

CHEMISTRY

BOOKS - BETTER CHOICE PUBLICATION

CO-ORDINATION COMPOUNDS

Question Bank

1. Discuss the main postulates of Werner's coordination theory.

2. Discuss the main postulates of Werner's coordination theory.

Watch Video Solution

3. Write two difference between double salt and complex compound.

4. Explain with two examples each of the following: coordination entity, ligand, coordination number, coordination polyhedron, homoleptic and heteroleptic.

Watch Video Solution

5. Explain with two examples the following Central atom or ion.

6. Explain with two examples the following ligands.

Watch Video Solution

7. What is meant by the term 'coordination number' ?

8. Explain with two examples the following Coordination sphere.

Watch Video Solution

9. Explain with two examples each of the following: coordination entity, ligand, coordination number, coordination polyhedron, homoleptic and heteroleptic.

10. Explain with two examples the following oxidation number of central atom.

Watch Video Solution

11. Explain with two examples the following homoleptic and heteroleptic complexes.

12. What is meant by unidentate and ambidentate ligands? Give two examples for each.

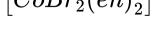
Watch Video Solution

13. Define chelate and chelating ligand. Give one example of chelate complex.

14. Specify the oxidation numbers of the metals in the following coordination entities: $igl[Co(H_2O)(CN)(en)_2igr]^{2+}$

Watch Video Solution

15. Specify the oxidation numbers of the metals in the following coordination entities: $[PtCl_4]^{2-}$



16. Specify the oxidation numbers of the metals in the following coordination entities: $\begin{bmatrix} Cr(NH_3)_3Cl_3 \end{bmatrix}$

Watch Video Solution

17. Specify the oxidation numbers of the metals in the following coordination entities: $\left[CoBr_2(en)_2\right]^+$

18. Specify the oxidation numbers of the metals in the following coordination entities: $K_3[Fe(CN)_6]$

Watch Video Solution

19. Define ionisation isomerism. Give example. How can you distinguish between the two isomers?

20. The complex $\left[Co(NH_3)_5Br\right]SO_4$ give white precipitates with $BaCl_2$ solution while $\left[CO(NH_3)_5SO_4\right]Br$ give yellow precipitate with $AgNO_3$ solution. Explain.

Watch Video Solution

21. Define ionisation isomerism and write one ionisation isomer of : $\begin{bmatrix} CoSO_4(NH_3)_5 \end{bmatrix} Br$.

22. Define linkage isomerism and write one linkage isomer of $[Co(ONO)(NH_3)_5]Cl_2$.

Watch Video Solution

23. Explain hydrate isomerism with the help of an example.

Watch Video Solution

24. Write a note on Co-ordinate isomerism.

25. Write a note on geometrical isomerism.

Watch Video Solution

26. Write a note on optical isomerism.

27. Why is geometrical isomerism not possible in tetrahedral compounds having two different types of unidentate ligands with the central metal ion?

Watch Video Solution

28. Draw structures of geometrical isomers of $\left[Fe(NH_3)_2(CN)_4\right]$

29. Is the following compound chiral (optically active)? $cis - \left[CrCI_2(ox)_2 \right]^3 -$

Watch Video Solution

30. How many geometrical isomers are possible in the following coordination entities: `[Cr(C 2O 4) 3]^3-

31. How many geometrical isomers are possible in the following co-ordination entity? $\lceil Co(NH_3)_3 Cl_3 \rceil$

Watch Video Solution

32. What are inner and outer orbital complexes?

33. On the basis of valence bond theory explain the shape and magnetic character of $K_4igl[Fe(CN)_6igr]$ or $igl[FeCN_6igr]^{4-}$ ion.

Watch Video Solution

34. On the basis of valence bond theory explain the structure and magnetic nature of $\left[Ni(CN)_4\right]^{2-}$ complex ion.

35. Write the structure and the hybridisation of the central atom in $\left[Ni(CO)_4\right]$

Watch Video Solution

36. How does valence bond theory account for:

 $\left[Ni(Cl_4)
ight]^{2-}$ is diamagnetic and tetrahedral

(At number of Ni = 28)

37. Explain: $\left[Ni(CN)_4\right]^2$ is diamagnetic while $\left[Ni(Cl)_{\scriptscriptstyle 4}\right]^{2-}$ is paramagnetic.

Watch Video Solution

38. Explain: $\left[Ni(CN)_{\scriptscriptstyle A}\right]^{2-}$ is diamagnetic while $[Ni(Cl)_{\scriptscriptstyle A}]^{2-}$ is paramagnetic.

39. Explain: $\left[Ni(CN)_4\right]^{2-}$ is diamagnetic while $\left[Ni(Cl)_4\right]^{2-}$ is paramagnetic.

Watch Video Solution

40. Using valence bond theory of complexes, explain the geometry and diamagnetic nature of the ion $\left[Cr(NH_3)_6\right]^{3+}$. Given the atomic number of Cr = 241.

41. Discuss structure of $\left[Co(NH_3)_{\epsilon}\right]^{3+}$ complex ion.

Watch Video Solution

42. On the basis of valence bond theory, explain the structure of $\left[Fe(CN)_6\right]^{3-}$ complex.

View Text Solution

43. Explain magnetic Behaviour of $\left[Fe(CN)_6\right]^{4-}$ and $\left[Fe(CN)_6\right]^{3-}$ anions.

Watch Video Solution

44. Explain magnetic Behaviour of $\left[Fe(CN)_6\right]^{4-}$ and $\left[Fe(CN)_6\right]^{3-}$ anions.

45. Predict the shape of hexafluoroferrate(III) on the basis of valence bond theory.

Watch Video Solution

46. Explain the formation of H2 molecule on the basis of valence bond theory.

47. Discuss the nature of bonding in the following coordination entity on the basis of valence bond theory:

$$\left[Fe(CN)_6
ight]^{4-}$$

48. Discuss the nature of bonding in the following coordination entity on the basis of valence bond theory:

$$[FeF_6]^{3-}$$

Watch Video Solution

49. Discuss the nature of bonding in the following coordination entities on the basis of valence bond theory: $\left[Co(C_2O_4)_3\right]^{3-}$

50. $\left[Fe(H_2O)_6\right]^{3+}$ is strongly paramagnetic whereas $\left[Fe(CN)_6\right]^3-$ is weakly paramagnetic. Explain.

51. Explain $\left[Co(NH_3)_6\right]^{3+}$ is an inner orbital complex whereas $\left[Ni(NH_3))6
ight]^{2+}$ is an outer orbital complex.

Watch Video Solution

52. Using valence bond theory predict the geometry and magnetic behaviour of $\left[Pt(CN)_{\scriptscriptstyle A}\right]^{2-}$.

53. The hexaquo manganese(II) ion contains five unpaired electrons, while the hexacyanoion contains only one unpaired electron. Explain using Crystal Field Theory.

Watch Video Solution

54. NiCl4 2- is paramagnetic while NiCO4 is diamagnetic though both are tetrahedral why

55. A solution of $\left\lceil Ni(H_2O)_6
ight
ceil^{2+}$ is green but solution of `[Ni(CN)_4]^(2-) is а colourless.Explain.

Watch Video Solution

56. $\left[Fe(CN)_6\right]^{4-}$ and $\left[Fe(H_2O)_6\right]^{2+}$ are of different colours in dilute solutions. Why?

57. Discuss the nature of bonding in metal carbonyls.

Watch Video Solution

58. What is meant by stability of a coordination compound in solution? State the factors which govern

59. What is meant by the chelate effect? Give an example.

Watch Video Solution

60. Discuss briefly giving an example in each case the role of coordination compunds in: biological systems

61. Write short note on the importance of complex compounds in different fields.

Watch Video Solution

Question From Previous Board Examination

1. Write the IUPAC name of corordination compound $\lceil Co(NH_3)_3ONO \rceil Cl_2$.

2. How many isomers are possible for the netural complex $\left[Co(NH_3)_3Cl_3\right]$? Draw their structures.

Watch Video Solution

3. Discuss the nature of bonding in the following coordination entities on the basis of valence bond theory: $\left\lceil Fe(CN)_6 \right\rceil^{4-}$

4. Write the IUPAC name for the corordination compound.

[Zn(NH3)4]2+

Watch Video Solution

5. Explain: $\left[Ni(CN)_4\right]^{2-}$ is diamagnetic while

 $igl[Ni(Cl)_4igr]^{2-}$ is paramagnetic.

6. Write IUPAC name of the following

 $K_2ig[Zn(OH)_4ig]$

Watch Video Solution

7. Write IUPAC name of the following

 $K_3[Al(C_2O_4)]_3$

8. Write IUPAC name of the following

 $K_2[Cu(CN_4)]$

Watch Video Solution

9. Write IUPAC name of the following

 $[Co(NH_3)_3Cl]Cl_2$

10. Write IUPAC name of the following

 $igl[{Co(en)}_2 Br_2 Cl igr]$

Watch Video Solution

11. Write IUPAC name of the following

 $\left[Co(NH_3)_5Br\right]Cl_2$

 $K_3ig[Fe(C_2O_4)_3ig]$

Watch Video Solution

13. Write IUPAC name of the following

 $Naig[Au(CN)_2ig]$

$$K_2ig[Fe(CN)_6ig]$$

Watch Video Solution

15. Write IUPAC name of the following

$$K_2ig[Fe(CN)_6ig]$$

$$K_3[Fe(CN)_5NO]$$

Watch Video Solution

17. Write IUPAC name of the following

$$K_3ig[Cr(C_2O_4)_3ig]$$

$$K_3ig[Cr(C_2O_4)_3ig]$$

Watch Video Solution

19. Write IUPAC name of the following

$$K[PtCl_3(NH_3)]$$

 $K_2ig[Fe(CN)_6ig]$

Watch Video Solution

21. Write IUPAC name of the following

 $K_2ig[Fe(CN)_6ig]$

 $Na_3ig(Co(NO_2)_6ig]$

Watch Video Solution

23. Write the IUPAC name of the following:

 $\big[Ni(H_2O)_2(NH_3)_4\big]SO_4$

$$K_3igl[Co(NO_2)_6igr]$$

Watch Video Solution

25. Write the IUPAC name of the following:

 $Na_3ig(Co(NO_2)_6ig]$

 $Na_{3}ig[Cr(OH)_{2}F_{4}ig]$

Watch Video Solution

27. Write IUPAC name of the following:

'[Pt(NH_3)_3 Br(NO_2)Cl]Cl`

$$\left[Cu(H_2O)(NH_3)_4SO_4\right]$$

Watch Video Solution

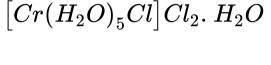
29. Write the IUPAC name of the following:

$$\big[Ni(H_2O)_2(NH_3)_4\big]SO_4$$

$$[PtCl(NO_2)(NH_3)_4]SO_4$$

Watch Video Solution

31. Namethetype of isomerism exhibited bythe


following pair of isomers.

$$igl[{\it Co}(NH_3)_5(NO_2) igr] {\it Cl}_2$$
 and

$$\lceil Co(NH_3)_5(ONO) \rceil Cl_2$$

32. Namethe type of isomerism exhibited bythe following pair of isomers. $\big[Cr(H_2O)_6 \big] Cl_3 \qquad \qquad \text{and}$

Watch Video Solution

33. Namethe type of isomerism exhibited bythe following pair of isomers.

$$igl[Pt(NH_3)_4Cl_2igr]Br_2$$
 and $igl[Pt(NH_3)_4Br_2igr]Cl_2.$

34. Write the formula of ferrocyanide ion.

Watch Video Solution

35. Give one example of hinge joint?

Watch Video Solution

36. Give one example of linkage isomer.

37. What is the state of hybridisation and geometry in $[Fe(CN)_6]^(3-)$?

Watch Video Solution

38. What is the state of hybridisation and geometry in $[Cr(CO)_6]$?

39. What is the state of hybridisation and geometry in `[Ni(CN)_4]^(-2_)

Watch Video Solution

40. Discuss structure of $\left[Co(NH_3)_6\right]^{3+}$ ion the basis of V.B.T.

41. What is the state of hybridisation and geometry in `[Ni(CN) 4]^(-2)

42. What is the state of hybridisation and geometry in `[Ni(CN) 4]^(-2)

43. Explain $\left[Fe(H_2O)_6
ight]^{3+}$ is paramagnetic.

44. With the help of crystal field theory, predict the number of unpaired electrons in $\left[Fe(CN)_6\right]^{4-}$ and $\left[Fe(H_2O)_6\right]^{2+}$.

45. predict the number of unpaired electrons in $\left[CoF_6\right]^{3-}$ and $\left[Co(NH_3)_6\right]^{3+}$

46. With the help of the crystal field theory predict the number of unpaired electrons in $\left[Fe(CN)_6\right]^{3-}$ and $\left[FeF_6\right]^{3-}$.

Watch Video Solution

47. Account for the different magnetic behaviour of hexacyanoferrate (III) and hexafluoroferrate(III).

48. Explain : $\left[Co(CN)_6\right]^{3-}$ is diamagnetic while $\left[CoF_6\right]^{3-}$ is paramagnetic.

Watch Video Solution

49. Draw the geometrical isomers of $\left[Co(en)_2CI_2
ight]^+$ ion.Which of these is optically active ?

50. Draw the geometrical isomers of $\left[Co(en)_2CI_2\right]^+$ ion.Which of these is optically active ?

51. Discuss the main postulates of valence bond theory.

52. Write the name of ionisation isomer of the compound $\lceil Co(NH_3)_5 Br \rceil SO_4$.

Watch Video Solution

53. Draw the geometrical isomers of $\left[Co(en)_2CI_2\right]^+$ ion.Which of these is optically active ?

54. Write the name of ionisation isomer of the compound $\begin{bmatrix} CO(NH_3)_4Cl_2 \end{bmatrix}NO_2$

Watch Video Solution

55. Draw the geometrical isomers of $\left[Pt(NH_3)_2.\ CI_2\right]$. Which of these is optically active.

56. Draw the geometrical isomers of $\left[Pt(NH_3)_2.\ CI_2\right]$. Which of these is optically active.

Watch Video Solution

57. Explain the difference between a weak field ligand and a strong field ligand.

58. Write the structure and hybridisation of the central atom in $\lceil CoCl_2(NH_3)_4 \rceil$

Watch Video Solution

59. $\left[Ti(H_2O)_6\right]^{3+}$ is coloured while $igl[Sc(H_2O)_6igr]^{3+}$ is colourless. Explain.