びdoubtnut

India's Number 1 Education App

PHYSICS

BOOKS - BETTER CHOICE PUBLICATION

ALTERNATING CURRENTS

Very Short Answertype Questions

1. Define power factor.

(D)
 Watch Video Solution

2. What do you mean by wattless current?

- Watch Video Solution

3. Why high frequency current can pass easily through a capacitor ?

- Watch Video Solution

4. Prove that high frequency a.c. cannot pass
through a pure inductor, but can pass through
a pure capacitor.

D Watch Video Solution

5. What do you mean by impedance of a circuit?
(D) Watch Video Solution
6. What is the relation between peak value and root mean square value of alternating emf ?

D Watch Video Solution
7. What is the phase relationship between current and voltage in an inductor?

- Watch Video Solution

8. What do you mean by power factor of an ac circuit?
(Watch Video Solution

9. Define inductive reactance of an inductor.

D Watch Video Solution

10. Define the capacitive reactance of a capacitor.

D Watch Video Solution

11. What is an idle current ?
12. What is the impedance of a circuit ?

D Watch Video Solution

13. Define resonant frequency of LCR series circuit.
(D) Watch Video Solution

Short Answertype Questions

1. Discuss the behaviour of an inductor in d.c.

 and high frequency a.c. circuits.
- Watch Video Solution

2. Discuss the behaviour of an inductor in d.c. and high frequency a.c. circuits.

- Watch Video Solution

3. Can a.c. be used for electrolysis? Why?

Watch Video Solution

4. Can one have inductance without a resistance ? How about a resistance without an inductance?

- Watch Video Solution

5. Which is more dangerous in use a.c. or d.c.?

Explain, why?
6. The frequency of a.c. is doubled, what happens to inductive reactance?

- Watch Video Solution

7. W hat is the capacitive reactance of a capacitor used in a circuit having d.c. e.m.f.?

Explain.
8. Discuss the behaviour of an inductor in d.c. and high frequency a.c. circuits.

D Watch Video Solution

9. An alternating e.m.f. is supplied to a pure resistance investigate the phase relationship between current flowing through it and the applied e.m.f.
10. An alternating e.m.f. is supplied to a pure resistance investigate the phase relationship between current flowing through it and the applied e.m.f.

D Watch Video Solution

11. An alternating e.m.f. is supplied to a pure inductor investigate the phase relationship between current flowing through it and the applied e.m.f.
12. Find a phase relation between current and voltage in an a.c. circuit containing a pure inductor. Why high frequency current can not passthrough a pure inductor easily?

D Watch Video Solution

13. Show mathematically that in an a.c. circuit containing only inductance, the current lags
behind the e.m.f. by a phase of $\frac{\pi}{2}$.
An a.c. voltage $E=E_{0} \sin \omega t$ is applied across
an inductor L. Obtain an expression for current I.

D Watch Video Solution

14. An alternate e.m.f. is applied to pure capacitance. Investigate the phase
relationship between the current flowing through it and e.m.f. applied.
15. Finda phase relation between current and voltage in an a.c. circuit containing a pure capacitance. A pure capacitor blocks directcurrent, why?

- Watch Video Solution

16. Define terminal velocity and find an expression for it.
17. Derive the relation for mean value of alternating current.

- Watch Video Solution

18. Define mean value of an alternating current.

- Watch Video Solution

19. What is root mean square value of alternating current? Derive a relation between peak value and virtual value of alternating current.

- Watch Video Solution

20. Prove mathematically that the average power over a complete cycle of alternating current through an ideal inductor is zero.
21. Prove mathematically that the average power over a complete cycle of alternating current through an ideal inductor is zero.

- Watch Video Solution

22. Define impedance of an electric circuit. How
it differs from ohmic resistance ? Find an expression for the impedance of an a.c. circuit containing L-C-R in series.
23. Derive an expression for impedance of an
a.c. circuit with an induct L , capacitor C and a resistor R in series. What is condition of resonance?

D Watch Video Solution
24. With the help of phasor diagram derive an expression for impedance in LCR circuit.

25. With the help of phasor diagram derive an

 expression for impedance in LCR circuit.
- Watch Video Solution

26. Derive an expression for average power of an AC (alternating current) circuit.

- Watch Video Solution

27. What is meant by average value of alternating current? Obtain an expression for it. Prove that the average value of alternating current over one complete cycle is zero.

D Watch Video Solution

Long Answertype Questions

1. Obtain an expression for the power in a.c.
circuit containing a resistance and capacitance
in series.

D Watch Video Solution

2. Define impedance of an electric circuit. How it differs from ohmic resistance ? Find an expression for the impedance of an a.c. circuit containing L-C-R in series.

- Watch Video Solution

3. Obtain an expression for the power in a.c.
circuit containing a resistance and capacitance in series.

D Watch Video Solution

4. What is meant by average value of alternating current? Obtain an expression for
it. Prove that the average value of alternating current over one complete cycle is zero.
5. Define root mean square value of an alternating current.

D Watch Video Solution

6. A voltage $V=V_{0} \sin \omega t$ is applied to a series LCR-circuit. Derive the expression for the average power dissipated over a cycle. Under what condition no power is dissipated even though the current flows through the circuit.
7. What is difference between ohmic resistance and impedance of an a.c. circuit.

- Watch Video Solution

8. What is a sereis resonant circuit? Derive an expression for resonance frequency.

- Watch Video Solution

9. Derive an expression for impedance of an
a.c. circuit with an induct L, capacitor C and a
resistor R in series. What is condition of resonance?

- Watch Video Solution

10. Define resonant frequency of LCR series circuit.
11. Define impedance of an electric circuit. How
it differs from ohmic resistance ? Find an expression for the impedance of an a.c. circuit containing L-C-R in series.

D Watch Video Solution

12. Find a phase relation between current and
voltage in an a.c. circuit containing a pure inductor. Why high frequency current can not passthrough a pure inductor easily?
13. Finda phase relation between current and voltage in an a.c. circuit containing a pure capacitance. A pure capacitor blocks directcurrent, why?

D Watch Video Solution

14. What is meant by mean or average value of alternating current ? Show that mean value of ac over a complete cycle is zero.

Watch Video Solution

Numericals Problems

1. At what frequency a coil of 1 mH will have a reactance of 3142Ω What is the capacity of capacitor, which has the same reactance of the same frequency ?
2. An electric device, which runs at 80 volt d.c.
and consumes 10 A current, is connected to
100 vol-50 Hz a.c. supply through a choke.
Calculate the inducance of the choke coil for the safe working of the device.

- Watch Video Solution

3. A capacitor, a 15Ω resistor and 101.5 mH inductor are placed in series with 50 Hz . AC source. Calculate the capacitance of the
capacitor, if the current is observed in phase with the voltage.

D Watch Video Solution

4. A coil of inductance 0.50 H and resistance
100Ω is connected to a $240 \mathrm{~V}, 50 \mathrm{~Hz}$ ac supply. What is the maximum current in the coil?

- Watch Video Solution

5. A coil of inductance $0: 2$ Henry and olmic resistance 40 ohm is connected to $300 \mathrm{~V}, 50$

Hz a.c. supply. Find the maximum current in coil.

- Watch Video Solution

6. A coil of inductance 0.50 H and resistance
100Ω is connected to a $240 \mathrm{~V}, 50 \mathrm{~Hz}$ ac supply.
What is the maximum current in the coil?
7. The instantaneous current from a.c. source is $\mathrm{I}=\sin 314 \mathrm{t}$. What is the peak value of current?

- Watch Video Solution

8. What is the peak value of 220 V ac ?

- Watch Video Solution

9. A 200 V varialbe frequency a.c. source is
connected to a series combination the
$L=5 H, C=80 \mu F$ and $R=40 \Omega$. Calculate
the angular frequency of the soucre to get maximum current in the cicuit, the current amplitude at resonance and power dissipated in the circuit.
10. A circuit consists of a noninductive resistor of 50Ω, a coil of inductance 0.3 H and resistance 2Ω, and a capacitor of $40 \mu F$ in series and is supplied with 200 volt rms at 50 cycles / sec.

D Watch Video Solution

11. A 40Ω resistor, 3 m H inductor and $2 \mu F$
capacitor are connected in series to $110 \mathrm{~V}, 5000$

Hz AC source.Calculate Impedenceof the circuit and value of current in the circuit.

D Watch Video Solution

12. When an inductor L and a resistor R in series are connected across a $12 \mathrm{~V}, 50 \mathrm{~Hz}$ supply of current of 0.5 A flows in a circuit. The current differs in phase from applied voltage to $\frac{\pi}{3}$ radins calculate the value of R.

D Watch Video Solution

13. A circuit consists of a resistance 10 ohm
and a capacitance $0.1 \mu F$. If an alternating e.m.f. of $100 \mathrm{~V}, 50 \mathrm{~Hz}$ is applied, calculate the current in the circuit.

- Watch Video Solution

14. In a series $R C$ circuit, $R=30$ ohm, $C=$ $0.25 \mu F, V=100 \mathrm{~V}, \omega=10000 \mathrm{rad} / \mathrm{s}$. Find the current in the circuit and calculate the voltage across the resistor and capacitor. Is the
algebraic sum of these voltages more than the source voltage ? If yes, resolve the paradox.

D Watch Video Solution

15. A capacitor of capacitance $100 \mu F$ and a coil of resistance 50Ω and inductance 0.5 H are connected in series with a $110 \mathrm{~V}, 50 \mathrm{~Hz} \mathrm{AC}$ source. Find the rms value of the current.
16. An a.c. source of $200 \mathrm{~V}, 50 \mathrm{~Hz}$ is connected across a 300Ω resistor and capacitor of $\frac{25}{\pi} \mu F$ in series. Calculate (a) reactance (b) impedance
(c) current in the circuit.

- Watch Video Solution

17. An a.c. source of $200 \mathrm{~V}, 50 \mathrm{~Hz}$ is connected
across a 400 ohm resistor and an inductor of 3 H in series. Calculate impedance.

18. A capacitor of capacitance $100 \mu F$ and a coil

 of resistance 50Ω and inductance 0.5 H are connected in series with a $110 \mathrm{~V}, 50 \mathrm{~Hz} \mathrm{AC}$ source. Find the rms value of the current.
- Watch Video Solution

19. A series circuit with $L=0.12 \mathrm{H}, \mathrm{C}=0.48 \mathrm{mF}$
and $R=25$ ohm, is connected to a 220 V variable frequency power supply. At what frequency is the circuit current maximum ?

- Watch Video Solution

20. A capacitor of unknown value and an inductor of 0.1 H and a resistor of 10Ω are connectedin series to a $220 \mathrm{~V}, 50 \mathrm{~Hz}$ ac source.

It is foundthat the power factor of circuit is unity.Calculate the capacitance of capacitor and maximum amplitude of current

- Watch Video Solution

Most Expected Questions

1. What is a phasor?

D Watch Video Solution

2. In a series LCR-circuit, what is the value of power factor at resonacne?

- Watch Video Solution

3. Why do d.c. voltmeter and d.c. ammeter cannot read a.c.?
4. When are the voltage and current in LCR circuit in LCR- circuit in same phase?

- Watch Video Solution

5. Why do d.c. voltmeter and d.c. ammeter cannot read a.c.?

6. Peak value of an a.c. source is E_{0}. What is its

 r.m.s. value?- Watch Video Solution

7. The division marked on the scale of an a.c. ammeter is not equally spaced. Why?

D Watch Video Solution

8. What do you mean by the admittance of

LCR-circuit?

D Watch Video Solution

9. A coil and an electric bulb are connected in
series with an ac. Source. On introducing a soft iron bar inside the coil, the intensity of the bulb will
10. An electric lamp is connected in series with
a variable capacitor. What happens if source is
D.C. ?

- Watch Video Solution

11. An ideal inductor when connected in a.c.
circuit does not produce heating effect yet
reduces the current in the circuit. Explain why?

- Watch Video Solution

