© ${ }^{\text {T doubtnut }}$

India's Number 1 Education App

PHYSICS

BOOKS - BETTER CHOICE PUBLICATION

ELECTRIC FIELD

Very Short Answer Questions

1. Write a relation between electric field at a point and its distance from short dipole.
2. Name the physical quantity whose S.I. unit is

Newton Coulomb ($N C^{-1}$).

- Watch Video Solution

3. Name the physical quantity whose S.I. unit is volt/meter $\left(V m^{-1}\right)$.
4. Why two electric lines of force do not cross each other ?

D Watch Video Solution
5. Name the physical quantity represented by the expression $\vec{P} \cdot \vec{E}$.

D Watch Video Solution

6. Define electric dipole moment.

- Watch Video Solution

7. When is the torque acting on an electric dipole maximum when placed in uniform electric field ?

- Watch Video Solution

8. What is an electric dipole ? What is its direction?

- Watch Video Solution

Very Short Answer Questions Most Expected Questions

1. An electron is placed in uniform electric field along positive X-axis. In which direction will it tend to move?

D Watch Video Solution

2. What is the direction of electric field at a point on the equitorial line of electric dipole?

- Watch Video Solution

3. Does an electric dipole always experience a torque, when placed in a uniform electric field ?

- Watch Video Solution

4. In which orientation, a dipole placed in a uniform electric field is in stable equilibrium ?
5. Why do the clectrostatic field lines not form closed loops?

D Watch Video Solution

6. What is the net force on an electric dipole placed in a uniform electric field ?
7. What is the importance of electric field intensity?

- View Text Solution

Short Answer Type Questions

1. Are the electric field lines a reality ?

- View Text Solution

2. Give the important properties of electric field lines.

- View Text Solution

3. Give important properties of electric lines of force.

- Watch Video Solution

4. Derive an expression for torque experiencedby electric dipole in a uniform electric field

D Watch Video Solution

5. What are electric lines of force? What is its
importance?

D Watch Video Solution
6. Electric field due to a point charge has spherical symmetry. Explain.

D Watch Video Solution

7. A charged particle is free to move in as electric field. Will it always move along an electric line of force?

- Watch Video Solution

Long Answer Type Questions

1. Derive an expression for electric field intensity at a distance r from a point charge q.

D Watch Video Solution

2. Derive an expression for the electric potential at a point along the axial line of an electric dipole.
3. Define electric fied intensity and derive an expression for it at a point on the neuttral axis of a dipole. Also determine its direction.

- Watch Video Solution

4. What is the direction of electric field due to an electric dipole at a point on its axial line?

- Watch Video Solution

5. Define electric fied intensity and derive an expression for it at a point on the neuttral axis of a dipole. Also determine its direction.

- Watch Video Solution

6. Derive an expression for the torque acting on an electric dipole suspended freely in a uniform electric field. How will you determine the direction of torque?
7. Which physical quantity has its SI unit(1) Cm
(2) N / C.

- Watch Video Solution

8. Two point charges q and $-q$ is placed at a distance 2a apart.Calculate the electric field at
a point P situated at a distance r along the perpendicular bisector of the line joining the charges. What is the electric field when
$r \gg a ?$ Also, give the direction of electric field W.r.t. electric dipole moment? .

D Watch Video Solution

9. Two point charges q and- q are placed at a distance 2a part. Calculate the electric field at a point P situated at a distance r along the axial line of an electric dipole. What is the electric field when $r\rangle a$? Also, give the direction of elctric field w.r.t. electric dipole.

Numerical Problems

1. An electric dipoel consists of two equal and opposite charges placed 2 cm apart. When the dipole is placed in a uniform electric field of strength $10^{5} \mathrm{NC}^{-1}$, it experiences a maximum torque of $0.2 \times 10^{-3} \mathrm{Nm}$. Find the magnitude of each charge.
2. An electric dipoole, when placed at an angle 30° with a uniform electric field of $10^{4} N C^{-1}$, expereinces a torque of $9 \times 10^{-26} \mathrm{~N} \quad \mathrm{~m}$. Calculate the dipole moment and electrostatic potential energy in this position.

D Watch Video Solution

3. An electric dipole consists of two equal and opposite charges each of $1 \mu C$ separated by 2 cm . When it is placed in uniform electric field
of $10^{5} N C^{-1}$ at an angle θ with the electric field, it experiences a torque of $2 \times 10^{-3} \mathrm{Nm}$.

Find the value of angle θ.

D Watch Video Solution

4. Two point charges of $-16 \mu C$ and $+9 \mu C$ are
placed 8 cm apart in air. Determine the point at which resultant electric field is zero.
5
Two
points
charges
of
$+20 \mu C$ and $+80 \mu C$ are plaed 18 cm apart.

Find the position of the point where electric field is zero.

- Watch Video Solution

6. A distance of 2 m separates two point charges of $+5 \times 10^{-19} C$. Find the point on
the line joining them at which electric field intensity is zero.
7. Find the time taken by a particle of mass
$10^{-18} \mathrm{~kg}$ and carrying a charge $3.2 \times 10^{-19} \mathrm{C}$ to fall through a distance of 8 m in a uniform electric field of intensity $8 \times 10^{2} N C^{-1}$

- Watch Video Solution

8. Find the time taken by a particle of mass
$2 \times 10^{-18} \mathrm{~kg}$ and carrying a charge of
$1.6 \times 10^{-19} \mathrm{C}$ to fall through a distance of 4.0
m in a uniform electric field of intensity

$$
1.6 \times 10^{3} N C^{-1}
$$

D Watch Video Solution

9. Find the time taken by a particle of mass
$4 \times 10^{-18} \mathrm{~kg} \quad$ and carrying a charge
$6.4 \times 10^{-19} C$ to fall through a distance of 2 m in a uniform electric field of intensity
$4 \times 10^{2} N C^{-1}$.

D Watch Video Solution

10. Two charges ' q_{1} ' and ' q_{2} ' of magnitude $10^{-8} C$ and $-10^{-8} C$, respectively, are placed
0.1 m apart. Calculate the electric field at points A and B as shown in Fig.

(Watch Video Solution

Numerical Problems Most Expected Questions

1. A charged plastic spherical ball of mass
$8.4 \times 10^{-14} \mathrm{~kg}$ is found to remain suspended in a uniform electric field of Entensity
$5 \times 10^{2} N C^{-1}$. Calculate the charge on the ball.

D Watch Video Solution

2. Two charges +10 and +40 micro-coulomb are placed 12 cm apart in air. Find the position where electric field intensity is zero.
3. Two charges of $\pm 0.2 \mu \mu C$ and $-0.2 \mu \mu C$ are placed $10^{-6} \mathrm{~cm}$ apart. Calculate the electric field at an axial point at a distance of 10 cm from their mid point. Use the standard value of ε_{0}

D Watch Video Solution

4. A particle of mass $10^{-3} \mathrm{~kg}$ and charge $5 \mu C$
is thrown at a speed $20 m s^{-1}$ against a
uniform electric field of strength
$2 \times 10^{5} N C^{-1}$, How much distance will it travel before coming to rest momentarily?

D Watch Video Solution

