©゙"doubtnut

India's Number 1 Education App

CHEMISTRY

BOOKS - BETTER CHOICE PUBLICATION

ALTERNATING CURRENTS

Very Short Answertype Questions

1. Define power factor. Write its value for pure inductor.
2. What do you mean by wattless current?

D Watch Video Solution

3. Why high frequency current can pass easily
through a capacitor ?

D View Text Solution
4. Why high frequency ac can not pass easily through an inductor?

D View Text Solution
5. What do you mean by impedance of a circuit?
(Watch Video Solution
6. Define root mean square value of an alternating current.

- Watch Video Solution

7. What is the relationship between m and nm
?

- Watch Video Solution

8. What do you mean by power factor of an ac circuit?

D View Text Solution

9. The variation of inductive reactance $\left(X_{L}\right)$ of an inductor with the frequency of the ac sources of 100 V and variable frequency is shown in the figure.

Calculate the self inductance of the inductor.

10. Define capacitance of a capacitor?

D Watch Video Solution

11. What is an idle current ?

D View Text Solution
12. What is the impedance of circuit at resonance ?
13. Define resonant frequency of LCR Series

Circuit.

D View Text Solution

Short Answertype Questions

1. Discuss the behaviour of a capacitor in (i) DC
(ii) high frequency ac circuits:

2. Discuss the behaviour of an inductor in

(i) $D C$ (ii) high frequency $A C$ circuits.

D View Text Solution

3. Can a.c. be used for electrolysis? Why?

D Watch Video Solution
4. Can one have an inductance without a resistance ? How about a resistance with an inductance?

D View Text Solution

5. Which is more dangerous in use : ac or d.c. ?

Explain why?.

D View Text Solution
6. The frequency of a.c. is doubled, what happens to
inductive reactance?

D Watch Video Solution

7. Does the capacitance of a capacitor depend upon its shape?

D Watch Video Solution
8. The variation of inductive reactance $\left(X_{L}\right)$ of
an inductor with the frequency of the ac sources of 100 V and variable frequency is shown in the figure.

Calculate the self inductance of the inductor.

- Watch Video Solution

9. An alternate e.m.f. is applied to pure capacitance. Investigate the phase
relationship between the current flowing through it and e.m.f. applied.

D Watch Video Solution
10. Derive the relation between eV and J .

- Watch Video Solution

11. An alternate e.m.f. is applied to pure capacitance. Investigate the phase
relationship between the current flowing through it and e.m.f. applied.

D Watch Video Solution

12. Find a phase relation between current and voltage in an a.c. circuit containing a pure inductor. Why high frequency current can not passthrough a pure inductor easily?
13. Show mathematically that in an a.c. circuit containing only inductance, the current lags
behind the e.m.f. by a phase of $\frac{\pi}{2}$.
An a.c. voltage $E=E_{0} \sin \omega t$ is applied across
an inductor L. Obtain an expression for current I .

- Watch Video Solution

14. An alternate e.m.f. is applied to pure capacitance. Investigate the phase
relationship between the current flowing through it and e.m.f. applied.

D Watch Video Solution

15. Finda phase relation between current and voltage in an a.c. circuit containing a pure capacitance. A pure capacitor blocks directcurrent, why?
16. What do you mean by the average value of a.c. ? Derive the expression for it.

D Watch Video Solution
17. Derive the relation for mean value of alternating current.

- Watch Video Solution

18. Define root mean square value of an alternating current.

D Watch Video Solution
19. What is root mean square value of alternating current? Derive a relation between peak value and virtual value of alternating current.

20. What is an ideal inductor?

- Watch Video Solution

21. What is meant by mean or average value of alternating current ? Show that mean value of ac over a complete cycle is zero.
22. Define impedance of an electric circuit. How it differs from ohmic resistance ? Find an expression for the impedance of an a.c. circuit containing L-C-R in series.

- Watch Video Solution

23. Derive an expression for impedance of an
a.c. circuit with an induct L, capacitor C and a resistor R in series. What is condition of resonance?
24. With the help of phasor diagram derive an expression for impedance in LCR circuit.

D Watch Video Solution

25. Derive an expression for average power is an A.C. circuit containing resistor only.
26. Derive an expression for average power of an AC (alternating current) circuit.

- Watch Video Solution

27. What is meant by mean or average value of alternating current ? Show that mean value of ac over a complete cycle is zero.

D Watch Video Solution

1. Derive an expression for average power is an
A.C. circuit containing resistor only.

- Watch Video Solution

2. Derive an expression for average power is an
A.C. circuit containing resistor only.

D Watch Video Solution

3. Derive an expression for average power is an
A.C. circuit containing resistor only.

D Watch Video Solution

4. What is meant by mean or average value of alternating current ? Show that mean value of ac over a complete cycle is zero.

D Watch Video Solution

5. Define root mean square value of an alternating current.

- Watch Video Solution

6. Derive an expression for average power is an
A.C. circuit containing resistor only.

D Watch Video Solution
7. What is the difference between resistance and resistor?

- Watch Video Solution

8. Find the expression for mass of earth.

D Watch Video Solution

9. Using phasor diagram, derive an expression
for the impedance of an a.c. circuit containing series. What do you mean by resonance?

D View Text Solution

10. Define resonant frequency of LCR series circuit.

- Watch Video Solution

11. Define impedance of an electric circuit. How
it differs from ohmic resistance ? Find an
expression for the impedance of an a.c. circuit containing L-C-R in series.

D Watch Video Solution

12. Find a phase relation between current and voltage in an a.c. circuit containing a pure inductor. Why high frequency current can not passthrough a pure inductor easily ?

- Watch Video Solution

13. Finda phase relation between current and voltage in an a.c. circuit containing a pure capacitance. A pure capacitor blocks directcurrent, why?

- Watch Video Solution

14. What is meant by mean or average value of alternating current ? Show that mean value of ac over a complete cycle is zero.

Numericals Problems

1. What is the unit of frequency?

- Watch Video Solution

2. A 44 mH inductor is connected to $220 \mathrm{~V}, 50$ Hz ac supply. Determine the rms value of the current in the circuit.
3. A capacitor of $100 \mu F$, a resistor of 20Ω and
an inductor of inductance L are connected in
series with an a.c. source of frequency 50 Hz .
Calculate the value of inductance L of the inductor, if phase angle between current and voltage is zero.

- Watch Video Solution

4. A coil of inductance 0.50 H and resistance
100Ω is connected to a $240 \mathrm{~V}, 50 \mathrm{~Hz}$ ac supply.

What is the maximum current in the coil?

- Watch Video Solution

5. A coil of inductance 0.50 H and resistance
100Ω is connected to a $240 \mathrm{~V}, 50 \mathrm{~Hz}$ ac supply.

What is the maximum current in the coil?

- Watch Video Solution

6. A coil of inductance 0.50 H and resistance
100Ω is connected to a $240 \mathrm{~V}, 50 \mathrm{~Hz}$ ac supply.

What is the maximum current in the coil?

- Watch Video Solution

7. The instantaneous current from a.c. source
is given by $\mathrm{I}=5 \sin 314 \mathrm{t}$. What is the peak value of current?

- Watch Video Solution

8. The instantaneous current from a.c. source
is given by $\mathrm{I}=5 \sin 314 \mathrm{t}$. What is the peak value

of current?

- Watch Video Solution

9. What is the impedance of a circuit ?

D Watch Video Solution

10. A 40Ω resistor, 3 m H inductor and $2 \mu F$
capacitor are connected in series to $110 \mathrm{~V}, 5000$

Hz AC source.Calculate Impedenceof the circuit and value of current in the circuit.

- Watch Video Solution

11. A 40Ω resistor, 3 m H inductor and $2 \mu F$ capacitor are connected in series to $110 \mathrm{~V}, 5000$ Hz AC source.Calculate Impedenceof the circuit and value of current in the circuit.

- Watch Video Solution

12. When an inductor L and a resistor R in
series are connected across a $12 \mathrm{~V}, 50 \mathrm{~Hz}$ supply
of current of 0.5 A flows in a circuit. The current differs in phase from applied voltage to $\frac{\pi}{3}$ radins calculate the value of R.

D Watch Video Solution

13. A 12 V resistance and an inductance of
0.05

Hare connected in series. Across the end π
of this circuit an alternating voltage of 130 V
and frequency 50 Hz is connected. Calculate
the current in the circuit and the potential differnece across the inductance.

Watch Video Solution

14. Obtain an expression for the power in a.c. circuit containing a resistance and capacitance in series.

- Watch Video Solution

15. A capacitor of $100 \mu F$, a resistor of 20Ω and an inductor of inductance L are connected in series with an a.c. source of frequency 50 Hz .

Calculate the value of inductance L of the
inductor, if phase angle between current and voltage is zero.

D Watch Video Solution

16. An a.c. source of $200 \mathrm{~V}, 50 \mathrm{~Hz}$ is connected across a 400Ω resistor and capacitor of 25 pF
in series. Calculate reactance

D Watch Video Solution
17. An a.c. source of $200 \mathrm{~V}, 50 \mathrm{~Hz}$ is connected across a 400Ω resistor and capacitor of 25 pF in series. Calculate reactance

D Watch Video Solution

18. A capacitor of $100 \mu F$, a resistor of 20Ω and
an inductor of inductance L are connected in
series with an a.c. source of frequency 50 Hz .

Calculate the value of inductance L of the
inductor, if phase angle between current and voltage is zero.

D Watch Video Solution

19. A series circuit with $L=0.12 \mathrm{H}, \mathrm{C}=0.48 \mathrm{mF}$ and $R=25$ ohm, is connected to a 220 V variable frequency power supply. At what frequency is the circuit current maximum ?
20. A capacitor of unknown value and an inductor of 0.1 H and a resistor of 10Ω are connectedin series to a $220 \mathrm{~V}, 50 \mathrm{~Hz}$ ac source.

It is foundthat the power factor of circuit is unity.Calculate the capacitance of capacitor and maximum amplitude of current

- Watch Video Solution

Most Expected Questions

1. What is a measure?

D Watch Video Solution

2. In a series LCR circuit, $V_{L}=V_{C}=V_{R}$ what is the value of power factor?

- Watch Video Solution

3. Why do d.c. voltmeter and d.c. ammeter cannot read a.c.?

- Watch Video Solution

4. Phase difference between voltage and current in a.c. circuit having resistor only is:

- Watch Video Solution

5. Why do d.c. voltmeter and d.c. ammeter cannot read a.c.?

6. Peak value of an a.c. source is E_{0}. What is its

 r.m.s. value?
- Watch Video Solution

7. The division marked on the scale of an a.c. ammeter is not equally spaced. Why?

- Watch Video Solution

8. What do you mean by cladding?
9. An air coil solenoid is connected to an a.c.
sources and a bulb. If an iron core is insernted
in the solenoid, how does the brightness of the bulb change? Give reason for your answer.

D Watch Video Solution

10. A lamp is connected in series with a capacitor. What will happen if d.c.or a.c. is connected to current?
11. Which of the best method of reducing current in an a.c. circuit and why?

- Watch Video Solution

