©゙doubtnut

CHEMISTRY

BOOKS - BETTER CHOICE PUBLICATION

CHEMICAL KINETICS

Question Bank

1. Express the instantenus rate of the reaction
'N_2(g) + 3H_2(g) rarr 2NH_3(g)'
In terms of various reactants and products.

- Watch Video Solution

2. Define rate constant (k).
3. What is the difference between instantaneous rate of a reaction and rate constant?

D Watch Video Solution

4. For a reaction : $X \rightarrow Y$, what is the significance of plus and minus signs in the following expression ?
rate $=\frac{-d[X]}{d t}=\frac{+d[Y]}{d t}$

- Watch Video Solution

5. What are the units of rate constant for a third order reaction?

- Watch Video Solution

6. Unit of rate constant for zero order reaction is

- Watch Video Solution

7. Unit of rate constant for zero order reaction is

- Watch Video Solution

8. Write the unit of the rate constant for a gaseous reaction for 1st order.

- Watch Video Solution

9. What is the order of the reaction if the unit of rate constant is s^{-1} ?

- Watch Video Solution

10. What is the unit of rate constant for second order reaction?

- Watch Video Solution

11. Explain the rate law.

- Watch Video Solution

12. Define order of a reaction

- Watch Video Solution

13. Does a zero order reaction has zero molecularity?

- Watch Video Solution

14. Give four characteristics of rate constant.
15. Can order of a reaction be fractional ? Give an example.

- Watch Video Solution

16. Give one example of zero order reaction.

- Watch Video Solution

17. Define molecularity of a reaction.

- Watch Video Solution

18. Define average rate of a reaction.
19. Write two three difference between average rate of reaction and instantaneous rate of reaction

(Watch Video Solution

20. The rate of a zero reaction does not change with time. Explain.

- Watch Video Solution

21. For the reaction
$2 \mathrm{H}_{2}(g)+2 \mathrm{NO}(g) \rightarrow \mathrm{N}_{2}(g)+2 \mathrm{H}_{2} \mathrm{O}(g)$
the proposed mechanism is as followed
(i) ' 2 NO (g) (ii) $\mathrm{N}_{2} \mathrm{O}_{2}(\mathrm{~g})+\mathrm{H}_{2}(\mathrm{~g}) \rightarrow \mathrm{N}_{2} \mathrm{O}(\mathrm{g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
$\mathrm{N}_{2} \mathrm{O}(g)+\mathrm{H}_{2}(\mathrm{~g}) \rightarrow \mathrm{N}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
If the second step is the rate determining step then what Is the molecularity of the reaction
22. If rate of reaction between a and B is expressed as $k[A][B]^{2}$, the reaction is

- Watch Video Solution

23. The rate law for a reaction is

Rate $=k[A]^{1 / 2}[B]^{2}$
Can the reaction be an elementry reaction. Explain.

- Watch Video Solution

24. What is difference between order of reaction and molecularity of reaction ?
25. Explain why reactions with molecularity of three or more are rare ?

- Watch Video Solution

26. Nitric oxide reacts with oxygen to produce nitrogen dioxide.
$2 \mathrm{NO}(g)+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NO}_{2}(g)$
What is the predicted rate law, if the mechanism is ,
$\mathrm{NO}+\mathrm{O}_{2} \xrightarrow{k} \mathrm{NO}_{2}$ (fast)
$\mathrm{NO}_{2}+\mathrm{N} \xrightarrow{K_{1}} \mathrm{NO}_{2}+\mathrm{NO}_{2}$ (slow)

- Watch Video Solution

27. The rate expression for the chemical reaction,
$2 \mathrm{NO}_{2} \mathrm{Cl} \rightarrow 2 \mathrm{NO}_{3}+\mathrm{Cl}_{2}$,
is given as : Rate $=k\left[\mathrm{NO}_{2} \mathrm{Cl}\right]$
Propose a possible mechanism for the above reaction and give the order of the reaction.
28. Explain the factors affecting rate of a reaction.

- Watch Video Solution

29. Discuss briefly the effect of concentration on the rate of a reaction.

- Watch Video Solution

30. What is the effect of exposure to radiation on the rate of a chemical reaction.

- Watch Video Solution

31. What is the effect of surface area on the rate of chemical reaction.
32. Define half life period of a reaction.

- Watch Video Solution

33. Define zero order reaction. Derive integrated rate equation for rate constant of a zero order reaction.

- Watch Video Solution

34. Derive an expression for half life period of a zero order reaction.

- Watch Video Solution

35. Derive the integrated rate equation for the rate constant for a first order reaction. What would be units of the first order rate constant, if
the concentration is expressed in moles per litre and time to seconds?
Also give graphical representation of integrated rate law equation.

- Watch Video Solution

36. Show that for a first order reaction, the time taken to complete half of the change is Independent of the initial concentration of the reactant.

- Watch Video Solution

37. What are the difference between zero order and first order reactions.

- Watch Video Solution

38. Explain with suitable example how the molecularity of a reaction Is different from the order of reaction ?
39. What are pseudochemical or pseudo-order reactions ? Give one example.

- Watch Video Solution

40. What are pseudochemical reactions ? Give an example.

- Watch Video Solution

41. Define threshold energy and activation energy. How are they related?

Watch Video Solution
42. What Is activated complex ?
43. The energy of activation of a reaction cannot be zero. Explain.

- Watch Video Solution

44. What is temperature coefficient of a reaction ? Why temperature coefficient for most of the reactions at room temperature is nearly two

- Watch Video Solution

45. The rate of reactions become double by rise of 10° temperature. Explain

- View Text Solution

46. What is the effect of temperature on rate of a reaction.

- Watch Video Solution

47. What is Arrhenius equation to describe the effect of temperature on rate of a reaction ? How can it be used to calculate the activation energy of a reaction ?

- Watch Video Solution

48. How is rate constant of a reaction related to its activation energy?

- Watch Video Solution

49. Explain the effect of catalyst on the rate of reaction with diagram.
50. Define collision frequency. Write short note on collision theory of chemical reactions.

- Watch Video Solution

51. Write two postulates of colloision theory of reaction rates.

(D) Watch Video Solution

Numerical Problems

1. The rate constant of a reaction is $1.5 \times 10^{7} \mathrm{sec}^{-1}$ at $50^{\circ} \mathrm{C}$ and $4.5 \times 10^{7} \mathrm{sec}^{-1}$ at $100^{\circ} \mathrm{C}$. Calculate energy of the activation for the reaction.
2. The rate constant for the decomposition of $\mathrm{N}_{2} \mathrm{O}_{6}$,
$\mathrm{N}_{2} \mathrm{O}_{6} \rightarrow \mathrm{~N}_{2} \mathrm{O}_{4}+\frac{1}{2} \mathrm{O}_{2}$
is 3.46×10^{-5} at $25^{\circ} \mathrm{C}$ and 4.87×10^{-3} at $65^{\circ} \mathrm{C}$. Calculate the energy of activation of the reaction.

- Watch Video Solution

3. The first order rate constant for the decomposition of ethyl iodide by the reaction $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{I}(\mathrm{g}) \rightarrow \mathrm{C}_{2} \mathrm{H}_{4}(\mathrm{~g})+\mathrm{HI}(\mathrm{g})$ at 600 K is $1.60 \times 10^{-5} s^{-1}$. Its energy of activation is $209 \mathrm{~kJ} / \mathrm{mol}$. Calculate the rate constant of the reaction at 700K.

- Watch Video Solution

4. The three fourth of a first order reaction is completed in 32 minutes.

What is the half-life period of the reaction ?
5. 60% of a first order reaction was completed in 60 minutes. When was it half completed?

- Watch Video Solution

6. A first order reaction is 75% complete in 60 min . Find the half-life of the reaction.

- Watch Video Solution

7. Ammonia and oxygen react at high temperature as
$: 4 \mathrm{NH}_{3}(g) \rightarrow 4 \mathrm{NO}(\mathrm{g})+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$ in an experiment, the rate of formation of NO is $3.6 \times 10^{-3} \mathrm{molL}^{-1} \mathrm{sec}^{-1}$. Calculate the rate on formation of $\mathrm{H}_{2} \mathrm{O}$.
8. The reaction $2 \mathrm{~N}_{2} \mathrm{O}_{5}(\mathrm{~g}) \rightarrow \mathrm{NO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})$ takes place in a closed contaner. It is found that the concentration of NO_{2} increases by 1. $6 \times 10^{-2} \mathrm{molL}^{-1}$ in four seconds. Calculate the rate of change of concentration of $\mathrm{N}_{2} \mathrm{O}_{5}$.

- Watch Video Solution

9. A reaction $3 X \rightarrow 2 Y+Z$ procees in a closed vessel. The rate of disappearance of X is found to be $0.072 \mathrm{~mol} L^{-1} s^{-1}$. Calculate the rate of appearance of Y .

- Watch Video Solution

10. A first order reaction is 50% complete in 69.3 minutes. Calculate the time for 80% completion of the reaction.

- Watch Video Solution

11. A first order reaction is 20% complete in the 10 minutes. Calculate the time period for 75% completion of the reaction.

- Watch Video Solution

12. A first order reaction is 15% complete in 20 minutes. How long will it take to complete 60% ?

- Watch Video Solution

13. A first order reaction is 20% complete in the 10 minutes. Calculate the time period for 75% completion of the reaction.

- Watch Video Solution

14. A first order reaction is 15% complete in 20 minutes. How long will it take to complete 60% ?
15. A first order reaction is 40% complete in 50 minutes. In what time will the reaction be 80% compelete?

- Watch Video Solution

16. The rate constant for the first order reactior becomes three times when the temperatur is raised from $20^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$. Calculate the energy of activation for the reaction.

- Watch Video Solution

17. The rate constant for a first order reaction becomes six times when the temperature is raised from 350 K to 400 K . Calculate activation energy for the reaction.
18. The rate constant for a first order reaction becomes six times when the temperature is raised from 350 K to 400 K . Calculate activation energy for the reaction.

- Watch Video Solution

19. For the reaction : $\mathrm{N}_{2}+3 \mathrm{H}_{2} \rightarrow 2 \mathrm{NH}_{3}$ The rate of reaction measured as $\frac{\Delta\left[N H_{3}\right]}{\Delta t}$ we found to be $2 \times 10^{-4} \mathrm{molL}^{-1} \mathrm{sec}^{-1}$. Calculate the rate of reaction expressed in terms of N_{2}.

- Watch Video Solution

20. The decomposition of hydrogen peroxide in the presence of iodide ion has been found to be first order in $\mathrm{H}_{2} \mathrm{O}_{2}$:
$2 \mathrm{H}_{2} \mathrm{O}_{2}(\mathrm{aq}) \xrightarrow{1^{-(a q)}} 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})+\mathrm{O}_{2}(\mathrm{~g})$.
The rate constant has been found to be $1.01 \times 10^{-2} \mathrm{~min}^{-1}$:
(a) Calculate the rate of reaction when $\left[\mathrm{H}_{2} \mathrm{O}_{2}\right]=0.4 \mathrm{~mol} \mathrm{lit}^{-1}$.
(b) What concentration of $\left[\mathrm{H}_{2} \mathrm{O}_{2}\right]$ would give a rate of $1.12 \times 10^{-2} \mathrm{~mol} \mathrm{lit}^{-1} \mathrm{~min}^{-1}$?

- Watch Video Solution

21. For the reaction :
$2 \mathrm{~N}_{2} \mathrm{O}_{5} \rightarrow 4 \mathrm{NO}_{2}+\mathrm{O}_{2}$
the rate of reaction measured as $\frac{\Delta\left[N O_{2}\right]}{\Delta t}$ was found to be $4 \times 10^{-3} \mathrm{~mol} \mathrm{~L}^{-1}$ is s^{-1}. Calculate the rate of reaction, expressed in terms of $\mathrm{N}_{2} \mathrm{O}_{5}$

- Watch Video Solution

22. The decomposition of $\mathrm{N}_{2} \mathrm{O}_{5}$ in carbon tetrachloride solution has been found to be first order with respect to $\mathrm{N}_{2} \mathrm{O}_{5}$ with rate constant, $k=6.2 \times 10^{-4} s^{-1}$
$\mathrm{N}_{2} \mathrm{O}_{5}(G) \rightarrow 2 \mathrm{NO}_{2}(g)+\frac{1}{2} \mathrm{O}_{2}(g)$

What concentration of $\mathrm{N}_{2} \mathrm{O}_{5}$ would give a rate of $4.2 \times 10^{-3} \mathrm{molL}^{-1} \mathrm{~s}^{-1}$?

- Watch Video Solution

23. For the reaction : $\mathrm{N}_{2}+3 \mathrm{H}_{2} \rightarrow 2 \mathrm{NH}_{3}$ The rate of reaction measured as $\frac{\Delta\left[N H_{3}\right]}{\Delta t}$ we found to be $2 \times 10^{-4} \mathrm{molL} L^{-1} \mathrm{sec}^{-1}$. Calculate the rate of reaction expressed in terms of N_{2}.

D Watch Video Solution

24. The rate of a reaction $A \rightarrow B$ has the rate law, rate $=k[A]$ with the rate constant, $=k=0.50 \mathrm{sec}^{-1} Q$.

What concentration of A would give a rate of
$2.4 \times 10^{-2} \mathrm{~mol}^{-1} \mathrm{sec}^{-1}$?
25. The rate constants of a reaction at 300 and 320 K are $0.0231 s^{-1}$ and $0.0693 s^{-1}$ respectively. Calculate the value of activation energy of the reaction. $\left[\mathrm{R}=8.314 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}, \log 3=0.4771\right]$

- Watch Video Solution

26. The rate of decomposition of hydrogen peroxide at a particular temperature was measured by titrating its solution with acidic KMnO_{4} solution. Following results were obtained :

Timet (s)	0	10	20
Vol. of	$\mathrm{KMnO}_{4}(\mathrm{ml})$	11.4	6.9

Show that the reaction is of first ordre.

- Watch Video Solution

27. The rate constants of a reaction at 500 K and 700 K are $0.02 \mathrm{~s}^{-1}$ and $0.07 s^{-1}$ respectively. Calculate the values of E_{a} and A.
28. The rate of decomposition of hydrogen peroxide at a particular temperature was measured by titrating its solution with acidic $K \mathrm{MnO}_{4}$ solution. Following results were obtained.

time,t (min)	0	10	20
Vol. of $\mathrm{KMnO}_{4}(\mathrm{ml})$.	22.8	13.8	8.3

Show that the reaction is of first order.

- Watch Video Solution

29. The rate constants of a reaction at 300 and 320 K are $0.0231 s^{-1}$ and $0.0693 s^{-1}$ respectively. Calculate the value of activation energy of the reaction. $\left.[\mathrm{R}=8.314] \mathrm{K}^{-1} \mathrm{~mol}^{-1}, \log 3=0.4771\right]$

- Watch Video Solution

30. In a pseudo first order hydrolysis of ester in water the following results were obtained:

Timet(s)
$\begin{array}{llll}\text { Ester }\left(\mathrm{mol} L^{-1}\right) & 0.55 & 0.31 & 0.17\end{array}$
Calculate the pseudo first order rate constant

- Watch Video Solution

31. For a chemical reaction $X \rightarrow Y$, the rate. increases by a factor 2.25 when the concentration of X is increased by 1.5 . What is the order of reaction?

(D) Watch Video Solution

32. The rate of a reaction $2 A+B \rightarrow A_{2} B$.
has rate law : rate $=\mathrm{k}[A]^{2}$ with the rate constant equal to 0.50 $\mathrm{mol}^{-1} \mathrm{~L} \mathrm{sec}^{-1}$. Calculate the rate of reaction when
(i) $[\mathrm{A}]=0.60 \mathrm{~mol} L^{-1},[\mathrm{~B}]=-0.05 \mathrm{~mol} L^{-1}$ and
(ii) When concentration of A and B have been reduced to $1 / 4$ th
33. For a chemical reaction $A \rightarrow B$, the rate of reaction doubles when the concentration of A is doubled. What is the order of reaction?

(D) Watch Video Solution

34. The decomposition of $\mathrm{N}_{2} \mathrm{O}_{5}$ in carbon tetrachloride solution has been found to be first order with respect to $\mathrm{N}_{2} \mathrm{O}_{5}$ with rate constant, $k-6.2 \times 10^{-4} s 6-1$
$\mathrm{N}_{2} \mathrm{O}_{5}(G) \rightarrow 2 \mathrm{NO}_{2}(g)+\frac{1}{2} \mathrm{O}_{2}(g)$
Calculate the rate of reaction when

$$
\left[\mathrm{N}_{2} \mathrm{O}_{5}\right]=2.50 \mathrm{~mol}^{-1}
$$

- Watch Video Solution

35. For a chemical reaction $R \rightarrow P$, the rate of reaction does not change when the concentration of R is changed. What is the order of reaction ?
36. The decomposition of $\mathrm{H}_{2} \mathrm{O}_{2}$, in the presence of lodide ion has been found to be first order in $\mathrm{H}_{2} \mathrm{O}_{2}$.

The rate constant has been found to be $1.01 \times 10^{-2} \mathrm{~min}^{-1}$. What concentration of $\mathrm{H}_{2} \mathrm{O}_{2}$ would give rate of ${ }^{\wedge} 1.12 \mathrm{xx} 10^{\wedge}-2 \mathrm{~mol}^{\wedge}-1 \mathrm{~min}^{\wedge}-1$? $\mathbf{I}^{-}(a q)$
$\mathbf{2} \mathbf{H}_{\mathbf{2}} \mathbf{O}_{\mathbf{2}}(a q) \longrightarrow \mathbf{2} \mathbf{H}_{2} \mathrm{O}(l)+\mathbf{O}_{\mathbf{2}}(g)$

- Watch Video Solution

37. A first order reaction taken 16 minutes for 50% completion. How much time will it take for 75% completion ?

- Watch Video Solution

38. A first order reaction taken 32 minutes for 50% completion. Hew much time will it take for 90% completion ?

- Watch Video Solution

39. A first order reaction taken 45.4 minutes for 50% completion. How much time will it take for 60% completion ?

- Watch Video Solution

40. Rate constant for a first order reaction is $60 s^{-1}$. How much time will it take to reduce the concentration of the reaction on $\frac{1}{10}$ th of its initial value.

- Watch Video Solution

41. Reaction beween NO_{2} and F_{2} to give $\mathrm{NO}_{2} \mathrm{~F}$ takes place by the following machanism:
$\mathrm{NO}_{2}(\mathrm{~g})+\mathrm{F}_{2}(\mathrm{~g}) \xrightarrow{\text { slow }} \mathrm{NO}_{2} F(\mathrm{~g})+\mathrm{F}(\mathrm{g}), \mathrm{NO}_{2}(\mathrm{~g})+\mathrm{F}_{2}(\mathrm{~g}) \xrightarrow{\text { Fast }} \mathrm{NO}_{2} F(\mathrm{~g})$
Wiite the rate expression and order of the rection.

- Watch Video Solution

42. Calculate two-third life of a first order reaction having
$k=5.48 \times 10^{-14} s^{-1}$

- Watch Video Solution

43. Reaction between NO_{2} and CO to give CO_{2} and NO takes place by the following mechanism:

Write the rate expression and order of the reaction. What is the unit of
rate constant?

Slow

$\mathrm{NO}_{2}+\mathrm{NO}_{2} \longrightarrow \mathrm{NO}+\mathrm{NO}_{3}$

Fast

$\mathrm{NO}_{3}+\mathrm{CO} \longrightarrow \mathrm{CO}_{2}+\mathrm{NO}_{2}$
$\mathrm{NO}_{2}+\mathrm{CO} \longrightarrow \mathrm{CO}_{2}+\mathrm{NO}$

(D) Watch Video Solution

44. The half life period for a reaction of first order is $2.31 \times 10^{3} \mathrm{~min}$.

How long will it take for $\frac{1}{5^{t h}}$ of the reactants to be left behind.

(D) Watch Video Solution

45. Thermal decomposition of dinitrogen pentoxide takes place by the
following mechanism :
$\mathrm{N}_{2} \mathrm{O}_{5} \xrightarrow{\text { Slow }} \mathrm{NO}_{2}+\mathrm{NO}_{3}$
$\mathrm{N}_{2} \mathrm{O}_{5}=\mathrm{NO}_{3} \xrightarrow{\text { Fast }} 3 \mathrm{NO}_{2}+\mathrm{O}_{2}$
Write the rate'expression and order of the reaction.

(D) Watch Video Solution

46. A reaction is of first order in reactant A and of second order in reactant B. How is rate of reaction affected when
(a) Concentration of B alone is increased to three times.
(b) The concentration of A as well as B is doubled.

- Watch Video Solution

47. From the rate expression for the following reactions, determine their order of reaction and the dimensions of the rate constants:

$$
\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{CI}(\mathrm{~g}) \rightarrow \mathrm{C}_{2} \mathrm{H}_{4}(\mathrm{~g})+\mathrm{HCI}(\mathrm{~g}) \text { Rate }=k\left[\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{CI}\right]
$$

- Watch Video Solution

48. For a decomposition reaction, the values of rate constants, k at two different temperatures are given below :
$k_{1}=2.15 \times 10^{-7} \mathrm{Lmol}^{-1} \mathrm{~s}^{-1}$ at 650K
$k_{2}=2.39 \times 10^{-7} \mathrm{Lmol}^{-1} \mathrm{~s}^{-1}$ at 700K
calculate activation energy for the reaction.

- Watch Video Solution

49. From the rate expression for the following reactions, determine their order of reaction and the dimensions of the rate constants: $\mathrm{CH}_{3} \mathrm{CHO}(\mathrm{g}) \rightarrow \mathrm{CH}_{4}(\mathrm{~g})+\mathrm{CO}(\mathrm{g})$ Rate $=k\left[\mathrm{CH}_{3} \mathrm{CHO}\right]^{\frac{3}{2}}$

- Watch Video Solution

50. In general it is observed that the rate of a chemical reaction becomes double for every 10° rise in temperature. If this generalisation holds for a reaction in the temperature range 2908 K to 398 K , what would be the value of activation energy for the reaction. ($\mathrm{R}=8.314 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$)
51. State the order with respect to each reactant and overall order for the following reaction :
$\mathrm{H}_{2} \mathrm{O}_{2}+3 \mathrm{I}^{-}+2 \mathrm{H}^{+} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}+\mathrm{I}_{3}^{-}(a q)$
Rate $=K\left[H_{2} O_{2}\right]\left[I^{-}\right]$
What are the units of rate constant?

- Watch Video Solution

52. The rate constant for a first order reaction becomes six times when the temperature is raised from 350 K to 400 K . Calculate activation energy for the reaction.

- Watch Video Solution

53. 60% of a first order reaction was completed in 60 minutes. When was it half completed ?
54. A first order reaction takes 69.3 minutes for 50% completion.

Calculate the time required for 80% completion of the reaction.

- Watch Video Solution

55. The half life period for a reaction of first order is $2.31 \times 10^{3} \mathrm{~min}$.

How long will it take for $\frac{1}{5^{t h}}$ of the reactants to be left behind.

- Watch Video Solution

56. The decomposition of hydrogen peroxide in the presence of iodide ion has been found to be first order in $\mathrm{H}_{2} \mathrm{O}_{2}$:
$2 \mathrm{H}_{2} \mathrm{O}_{2}(\mathrm{aq}) \xrightarrow{1^{-}(a q)} 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})+\mathrm{O}_{2}(\mathrm{~g})$.
The rate constant has been found to be $1.01 \times 10^{-2} \mathrm{~min}^{-1}$:
(a) Calculate the rate of reaction when $\left[\mathrm{H}_{2} \mathrm{O}_{2}\right]=0.4 \mathrm{~mol} \mathrm{lit}^{-1}$.
(b) What concentration of $\left[\mathrm{H}_{2} \mathrm{O}_{2}\right]$ would give a rate of $1.12 \times 10^{-2} \mathrm{~mol} \mathrm{lit}^{-1} \mathrm{~min}^{-1}$?

- Watch Video Solution

57. The decomposition of $\mathrm{N}_{2} \mathrm{O}_{5}$ in carbon tetrachloride solution has been found to be first order with respect to $\mathrm{N}_{2} \mathrm{O}_{5}$ with rate constant, $k-6.2 \times 10^{-4} s 6-1$
$\mathrm{N}_{2} \mathrm{O}_{5}(G) \rightarrow 2 \mathrm{NO}_{2}(\mathrm{~g})+\frac{1}{2} \mathrm{O}_{2}(g)$
Calculate the rate of reaction when
$\left[\mathrm{N}_{2} \mathrm{O}_{5}\right]=2.50 \mathrm{molL}^{-1}$

- Watch Video Solution

58. The rate of a reaction $2 A+B \rightarrow A_{2} B$.
has rate law : rate $=\mathrm{k}[A]^{2}$ with the rate constant equal to 0.50 $\mathrm{mol}^{-1} \mathrm{~L} \mathrm{sec}^{-1}$. Calculate the rate of reaction when
(i) $[\mathrm{A}]=0.60 \mathrm{~mol} L^{-1},[\mathrm{~B}]=-0.05 \mathrm{~mol} L^{-1}$ and
(ii) When concentration of A and B have been reduced to $1 / 4$ th

- Watch Video Solution

59. First order reaction is found to have rate constant, $k=5.5 \times 10^{-14} s^{-1}$. Find the half life to the reaction.

- Watch Video Solution

60. The half-life period of a chemical reaction is 1443.6 sec , find out k for this reaction.

- Watch Video Solution

61. $2 \mathrm{NOBr} \rightarrow 2 \mathrm{NO}(\mathrm{g})+\mathrm{Br}_{2}(\mathrm{~g})$

Rate $=k[\mathrm{NOBr}]_{2}$
What are the units of rate constant.?
62. A first order reaction is 20% complete in 20 minuts. Calculate the time it will take the reaction to complete 80%.

D Watch Video Solution

63. Calculate the time required for the completion of 90% of a reaction of first order kinetics, $t_{\frac{1}{2}}=44.1$ minutes.
