5\hat{j} + 2\hat{k}igg). \end{aligned}$$

Watch Video Solution

 $\overrightarrow{r} = (1-t)\hat{i} + (t-2)\hat{j} + (3-2t)\hat{k}$ and

 $\overrightarrow{r} = (s+1)\hat{i} + (2s-1)\hat{j} - (2s-1)\hat{j} - (2s+1)\hat{k}$

Find the shortest distance between these lines.

Match Widoo Colution

watch video Solution

54. Find the equation of plane passing through (a,b,c) and parallel to the plane \overrightarrow{r} . $\left(\hat{i}+\hat{j}+\hat{k}
ight)=2$

Watch Video Solution

55. In the following cases, find the co-ordinates of the foot of the perpendicular drawn from the origin: x + y + z = 1

56. Find the co-ordinates of the foot of perpendicular drawn from the origin to 2x + 3y + 4z - 12 = 0.

57. Find the length and the foot of the perpendicular from the point (7,14,5) to the plane 2x+4y-z=2.

58. Find vector equation of line passing through

(1,2,3) and perpendicular to plane

$$r.\left(\hat{i}+2\hat{j}-5\hat{k}
ight)+9=0$$

View Text Solution

59. Find the shortest distance between the lines

$$rac{x+1}{7} = rac{y+1}{-6} = rac{z+1}{1} \ rac{x-1}{1} = rac{y-5}{-2} = rac{z-7}{1}$$

and

60. Find the co-ordinates of the points where the line through the points (3,-4,-5) and (2,-3,1) crosses the plane 2x + y + z = 7

Watch Video Solution

61. Find the vector equation of the plane which is at a distance of 7 units from the origin and which is normal to the vector $3\hat{i}+5\hat{j}-6\hat{k}$.

62. Find the cartesian equation of plane $\overrightarrow{r}\cdot\left(\hat{i}+\hat{j}-\hat{k}
ight)=2$

63. Find the co-ordinates of the foot of the perpendicular drawn from the origin to the plane 5y+8=0.

64. Find the equations of the plane that passes through three points: (1,1,-1), (6,4,-5), (-4,-2,3)

Watch Video Solution

65. Find the equation of the plane passing through the point (1, -1, 2) and perpendicular to the planes 2x + 3y - 2z = 5 and x + 2y - 3z = 8.

66. Find the intercepts cut off by the plane

$$2x + y - z = 5$$

67. Find the vector equation of the plane through the intersection of the planes

$$\overrightarrow{r}\cdot\left(\hat{i}+\hat{j}+\hat{k}
ight)=6$$
 and

$$\overrightarrow{r}\cdot\left(2\hat{i}+3\hat{j}+4\hat{k}
ight)=\ -5$$
 and the point (1,1,1).

68. Find the equation of the plane through the intersection of the planes

$$\overrightarrow{r}\cdot\left(2\hat{i}+\hat{j}+3\hat{k}
ight)=7$$
 and $\overrightarrow{r}\cdot\left(2\hat{i}+3\hat{j}+3\hat{k}
ight)=9$ and passing through the point (2,1,3).

Watch Video Solution

69. Find the equation of the plane through the intersection of the planes 3x-y+2z-4=0 and x+y+z-2=0 and the point (2, 2, 1).

70. Find the equation of the plane passing through the line of intersection of the planes

2x+y-z=3 and 5x-3y+4z=9 and parallel to the lines $rac{x-1}{2}=rac{y-3}{4}=rac{z-5}{5}$

71. Find the angle between the planes whose vector equations are

$$\overrightarrow{r} \Big(2 \hat{i} + 2 \hat{j} - 3 \hat{k} \Big) = 5$$
 and

$$\overrightarrow{r}\cdot\left(3\hat{i}-3\hat{j}+5\hat{k}
ight)=3.$$

watch video Solution

72. Find the vector equation of plane that passes through the point (1,0,-2) and the normal to the plane is $\hat{i}+\hat{j}-\hat{k}$.

Watch Video Solution

Important Questions From Miscellaneous Exercise

1. If the lines
$$\frac{x-1}{-3}=\frac{y-2}{2k}=\frac{z-3}{2}$$
 and $\frac{x-1}{3k}=\frac{y-1}{1}=\frac{z-6}{-5}$ are perpendicular, find the value of k.

2. A line makes angle $\alpha, \beta, \gamma, \delta$ with the four diagonals of a cube, prove that $\cos^2\alpha + \cos^2\beta + \cos^2\gamma + \cos^2\delta = \frac{4}{3}.$

3. Find the distance of the point (-1,-5,-10) from the point of intersection of the line $\overrightarrow{r}=2\hat{i}-\hat{j}+2\hat{k}+\lambda\Big(3\hat{i}+4\hat{j}+2\hat{k}\Big)$ and the plane $\overrightarrow{r}\cdot\Big(\hat{i}-\hat{j}+\hat{k}\Big)=5$

4. The distance of the point P(-2,3,-4) from the line $\frac{x+2}{3}=\frac{2y+3}{4}=\frac{3z+4}{5}$ measured parallel to the plane 4x+12y-3z+1=0 is d, then find the value of (2d-8), is......

5. Find the equation of the plane passing through the point (-1, 3, 2) and perpendicular to each of

the planes : x+2y+3z=5 and

$$3x + 3y + z = 0.$$

6. Find the vector equation of the line passing through (1,2,3) and parallel to the planes

$$\overrightarrow{r}\cdot\left(\hat{i}-\hat{j}+2\hat{k}
ight)=5$$
 and $\overrightarrow{r}\cdot\left(3\hat{i}+\hat{j}+\hat{k}
ight)=6$.

7. Find the equation of the line passing through the point P(4,6,2) and the point of intersection of the line $\frac{x-1}{3} = \frac{y}{2} = \frac{z+1}{7}$ and the plane x + y - z = 8.

Watch Video Solution

8. If l_1, m_1, n_1 and l_2, m_2, n_2 are the direction cosines of two mutualy perpendicular lines, who that the direction cosines of the line perpendicular to both of these are $< m_1 n_2 - m_2 n_1, n_1 l_2 - n_2 l_1, l_1 m_2 - l_2 m_1 > 0$

9. If the equation of line AB is $\frac{x-3}{1}=\frac{y+2}{-2}=\frac{z-5}{4} \text{, find the direction of a}$

line parallel to AB.

10. Find the equation of the plane determined by the points A(3,-1,2),B(5,2,4) and C(-1,-1,6). Also find the distance of the point P(6,5,9) from the plane.

11. Find the equation of the plane through the intersection of the planes x+y+z=1 and 2x+3y+4z=5 which is perpendicular to the plane x-y+z=0

Watch Video Solution

12. Prove that if a plane has intercepts a,b,c and is at a distance of p units from the origin, then $1 \quad 1 \quad 1 \quad 1$

$$rac{1}{a^2} + rac{1}{b^2} + rac{1}{c^2} = rac{1}{p^2}.$$

13. If the lines $\frac{x-1}{-3}=\frac{y-2}{2k}=\frac{z-3}{2}$ and $\frac{x-1}{3k}=\frac{y-1}{1}=\frac{z-6}{-5}$ are perpendicular, find

the value of k.

14. A line makes angles $\alpha,\beta,\gamma,\delta$ with the diagonals of a cube, prove that $\cos^2\alpha+\cos^2\beta+\cos^2\gamma+\cos^2\delta=\frac{4}{3}$

15. Find the distance of the point (-1, -5, -10) from the point of intersection of the line $\overrightarrow{r}=2\hat{i}-\hat{j}+2\hat{k}+\lambdaig(3\hat{i}+4\hat{j}+2\hat{k}ig)$ and the plane $\overrightarrow{r}\cdot\left(\hat{i}-\hat{j}+\hat{k}
ight)=5$

Watch Video Solution

16. The distance of the point P(-2,3,-4)from the line $\frac{x+2}{3} = \frac{2y+3}{4} = \frac{3z+4}{5}$ measured parallel to the plane 4x+12y-3z+1=0 is d, then find the value of (2d - 8), is......

17. Find the equation of the planes passing through the point (-1,3,2) and perpendicular to each of the planes x+2y+3z=5 and 3x+8y+z=0.

18. Find the vector equation of the line passing through (1,2,3) and parallel to the planes $\overrightarrow{r}\cdot\left(\hat{i}-\hat{j}+2\hat{k}\right)=5$ and $\overrightarrow{r}\cdot\left(3\hat{i}+\hat{j}+\hat{k}\right)=6$.

19. Find the equation of the line passing through the point P(4,6,2) and the point of intersection of the line $\frac{x-1}{3}=\frac{y}{2}=\frac{z+1}{7}$ and the plane x+y-z=8.

Watch Video Solution

20. If l_1, m_1, n_1 and l_2, m_2, n_2 are the direction cosines of two mutualy perpendicular lines, who that the direction cosines of the line

perpendicular to both of these are

$$< m_1 n_2 - m_2 n_1, n_1 l_2 - n_2 l_1, l_1 m_2 - l_2 m_1 >$$

Watch Video Solution

- **21.** If the equation of line AB is $\frac{x-3}{1} = \frac{y+2}{-2} = \frac{z-5}{4}, \text{ find the direction of a}$ line parallel to AB.
 - Watch Video Solution

22. Find the equation of the plane determined by the points A(3,-1,2), B(5,2,4) and C(-1,-1,6) and hence

find the distance between the plane and the point P(6,5,9).

23. Find the equation of the plane through the intersection of the planes x+y+z=1 and 2x + 3y + 4z = 5 which is perpendicular to the plane x-y+z=0

24. Prove that if a plane has intercepts a,b,c and is at a distance of p units from the origin, then

Multiple Choice Questions Mcqs

1. Distance between the two planes:

$$2x + 3y + 4z = 4$$
 and $4x + 6y + 8z = 12$ is:

A. 2 units

B. 4 units

C. 8 units

D.
$$\frac{2}{\sqrt{29}}$$
 units

Answer: D

Watch Video Solution

2. The planes 2x - y + 4z = 5 and

5x - 2.5y + 10z = 6 are :

A. perpendicular

B. parallel

C. intersect y-axis

D. passes through $\left(0, 0, \frac{5}{4}\right)$

Answer: B

Watch Video Solution

3. Two lines which do not lie in the same plane are called

A. parallel

B. coincident

C. Interescting

D. Skew

Answer: D

Watch Video Solution

4. If a line makes angles α, β, γ respectively, positive x-axis, y-axis and z-axis, $\cos^2\alpha + \cos^2\beta + \cos^2\gamma = ?$

A. 2

B. 1

C. 0

D. none of these

Answer: B

Watch Video Solution

5. The equation $x^2+y^2=0$ in three dimension space represents

A. a point

B. empty set

C. z-axis

D. none of these

Answer: C

- **6.** If $\cos \alpha, \, \cos \beta, \, \cos \gamma$ are the direction-cosines of a line, then the value of $\sin^2 \alpha + \sin^2 \beta + \sin^2 \gamma =$
 - **A.** 1
 - B. 2
 - **C.** 3
 - D. -1

Answer: B

Watch Video Solution

7. The planes 2x - 2y + 4z + 5 = 0 and

$$3x-3y+6z-1=0$$
 are

- A. parallel
- B. perpendicular
- C. Intersecting
- D. None of these

Answer: A

8. The planes 2x + y + 3z - 2 = 0 and

$$x-2y+5=0$$
 are

A. parallel

B. perpendicular

C. intersecting

D. none of these

Answer: B

9. In the following determine whether the given planes are parallel or perpendicular and in case they are neither, find the angles between them:

$$2x - y + 3z - 1 = 0$$
 and $2x - y + 3z + 3 = 0$

A. parallel

B. perpendicular

C. intersecting

D. None of these

Answer: A

10. If a line makes angles 90° , 60° and 30° with the positive direction of x,y and z-axis reapectively, then direction cosines are

A.
$$\left(0, \frac{1}{2}, \frac{\sqrt{3}}{2}\right)$$

B.
$$\left(\frac{1}{2}, 0, \frac{\sqrt{3}}{2}\right)$$

$$\mathsf{C.}\left(\frac{\sqrt{3}}{2},\,\frac{1}{2},\,0\right)$$

D. None of these

Answer: A

11. The angle between the two diagonals of cube is

A. 30°

B. 45°

C. 60°

D. None of these

Answer: D

12. The angle between the tines

$$rac{x-5}{2} = rac{y+1}{2} = rac{z-6}{-6}$$
 and $rac{x-5}{3} = rac{y+4}{-4} = rac{z+1}{12}$ is

A.
$$\cos^{-1}\left(\frac{-14}{39}\right)$$

$$B.\cos^{-1}\left(\frac{14}{39}\right)$$

$$\mathsf{C.}\sin^{-1}\!\left(\frac{14}{39}\right)$$

D. None of these

Answer: D

13. If a line makes angle 90° , 135° , 45° with X,Y and Z-axis respectively, then its direction cosines are

A.
$$(0, 0, 0)$$

$$\mathsf{B.}\left(0,\frac{-1}{\sqrt{2}},\frac{1}{\sqrt{2}}\right)$$

$$\mathsf{C.}\left(\frac{1}{\sqrt{2}},\frac{-1}{\sqrt{2}},0\right)$$

D.
$$\left(-\frac{1}{\sqrt{2}}, 0, \frac{1}{\sqrt{2}}\right)$$

Answer: B

14. If a line passing through two points (-2,4,-5)

and (1,2,3) then its direction cosines will be:

A.
$$\left(\frac{3}{\sqrt{77}}, \frac{-2}{\sqrt{77}}, \frac{8}{\sqrt{77}}\right)$$

$$\mathsf{B.}\left(\frac{-2}{\sqrt{77}},\,\frac{3}{\sqrt{77}},\,\frac{8}{\sqrt{77}}\right)$$

$$\mathsf{C.}\left(\frac{3}{\sqrt{77}},\frac{+2}{\sqrt{77}},\frac{8}{\sqrt{77}}\right)$$

D.
$$\left(-\frac{1}{\sqrt{2}},0,\frac{1}{\sqrt{2}}\right)$$

Answer: A

15. Direction casines of z-axis are

- A. (0, 0, 1)
- B. (1, 0, 0)
- C.(0,0,0)
- D.(0,1,0)

Answer: A

16. If a line has direction ratios (2, -1, -2),

then its drection cosines are

A.
$$\left(\frac{2}{3}, -\frac{1}{3}, \frac{-2}{3}\right)$$

B.
$$\left(-\frac{2}{3}, -\frac{1}{2}, \frac{2}{3}\right)$$

$$\mathsf{C.}\left(-\frac{2}{3},\,-\frac{1}{3},\frac{-2}{3}\right)$$

D. None of these

Answer: A

17. Distance between the two planes:

$$2x+3y+4z=4$$
 and $4x+6y+8z=12$ is:

- A. 2 units
- B. 4 units
- C. 8 units

D.
$$\frac{2}{\sqrt{29}}$$
 units

Answer: D

18. The planes 2x - y + 4z = 5 and

$$5x - 2.5y + 10z = 6$$
 are :

A. perpendicular

B. parallel

C. intersect y-axis

D. passes through $\left(0,0,\frac{5}{4}\right)$

Answer: B

19. Two lines which do not lie in the same plane are called

- A. parallel
- B. coincident
- C. Interescting
- D. Skew

Answer: D

20. If a line makes angles α, β, γ respectively, positive x-axis, y-axis and z-axis, $\cos^2\alpha + \cos^2\beta + \cos^2\gamma = ?$

A. 2

B. 1

C. 0

D. none of these

Answer: B

21. The equation $x^2+y^2=0$ in three dimension space represents

- A. a point
- B. empty set
- C. z-axis
- D. none of these

Answer: C

22. If $\cos\alpha,\,\cos\beta,\,\cos\gamma$ are the direction-cosines of a line, then the value of $\sin^2\alpha+\sin^2\beta+\sin^2\gamma=$

A. 1

B. 2

C. 3

D. - 1

Answer: B

23. The planes 2x-2y+4z+5=0 and

3x - 3y + 6z - 1 = 0 are

A. parallel

B. perpendicular

C. Intersecting

D. None of these

Answer: A

24. The planes 2x + y + 3z - 2 = 0 and

x-2y+5=0 are

A. parallel

B. perpendicular

C. intersecting

D. none of these

Answer: B

25. The planes 2x-y+3z-1=0 and

2x - y + 3z + 3 = 0 are

A. parallel

B. perpendicular

C. intersecting

D. None of these

Answer: A

26. If a line makes angles 90° , 60° and 30° with the positive direction of x,y and z-axis reapectively, then direction cosines are

A.
$$\left(0, \frac{1}{2}, \frac{\sqrt{3}}{2}\right)$$

$$\mathsf{B.}\left(\frac{1}{2},0,\frac{\sqrt{3}}{2}\right)$$

$$\mathsf{C.}\left(\frac{\sqrt{3}}{2},\,\frac{1}{2},\,0\right)$$

D. None of these

Answer: A

27. The angle between the two diagonals of cube is

- A. 30°
- B. 45°
- C. 60°
- D. None of these

Answer: D

28. The angle between the tines

$$rac{x-5}{2} = rac{y+1}{2} = rac{z-6}{-6}$$
 and $rac{x-5}{3} = rac{y+4}{-4} = rac{z+1}{12}$ is

A.
$$\cos^{-1}\left(\frac{-14}{39}\right)$$

$$B.\cos^{-1}\left(\frac{14}{39}\right)$$

$$\mathsf{C.}\sin^{-1}\!\left(\frac{14}{39}\right)$$

D. None of these

Answer: D

29. If a line makes angle 90° , 135° , 45° with X,Y and Z-axis respectively, then its direction cosines are

A.
$$(0, 0, 0)$$

$$\mathsf{B.}\left(0,\frac{-1}{\sqrt{2}},\frac{1}{\sqrt{2}}\right)$$

$$\mathsf{C.}\left(\frac{1}{\sqrt{2}},\frac{-1}{\sqrt{2}},0\right)$$

D.
$$\left(-\frac{1}{\sqrt{2}}, 0, \frac{1}{\sqrt{2}}\right)$$

Answer: B

30. If a line passing through two points (-2,4,-5)

and (1,2,3) then its direction cosines will be:

A.
$$\left(rac{3}{\sqrt{77}},rac{-2}{\sqrt{77}},rac{8}{\sqrt{77}}
ight)$$

$$\mathsf{B.}\left(\frac{-2}{\sqrt{77}},\,\frac{3}{\sqrt{77}},\,\frac{8}{\sqrt{77}}\right)$$

$$\mathsf{C.}\left(\frac{3}{\sqrt{77}},\frac{+2}{\sqrt{77}},\frac{8}{\sqrt{77}}\right)$$

D.
$$\left(-\frac{1}{\sqrt{2}}, 0, \frac{1}{\sqrt{2}}\right)$$

Answer: A

31. Direction casines of z-axis are

A. (0, 0, 1)

B.(1,0,0)

C.(0,0,0)

D.(0,1,0)

Answer: A

32. If a line has direction ratios (2, -1, -2),

then its drection cosines are

A.
$$\left(\frac{2}{3}, -\frac{1}{3}, \frac{-2}{3}\right)$$

$$\mathsf{B.}\left(\,-\,\frac{2}{3},\,-\,\frac{1}{2},\,\frac{2}{3}\right)$$

$$\mathsf{C.}\left(-\frac{2}{3},\,-\frac{1}{3},\frac{-2}{3}\right)$$

D. None of these

Answer: A

