

MATHS

BOOKS - OMEGA PUBLICATION

VECTOR ALGEBRA

3. Find the unit vector in the direction of vector \overrightarrow{PQ} , where P and Q are the points (1,2,3) and (4,5,6) respectively.

respectively form the vertices of a right angled triangle.

Watch Video Solution

5. Show that the vector $\overrightarrow{i}+\overrightarrow{j}+\overrightarrow{k}$ is equally inclined to the axes OX,

OY and OZ.

6. Find the position vector of a point R which divides the line joining two points P and Q whose position vectors are $\hat{i} + 2\hat{j} - \hat{k}$ and $-\hat{i} + \hat{j} + \hat{k}$ respectively, in the ratio 2: 1 internally

10. Find
$$\left|\overrightarrow{a} - \overrightarrow{b}\right|$$
, if two vectors \overrightarrow{a} and \overrightarrow{b} are such that $\left|\overrightarrow{a}\right| = 2$, $\left|\overrightarrow{b}\right| = 3$ and $\overrightarrow{a} \cdot \overrightarrow{b} = 4$.

Watch Video Solution

11. Find
$$\left|\overrightarrow{a}\right|$$
 and $\left|\overrightarrow{b}\right|$, if $\left(\overrightarrow{a}+\overrightarrow{b}\right)\cdot\left(\overrightarrow{a}-\overrightarrow{b}\right)=8$ and $\left|\overrightarrow{a}\right|=8\left|\overrightarrow{b}\right|$.

Watch Video Solution

12. If
$$\overrightarrow{p}$$
 is a unit vcetor and $\left(\overrightarrow{x} - \overrightarrow{p}\right) \cdot \left(\overrightarrow{x} + \overrightarrow{p}\right) = 80$, then find $\left|\overrightarrow{x}\right|$.

Watch Video Solution

13. Find the magnitude of two vectors \overrightarrow{a} and \overrightarrow{b} , having the same magnitude and such that the angle between them is 60^o and their scalar

product is
$$\frac{1}{2}$$
.

14. If
$$\overrightarrow{a} = 2\hat{i} + 2\hat{j} + 3\hat{k}$$
, $\overrightarrow{b} = -\hat{i} + 2\hat{j} + \hat{k}$ and $\overrightarrow{c} = 3\hat{i} + \hat{j}$ are such that $\overrightarrow{a} + \lambda \overrightarrow{b}$ is perpendicular to \overrightarrow{c} , then find the value of λ .

Watch Video Solution

15. If $\overrightarrow{a} \cdot \overrightarrow{a} = 0$ and $\overrightarrow{a} \cdot \overrightarrow{b} = 0$, then what can be concluded about the vector \overrightarrow{b} ?

Watch Video Solution

16. Three vectors $\overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c}$ satisfy the condition $\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c} = \overrightarrow{0}$ Evaluate the quantity $\mu = \overrightarrow{a} \cdot \overrightarrow{b} + \overrightarrow{b} \cdot \overrightarrow{c} + \overrightarrow{c} \cdot \overrightarrow{a}$ if $\left|\overrightarrow{a}\right| = 3, \left|\overrightarrow{b}\right| = 4, \left|\overrightarrow{c}\right| = 2$

17. If \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} are unit vectors such that $\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c} = \overrightarrow{0}$, then the value of \overrightarrow{a} . $\overrightarrow{b} + \overrightarrow{b}$. $\overrightarrow{c} + \overrightarrow{c}$. \overrightarrow{a} is

Watch Video Solution

18. If either vector $\overrightarrow{a} = \overrightarrow{0}$ or $\overrightarrow{b} = \overrightarrow{0}$, then $\overrightarrow{a} \cdot \overrightarrow{b} = \overrightarrow{0}$. But the

converse need not be true. Justify your answer with an example.

Watch Video Solution

19. If the vertices A, B, C of a triangle ABC are (1,2,3), (-1,0,0), (0,1,2)

respectively, then find $\angle ABC$ [$\angle ABC$ is the angle between the vectors \longrightarrow \longrightarrow

 \overrightarrow{BA} and \overrightarrow{BC}]

20. Let \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} be three vectors such that $\left|\overrightarrow{a}\right| = 3$, $\left|\overrightarrow{b}\right| = 4$, $\left|\overrightarrow{c}\right| = 5$ and each one of them being perpendicular to the sum of the other two, find $\left|\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c}\right|$

Watch Video Solution

21. Show that the points A(1,2,7), B(2,6,3) and C(3,10,-1) are collinear.

Watch Video Solution

22. If
$$|\overrightarrow{a}| = \sqrt{3}$$
, $|\overrightarrow{b}| = 2$ and angle between \overrightarrow{a} and \overrightarrow{b} is 60° . find \overrightarrow{a} . \overrightarrow{b}

Watch Video Solution

23. Find the area of the triangle with vertices A(1, 12), B(2, 3, 5), C(1, 5, 5)

24. Find a unit vector perpendicular to each of the vector $\vec{a} + \vec{b}$ and $\vec{a} - \vec{b}$, where $\vec{a} = 3\hat{i} + 2\hat{j} + 2\hat{k}$ and $\vec{b} = \hat{i} + 2\hat{j} - 2\hat{k}$

Watch Video Solution

25. Prove that
$$(\overrightarrow{a} + \overrightarrow{b}) \cdot (\overrightarrow{a} + \overrightarrow{b}) = |\overrightarrow{a}|^2 + |\overrightarrow{b}|^2$$
, if and only if $\overrightarrow{a}, \overrightarrow{b}$ are perpendicular, given $\overrightarrow{a} \neq \overrightarrow{0}, \overrightarrow{b} \neq \overrightarrow{0}$.

Watch Video Solution

26. If a unit vector \overrightarrow{a} , makes angles $\frac{\pi}{3}$ with \hat{i} , $\frac{\pi}{4}$ wih \hat{j} and an acute angle θ with \hat{k} , then find θ and hence, the components of \overrightarrow{a} .

27. Find the area of the parallelogram whose adjacent sides are determined by the vectors $\overrightarrow{a} = \overrightarrow{i} - \overrightarrow{j} + 3\overrightarrow{k}$ and $\overrightarrow{b} = 2\overrightarrow{i} - 7\overrightarrow{j} + \overrightarrow{k}$

Watch Video Solution

28. The scalar product of the vector $\hat{i} + \hat{j} + \hat{k}$ with a unit vector along the sum of vectors $2\hat{i} + 4\hat{j} - 5\hat{k}$ and $\lambda\hat{i} + 2\hat{j} + 3\hat{k}$ is equal to one. Find the value of λ .

Watch Video Solution

29. Find
$$\left|\overrightarrow{x}\right|$$
, if for a unit vector \overrightarrow{a} , $\left(\overrightarrow{x} - \overrightarrow{a}\right) \cdot \left(\overrightarrow{x} + \overrightarrow{a}\right) = 12$

Watch Video Solution

30. Find
$$\left| \overrightarrow{a} \overrightarrow{b} \overrightarrow{c} \right|$$

 $\overrightarrow{a} = \hat{i} - 2\hat{j} + 3\hat{k}, \overrightarrow{b} = 2\hat{i} - 3\hat{j} + \hat{k}, \overrightarrow{c} = 3\hat{i} + \hat{j} - 2\hat{k}$

if

31. Find λ , if the vector $\overrightarrow{a} = \hat{i} - \hat{j} + \hat{k}$, $\overrightarrow{b} = 3\hat{i} + \hat{j} + 2\hat{k}$ and $\overrightarrow{c} = \hat{i} + \lambda\hat{j} - 3\hat{k}$ are coplanar.

Watch Video Solution

32. Let $\overrightarrow{a} = \hat{i} + \hat{j} + \hat{k}$, $\overrightarrow{b} = \hat{i}$ and $\overrightarrow{c} = c_1\hat{i} + c_2\hat{j} + c_3\hat{k}$. Then : if $c_1 = 1$ and $c_2 = 2$ find c_3 which makes \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} coplanar.

Watch Video Solution

33. Show that the four points with position vectors $4\hat{i} + 8\hat{j} + 12\hat{k}, 2\hat{i} + 4\hat{j} + 6\hat{k}, 3\hat{i} + 5\hat{j} + 4\hat{k}$ and $5\hat{i} + 8\hat{j} + 5\hat{k}$ are coplanar.

34. Find 'x' such that the four points : A(3,2,1),B(4,x,5),C(4,2,-2) and D(6,5,-1) are coplanar.

Important Question From Miscellaneous Exercise

1. Write down a unit vector in XY-plane, making an angle of 30° with the positive direction of x-axis.

2. A girl walks 4 km towards west, then she walks 3 km in a direction 30° east of north and stops. Determine the girl's displacement from her initial point of departure.

```
Watch Video Solution
```

3. If $\hat{i} + \hat{j} + \hat{k}$, $2\hat{i} + 5\hat{j}$, $3\hat{i} + 2\hat{j} - 3\hat{k}$ and $\hat{i} - 6\hat{j} - \hat{k}$ are the position vectors of points A, B, C and D respectively, then find the angle between AB and CD. Deduce that AB and CD are collinear.

Watch Video Solution

4. Find a vector of magnitude 5 units, and parallel to the resultant of the vectors $\vec{a} = 2\hat{i} + 3\hat{j} - \hat{k}$ and $\vec{b} = \hat{i} - 2\hat{j} + \hat{k}$

5. The two adjacent sides of a parallelogram are $2\hat{i} - 4\hat{j} + 5\hat{k}$ and $\hat{i} - 2\hat{j} - 3\hat{k}$. Find the unit vector Parallel to its diagonal. Also, find its area.

6. Let
$$\overrightarrow{a} = \hat{i} + 4\hat{j} + 2\hat{k}$$
, $\overrightarrow{b} = 3\hat{i} - 2\hat{j} + 7\hat{k}$ and $\overrightarrow{c} = 2\hat{i} - \hat{j} + 4\hat{k}$.
Find a vector \overrightarrow{p} which is perpendicular to both \overrightarrow{a} and \overrightarrow{b} and $\overrightarrow{p} \cdot \overrightarrow{c} = 18$.

Watch Video Solution

7. Find the vector in the direction of the vector $\hat{i} - 2\hat{j}$ that has magnitude 7 units.

8. Show that the direction cosines of a vector equally inclined to the axes

OX, OY and OZ are
$$\left(\frac{1}{\sqrt{3}}\right), \left(\frac{1}{\sqrt{3}}\right), \left(\frac{1}{\sqrt{3}}\right)$$

Watch Video Solution

9. Find the value of '
$$p$$
' is : $\left(2\hat{i}+6\hat{j}+27\hat{k}
ight) imes\left(\hat{i}+3\hat{j}+p\hat{k}
ight)=\overrightarrow{0}.$

Watch Video Solution

10. Show that the vectors
$$\vec{a} = \hat{i} - 2\hat{j} + 3\hat{k}, \vec{b} = -2\hat{i} + 3\hat{j} - 4\hat{k}$$
 and $\vec{c} = \hat{i} - 3\hat{j} + 5\hat{k}$ are

coplanar.

Multiple Choice Questions Mcqs

1. Prove that in any triangle ABC, c = a cos(360-B) + b cos(360-A)

2. If \overrightarrow{a} and \overrightarrow{b} are two collinear vectors, then which of the following is incorrect ?

A. $\overrightarrow{b}=\lambda\overrightarrow{a}$, for some scalar λ

 $\mathsf{B}.\,\overrightarrow{a}\,=\,\pm\,\overrightarrow{b}$

C. the respective com ponerits of \overrightarrow{a} and \overrightarrow{b} proportional

D. both the vectors \overrightarrow{a} and \overrightarrow{b} have same direction but different

magnitudes.

Answer: D

3. If a is a non-zero vector of magnitude V a is a non-zero scalar, then X am is unit vector.

A. $\lambda = 1$ B. $\lambda = -1$ C. $a = |\lambda|$ D. $a = rac{1}{|\lambda|}$

Answer: D

4. Let the vectors
$$\overrightarrow{a}$$
 and \overrightarrow{b} be such that $\left|\overrightarrow{a}\right| = 3$ and $\left|\overrightarrow{b}\right| = \frac{\sqrt{2}}{3}$, then $\overrightarrow{a} \times \overrightarrow{b}$ is a unit vector if the angle between \overrightarrow{a} and \overrightarrow{b} is :

A.
$$\frac{\pi}{6}$$

B. $\frac{\pi}{4}$
C. $\frac{\pi}{3}$

D.
$$\frac{\pi}{2}$$

Answer: B

Watch Video Solution

5. Area of a rectangle having vertices :

$$A\left(-\hat{i}+\frac{1}{2}\hat{j}+4\hat{k}\right), B\left(\hat{i}+\frac{1}{2}\hat{j}+4\hat{k}\right), C\left(\hat{i}-\frac{1}{2}\hat{j}+4\hat{k}\right), D\left(-\hat{i}-\frac{1}{2}\hat{j}+4\hat{k}\right), D\left(-\hat{i}-\frac{1}{2}\hat{j}+4\hat{k}\right)$$
is :

A.
$$\frac{1}{2}$$

- B. 1
- C. 2

D. 4

Answer: C

6. If θ is the angle between two vectors \overrightarrow{a} and \overrightarrow{b} , then $\overrightarrow{a} \cdot \overrightarrow{b} \ge 0$ only when:

A. $0 < \theta < rac{\pi}{2}$ B. $0 \le \theta \le rac{\pi}{2}$ C. $heta = rac{\pi}{2}$ D. $heta = rac{2\pi}{3}$

Answer: B

Watch Video Solution

7. Let \overrightarrow{a} and \overrightarrow{b} be two unit vectors and θ is the angle between them. Then $\overrightarrow{a} + \overrightarrow{b}$ is a unit vector if :

A. $heta = rac{\pi}{4}$ B. $heta = rac{\pi}{3}$ C. $heta = rac{\pi}{2}$

$$\mathsf{D}.\,\theta=\frac{2\pi}{3}$$

Answer: D

Watch Video Solution

8. If $(\hat{i}, \hat{j}, \hat{k})$ are the usual three perpendicular unit vectors, then the value of : $\hat{i} \cdot (\hat{j} \times \hat{k}) + \hat{j} \cdot (\hat{i} \times \hat{k}) + \hat{k} \cdot (\hat{i} \times \hat{j})$ is :

A. 0

B. - 1

C. 1

D. 3

Answer: C

9. Using vectors, find the area of the triangle having vertices A (1, 1, 1), B (1,

2, 3) and C (2, 3, 1).

A. 21 square unit

B.
$$\frac{1}{2}\sqrt{21}$$
 square unit

C. $\sqrt{21}$ sqaure unit

D.
$$rac{21}{2}$$
 square unit

Answer: B

Watch Video Solution

10. the angle between vectors
$$\overrightarrow{a} \times \overrightarrow{b}$$
 and $\overrightarrow{b} \times \overrightarrow{a}$ is

A. 180°

B. 90°

C. 45°

D. None of these

Answer: A

11. Show that the area of the parallelogram with diagonals \overrightarrow{a} and \overrightarrow{b} , is

- $\frac{1}{2} \begin{vmatrix} \overrightarrow{a} \times \overrightarrow{b} \end{vmatrix}.$ A. $\begin{vmatrix} \overrightarrow{a} \times \overrightarrow{b} \end{vmatrix}$ B. $\frac{1}{2} \begin{vmatrix} \overrightarrow{a} \times \overrightarrow{b} \end{vmatrix}$
 - $\mathsf{C}.\,\frac{1}{3} \bigg| \stackrel{\rightarrow}{a} \times \stackrel{\rightarrow}{b} \bigg|$
 - D. None of these

Answer: B

12. The area of triangle having adjacent sides \overrightarrow{a} and \overrightarrow{b} is :

A.
$$\frac{1}{2} \left| \overrightarrow{a} \times \overrightarrow{b} \right|$$

B. $\left| \overrightarrow{a} \times \overrightarrow{b} \right|$
C. $\frac{1}{2} \left| \overrightarrow{a} \cdot \overrightarrow{b} \right|$

D. None of these

Answer: A

Watch Video Solution

13. The value of :
$$\hat{i} \cdot \left(\hat{j} imes \hat{k}
ight) + \hat{j} \cdot \left(\hat{i} imes \hat{k}
ight) + \hat{k} \cdot \left(\hat{i} imes \hat{j}
ight)$$
 is :

A. 0

 $\mathsf{B.}-1$

C. 1

D. 3

Answer: A

14. If θ is the angle between two vectors \overrightarrow{a} and \overrightarrow{b} , then $\left|\overrightarrow{a} \cdot \overrightarrow{b}\right| = \left|\overrightarrow{a} \times \overrightarrow{b}\right|$ when θ is equal to :

B.
$$\frac{\pi}{4}$$

C. $\frac{\pi}{2}$

D. π

Answer: B

15. If
$$\overrightarrow{a} \cdot \overrightarrow{b} = -|\overrightarrow{a}||\overrightarrow{b}|$$
, then $\theta =$
A. 0
B. $\frac{\pi}{2}$

C.
$$\frac{\pi}{4}$$

Answer: D

Watch Video Solution

16. The projection of the vector $\overrightarrow{a}=2\hat{i}+3\hat{j}+2\hat{k}$ on the vector $\overrightarrow{b}=\hat{i}+2\hat{j}+\hat{k}$ is :

A.
$$\frac{10}{\sqrt{6}}$$

B.
$$-\frac{10}{\sqrt{6}}$$

C.
$$\frac{5}{\sqrt{6}}$$

D.
$$-\frac{5}{\sqrt{6}}$$

Answer: A

17. The product of \overrightarrow{a} . \overrightarrow{b} equals to:

A. \overrightarrow{b} . \overrightarrow{a} B. \overrightarrow{b} . \overrightarrow{a}

C. 0

D. None of these

Answer: B

18. The product of
$$\overrightarrow{a}$$
. \overrightarrow{b} equals to:

A.
$$\overrightarrow{a}^{2}$$

B. $\left|\overrightarrow{a}\right|$
C. $\left|\overrightarrow{a}^{2}\right|$
D. $\left|\overrightarrow{a}\right|^{2}$

Answer: D

19. The vectors a and b are perpendicular, if

- A. \overrightarrow{a} . $\overrightarrow{b} = 0$ B. $\overrightarrow{a} \times \overrightarrow{b} = 0$ C. \overrightarrow{a} . $\overrightarrow{b} = 0$
- D. None of these

Answer: C

View Text Solution

20. If $\overrightarrow{a} \times \overrightarrow{b} = \left| \overrightarrow{a} \right| \left| \overrightarrow{b} \right| \sin \theta \widehat{n}$ which one is correct

A. \widehat{n} is unit vector \perp to both $\stackrel{
ightarrow}{a}$ and $\stackrel{
ightarrow}{b}$

B. \widehat{n} is a unit vector \parallel to both \overrightarrow{a} and \overrightarrow{b}

C. \widehat{n} is unit vector \perp nor \parallel to \overrightarrow{a} and \overrightarrow{b}

D. None of these

Answer: A

View Text Solution

21. Find the angle between two vectors \overrightarrow{a} and \overrightarrow{b} with magnitudes 1 and 2 respectively and when $\overrightarrow{a} \cdot \overrightarrow{b} = 1$.

D. None

Answer: A

22. Find the angle between the vectors : $\overrightarrow{a} = \hat{i} + \hat{j} - \hat{k}$ and $\overrightarrow{b} = \hat{i} - \hat{j} + \hat{k}$.

A.
$$\cos^{-1}\left(\frac{1}{3}\right)$$

B. $\sin^{-1}\left(\frac{1}{3}\right)$
C. $\sin^{-1}\left(-\frac{1}{3}\right)$
D. $\cos^{-1}\left(-\frac{1}{3}\right)$

Answer: A

23. Find the area of parallelogram whose adjacent sides are given by the

vectors :
$$\overrightarrow{a} = 3\hat{i} + \hat{j} + 4\hat{k}$$
 and $\overrightarrow{b} = \hat{i} - \hat{j} + \hat{k}.$

A.
$$rac{1}{2}\sqrt{42}$$
 sq. unit

B. 42 sq. unit

C. $\sqrt{42}$ sq. unit

D. $\sqrt{21}$ sq. unit

Answer: A