びdoubtnut

India's Number 1 Education App

CHEMISTRY

BOOKS - JMD CHEMISTRY (PUNJABI

ENGLISH)

CHEMICAL KINEMATICS

Example

1. The units of rate constant for first order equation.
A. s^{-1}
B. $m o l L^{-1} s^{-1}$
C. L^{-1}
D. $L^{-1} s^{-1}$

Answer: A

D Watch Video Solution
2. On increasing temparature of the reacting system by 10 degrees, the rate of reaction
almost doubles. The most appropriate reason for this is :
A. collision frequency increases
B. actevating energy decreases with
increase in temparature
C. the fraction of molecules having energy
equal to threshould energy or more
increases
D. the value of threshold energy decreases.
3. If rate of reaction between a and B is expressed as $k[A][B]^{2}$, the reaction is
A. first order in A
B. second order in B
C. overall having third order
D. All are correct

Answer: D
4. Rate constant of a reaction at 290 K was found to be 3.2×10^{-3}. At 300 K , it will be :
A. 1.28×10^{-2}
B. 9.6×10^{-3}
C. 6.4×10^{-3}
D. 3.2×10^{-4}.

Answer: C

- Watch Video Solution

5. If the reaction between A and B to give C shows first order kinetics in A and Second order in B , the rate equation can be writen as :
A. rate $=k[A][B]^{\frac{1}{2}}$
B. 'rate $=k[A]^{\wedge}(1 / 2)[B]$
C. rate $=k[A][B]^{2}$
D. rate $=k[A]^{2}[B]$.

Answer: C

6. For the reaction,
$2 \mathrm{~N}_{2} \mathrm{O}_{5} \rightarrow 4 \mathrm{NO}_{2}+\mathrm{O}_{2}$,
rate of reaction in terms of O_{2} is $\mathrm{d}\left[\mathrm{O}_{2}\right] / \mathrm{dt}$. In
term of $\mathrm{N}_{2} \mathrm{O}_{5}$ will be:

> A. $-d \frac{N_{2} O_{5}}{d t}$
> B. $+d \frac{N_{2} O_{5}}{d t}$
> C. $-\frac{1}{2} d \frac{\left[N_{2} O_{5}\right]}{d t}$
D. '-2d[[N_2O_5]]/dt

7. Unit of rate constant for zero order reaction

 isA. $m o l L^{-1} s^{-1}$
B. $m o l^{-1} L s^{-1}$
C. s^{-1}
D. $m o l^{-2} L^{2} S^{-1}$

Answer: A
8. Rate of a reaction can be expressed by Arrhenius equation as $k=A e^{-\frac{E_{a}}{R T}}$. In this equation,$E_{a}$ represents:
A. The total energy of reacting molecules
at a temparature T
B. The frictions of molecules with energy
greater than activation energy of the
reaction
C. The energy above which all the colliding
molecules will react
D. The energy below which the colliding molecules will not react.

Answer: C

D Watch Video Solution

9. Rate constant of a reaction depends upon:
A. Temparature

B. Initial concentration of the reaction

C. Time of reaction
D. Extent of reaction

Answer: A

D Watch Video Solution
10. The role of a catalyst in a chemical reaction
is to change:
A. Enthalpy of a reaction

B. Nature of products

C. Activation energy
D. Equilibrium constant.

Answer: C

D Watch Video Solution

11. The units of rate constant for first order equation.
A. conc.time ${ }^{-1}$
B. time. conc $^{-1}$
C. time e^{-1}
D. $\operatorname{tim} e^{-1}$. conc $^{-1}$

Answer: C

D Watch Video Solution

12. Which of the following graphs corresponds to first order reaction:

Answer: A

(Watch Video Solution

13. Rate constant of a reaction depends upon:
A. temparature
B. time
C. initial concentration
D. None of these.

Answer: A

- Watch Video Solution

14. Arrhenius equation is
A. $k=A e^{-\frac{E_{a}}{R T}}$
B. $k=A e^{\frac{E_{a}}{R T}}$
C. $k=e^{\frac{E_{a}}{R T}}$
D. $k=-A e^{\frac{E_{a}}{R T}}$

Answer: B

- Watch Video Solution

15. The chemical reactions in which the reactants require high amount of activation energy are generally
A. slow
B. fast
C. Instantaneous
D. None of these.

Answer: A

D Watch Video Solution
16. Which of the following does not influence
the reaction rate?
A. Nature of reactants
B. Conc. Of reactants
C. Temparature of the reaction
D. Molecularity of the reaction

Answer: D

D Watch Video Solution

17. A reaction was found to be of second order
monoxide. If the concentration of carbon monoxide is doubled, the rate of reaction will :
A. triple
B. increase by a factor of 4
C. double
D. remain unchanged

Answer: B

- Watch Video Solution

18. The value of k for a reaction is
$2.96 \times 10^{30} s^{-1}$, what is the order of the reaction?
A. Zero
B. 3
C. 2
D. 1

Answer: D

- Watch Video Solution

19. The units of rate constant for first order equation.

> A. mol $^{-1}$ litres $^{-1}$
> B. mollitre $e^{-2} s^{-1}$
> C. s^{-1}
> D. mollitre $e^{-1} s^{-1}$.

Answer: A

D Watch Video Solution
20. The rate constant of a reaction has same units as the rate of reaction. The reaction is of
A. Third order
B. second order
C. First order
D. Zero order

Answer: D

21. The rate constant of a reaction has s^{-1} units. The reaction is of
A. Third order
B. Second order
C. First order

D. Zero order

Answer: C

22. The rate constant of reaction is 3×10^{-3}
$\mathrm{atm}^{-2} \mathrm{sec}^{-1}$. The order of reaction is
A. 1
B. 2
C. 3
D. 0

Answer: B

D Watch Video Solution

23. The order of a single step reaction can be

A. 0
B. whole number
C. fraction
D. integer,fraction,zero

Answer:

- Watch Video Solution

24. The molecularity of a reaction can never be

 a fraction.D Watch Video Solution
25. Unit of rate constant for a second order reaction are $\mathrm{L} \mathrm{mol}^{-1} s^{-1}$.

- Watch Video Solution

26. The molecularity of a reaction can never be a fraction.

D Watch Video Solution
27. Order of a reaction can be zero.

- Watch Video Solution

28. Molecularity of a reaction cannot be zero.

- Watch Video Solution

29. The half life period of a zero order reaction

is independent of initial concentration

D Watch Video Solution

30. In a multistep reaction, the fastest step is
the rate determining step.

D Watch Video Solution
31. A catalyst always increases the rate of reaction.

D Watch Video Solution
32. Rate of a zero order reaction slowly decreases with the progress of a the reaction.

D Watch Video Solution

33. Express the instantenus rate of the reaction
${ }^{\prime} \mathrm{N}_{-} 2(\mathrm{~g})+3 \mathrm{H}_{2} 2(\mathrm{~g})$ rarr $2 \mathrm{NH}_{3} 3(\mathrm{~g})$ '
In terms of various reactants and products.

- Watch Video Solution

34. Define Instantaneous rate of reaction and
rate constant' (or specific rate constant), What Is the difference between the two ?
35. Find the units of rate constant of reaction In solution as well as in gaseous phase for:

Zero order reaction.

D Watch Video Solution

36. Find the units of rate constant of reaction

In solution as well as in gaseous phase for:

First order reaction.
37. Find the units of rate constant of reaction In solution as well as in gaseous phase for : Second order reaction.

- Watch Video Solution

38. Find the units of rate constant of reaction In solution as well as in gaseous phase for :

Third order reaction.

39. Explain the rate law.

- Watch Video Solution

40. Define order of a reaction

D Watch Video Solution
41. Give four characteristics of rate constant.
42. Can order of a reaction be fractional ? Give an example.

- Watch Video Solution

43. Give one example of zero order reaction.

D Watch Video Solution
44. Define molecularity of a reaction.
45. Define average rate of an reaction.

- Watch Video Solution

46. For the reaction
$2 \mathrm{H}_{2}(g)+2 \mathrm{NO}(g) \rightarrow \mathrm{N}_{2}(g)+2 \mathrm{H}_{2} \mathrm{O}(g)$
the proposed mechanism is as followed
(i)

> '2NO(g)
$\mathrm{N}_{2} \mathrm{O}_{2}(g)+\mathrm{H}_{2}(g) \rightarrow \mathrm{N}_{2} \mathrm{O}(g)+\mathrm{H}_{2} \mathrm{O}(g)$
$\mathrm{N}_{2} \mathrm{O}(g)+\mathrm{H}_{2}(g) \rightarrow \mathrm{N}_{2}(g)+\mathrm{H}_{2} \mathrm{O}(g)$

If the second step is the rate determining step
then what Is the molecularity of the reaction

D Watch Video Solution

47. For the reaction
$2 \mathrm{H}_{2}(g)+2 \mathrm{NO}(g) \rightarrow \mathrm{N}_{2}(g)+2 \mathrm{H}_{2} \mathrm{O}(g)$
the proposed mechanism is as followed
(i) $\quad 2 \mathrm{NO}(\mathrm{g})$
$\mathrm{N}_{2} \mathrm{O}_{2}(g)+\mathrm{H}_{2}(g) \rightarrow \mathrm{N}_{2} \mathrm{O}(g)+\mathrm{H}_{2} \mathrm{O}(g)$
$\mathrm{N}_{2} \mathrm{O}(g)+\mathrm{H}_{2}(g) \rightarrow \mathrm{N}_{2}(g)+\mathrm{H}_{2} \mathrm{O}(g)$

If the second step is the rate determining step then what IS the order or the reaction?

D Watch Video Solution

48. for the reaction
$2 \mathrm{H}_{2}(g)+2 \mathrm{NO}(g) \rightarrow \mathrm{N}_{2}(g)+2 \mathrm{H}_{2} \mathrm{O}(g)$
the proposed mechanism is as followed < br>
(i)
'2NO(g)
$\mathrm{N}_{2} \mathrm{O}_{2}(g)+\mathrm{H}_{2}(g) \rightarrow \mathrm{N}_{2} \mathrm{O}(g)+\mathrm{H}_{2} \mathrm{O}(g)$
$\mathrm{N}_{2} \mathrm{O}(g)+\mathrm{H}_{2}(g) \rightarrow \mathrm{N}_{2}(g)+\mathrm{H}_{2} \mathrm{O}(g)$

If the second step is the rate determining step
then What is the rate law for the reaction?

D Watch Video Solution

49. What is difference between order of reaction and molecularity of reaction?

D Watch Video Solution

50. Define zero order reaction. Derive integrated rate equation for rate constant of a
zero order reaction.

D Watch Video Solution

51. Derive an expression for half life period of a zero order reaction.

- Watch Video Solution

52. Derive the integrated rate equation for the rate constant for a first order reaction. What would be units of the first order rate constant,
if the concentration is expressed in moles per litre and time to seconds ? Also give graphical representation of integrated rate law equation.

- Watch Video Solution

53. Show that for a first order reaction, the time taken to complete half of the change is Independent of the initial concentration of the reactant.
54. Derive an expression for half life period of a zero order reaction.

D Watch Video Solution

55. Explain with suitable example how the molecularity of a reaction Is different from the order of reaction?

- Watch Video Solution

56. What are pseudochemical or pseudo-order reactions ? Give one example.

D Watch Video Solution

57. Define threshold energy and activation energy. How are they related?

D Watch Video Solution

58. What Is activated complex ?
59. What is temperature coefficient of a reaction ? Why temperature coefficient for most of the reactions at room temperature is nearly two ?

D Watch Video Solution

60. What is Arrhenius equation to describe the
effect of temperature on rate of a reaction ?

How can it be used to calculate the activation energy of a reaction ?

D Watch Video Solution

61. How is rate constant of a reaction related to its activation energy?

D Watch Video Solution

62. Explain the effect of catalyst on the rate of
reaction with diagram.
63. Define collision frequency. Write short note on collision theory of chemical reactions.

- Watch Video Solution

64. State the order with respect to each reactant and overall order for the following reaction :

$$
\mathrm{H}_{2} \mathrm{O}_{2}+3 \mathrm{I}^{-}+2 \mathrm{H}^{+} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}+\mathrm{I}_{3}^{-}(a q)
$$

Rate $=K\left[H_{2} O_{2}\right]\left[I^{-}\right]$
What are the units of rate constant?

D Watch Video Solution

65. State the order with respect to each reactant and overall order for the following reaction :
$\mathrm{H}_{2} \mathrm{O}_{2}+3 \mathrm{I}^{-}+2 \mathrm{H}^{+} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}+\mathrm{I}_{3}^{-}(\mathrm{aq})$
Rate $=K\left[H_{2} O_{2}\right]\left[I^{-}\right]$
What are the units of rate constant?

D Watch Video Solution
66. The decomposition of hydrogen peroxide has been found to be first order

The rate constant has beem found to be $1.01 \times 10^{-2} \mathrm{~min}^{-1}$. Calculate the rate of reaction when $\left[\mathrm{H}_{2} \mathrm{O}_{2}\right]=0.4 \mathrm{~mol} L^{-1}$

- Watch Video Solution

67. The decomposition of $\mathrm{H}_{2} \mathrm{O}_{2}$, in the presence of lodide ion has been found to be
first order in $\mathrm{H}_{2} \mathrm{O}_{2}$.

The rate constant has been found to be $1.01 \times 10^{-2} \mathrm{~min}^{-1}$. What concentration of $\mathrm{H}_{2} \mathrm{O}_{2}$ would give rate of $\begin{gathered} \\ 1.12 \mathrm{xx} 10^{\wedge}-2 \mathrm{~mol} \mathrm{~L} \\ \\ \\ -1\end{gathered}$ $\min ^{\wedge}-1 ?$

$$
\mathbf{I}^{-}(a q)
$$

$\mathbf{2} \mathbf{H}_{2} \mathrm{O}_{2}(a q) \longrightarrow \mathbf{2 H}_{2} \mathrm{O}(l)+\mathrm{O}_{2}(g)$

- Watch Video Solution

68. The decomposition of $N_{2} O_{5}$ in carbon tetrachloride solution has been found to be first order with respect to $\mathrm{N}_{2} \mathrm{O}_{5}$ with rate
constant, $k-6.2 \times 10^{-4} s 6-1$
$\mathrm{N}_{2} \mathrm{O}_{5}(G) \rightarrow 2 \mathrm{NO}_{2}(g)+\frac{1}{2} \mathrm{O}_{2}(g)$
Calculate the rate of reaction when
$\left[N_{2} O_{5}\right]=2.50 \mathrm{~mol}^{-1}$

- Watch Video Solution

69. The decomposition of $\mathrm{N}_{2} \mathrm{O}_{5}$ in carbon tetrachloride solution has been found to be first order with respect to $\mathrm{N}_{2} \mathrm{O}_{5}$ with rate constant, $k=6.2 \times 10^{-4} s^{-1}$
$\mathrm{N}_{2} \mathrm{O}_{5}(G) \rightarrow 2 \mathrm{NO}_{2}(g)+\frac{1}{2} \mathrm{O}_{2}(g)$

What concentration of $\mathrm{N}_{2} \mathrm{O}_{5}$ would give a rate of $4.2 \times 10^{-3} \mathrm{molL}^{-1} \mathrm{~s}^{-1}$?

D Watch Video Solution

70. Reaction between $N O_{2}$ and F_{2} to give $\mathrm{NO}_{2} \mathrm{~F}$ takes place by the following mechanism:

Write the rate expression and order of the
reaction. What is the unit of rate constant ?

$$
\begin{aligned}
& \mathrm{NO}_{2}(g)+\mathrm{F}_{2}(g) \xrightarrow{\text { Fast }} \mathrm{NO}_{2} \mathrm{~F}(g)+\mathrm{F}(g) \\
& \mathrm{NO}_{2}(g)+\mathrm{F}_{2}(g) \xrightarrow{\text { SO }} \mathrm{NO}_{2} \mathrm{~F}(g),
\end{aligned}
$$

$2 \mathrm{NO}_{2}(g)+\mathrm{F}_{2}(g) \longrightarrow 2 \mathrm{NO}_{2} \mathrm{~F}_{2}(g)$

D Watch Video Solution

71. Reaction between NO_{2} and CO to give
CO_{2} and NO takes place by the following mechanism:

Write the rate expression and order of the
reaction. What is the unit of rate constant ?

Slow

$\mathrm{NO}_{2}+\mathrm{NO}_{2} \longrightarrow \mathbf{N O}+\mathrm{NO}_{3}$
Fast
$\mathrm{NO}_{3}+\mathrm{CO} \longrightarrow \mathrm{CO}_{2}+\mathrm{NO}_{2}$
$\mathrm{NO}_{2}+\mathrm{CO} \longrightarrow \mathrm{CO}_{2}+\mathrm{NO}$

- Watch Video Solution

72. Thermal decomposition of dinitrogen penta oxide takes place by the following mechanism:

Write the rate expression and order of
reaction. What is the unit of rate constant ?

Slow

$\mathrm{N}_{2} \mathrm{O}_{5} \xrightarrow{\longrightarrow} \mathrm{NO}_{2}+\mathrm{NO}_{3}$
Fast
$\frac{\mathrm{N}_{2} \mathrm{O}_{5}+\mathrm{NO}_{3} \longrightarrow 3 \mathrm{NO}_{2}+\mathrm{O}_{2}}{2 \mathrm{~N}_{2} \mathrm{O}_{5} \longrightarrow 4 \mathrm{NO}_{2}+\mathrm{O}_{2}}$

- Watch Video Solution

73. The half-life for radioactive decay of ${ }^{14} C$ is

5730 years. An archaeological artifact contented wood that has only 80% of the
. ${ }^{14} C$ found in living tree. Estimate the age of the sample.
74. A first order reaction has a rate constant $1.15 \times 10^{-3} s^{-1}$. How long will 5 g of this reactant take to reduce to 3 g ?

- Watch Video Solution

75. Time required to decompose $\mathrm{SO}_{2} \mathrm{Cl}_{2}$ to
half of its initial amount Is 60 minutes. If the decomposition is a first order reaction, calculate the rate constant of the reaction.

- Watch Video Solution

76. Show that the time required for 99% completion of a first order reaction In twice the time required for the completion of 90%.

D Watch Video Solution

77. A first order reaction takes 40 min for 30%
completion. Calculate $t_{\frac{1}{2}}$.

D Watch Video Solution
78. A first order reaction is 20% complete in the 10 minutes. Calculate the time period for 75% completion of the reaction.

- Watch Video Solution

79. The rate constant for a first order reaction
is $80 s^{-1}$. How much time will it take to reduce
the concentration of the reactants to $\frac{1}{18^{t h}}$ of
Its initial value?
80. The rate constant for a first order reaction

Is $90 s^{-1}$.How much time will it take to reduce
the concentration of the reactant to $\frac{1}{20^{t h}}$ of its Initial value ?

D Watch Video Solution

81. First order reaction is found to have rate
constant, $k=5.5 \times 10^{-14} s^{-1}$. Find the half
life to the reaction.

- Watch Video Solution

82. Calculate two third life of a first order reaction having $k=5.48 \times 10^{-14} s^{-1}$.

- Watch Video Solution

83. Find the half life period of first order reaction whose rate constant, $k=4.93 \times 10^{-4} s^{-1}$.
84. The half life period for a reaction of first order is $2.31 \times 10^{3} \mathrm{~min}$. How long will it take for $\frac{1}{5^{t h}}$ of the reactants to be left behind.

- Watch Video Solution

85. The rate constant for a first order reaction
is $3.0 \times 10^{-4} \mathrm{~min}^{-1}$. How long will It take for $\frac{1}{5^{t h}}$ of the reactants to be left behind ?

D Watch Video Solution

86. Calculate the time required for the completion of 90% of a reaction of first order kinetics, $t_{\frac{1}{2}}=44.1$ minutes.

D Watch Video Solution

87. The decomposition of A into product has
value of k as $4.5 \times 10^{3} \mathrm{~s}^{-1}$ at $10^{\circ} \mathrm{C}$ and energy
of activation $60 \mathrm{~kJ} \mathrm{~mol}{ }^{-1}$. At what temperature would k be $1.5 \times 10^{4} s^{-1}$?
88. The rate of the chemical reaction doubles
for an increase of 10 K In absolute temperature from 298 K . Calculate E_{a}.

D Watch Video Solution

89. The rate constant for a first order reaction
becomes six times when the temperature is
raised from 350 K to 400 K . Calculate activation energy for the reaction.
90. For a decomposition reaction, the values of
rate constants, k at two different temperatures are given below :
$k_{1}=2.15 \times 10^{-7} \mathrm{Lmol}^{-1} \mathrm{~s}^{-1}$ at 650K
$k_{2}=2.39 \times 10^{-7} \mathrm{Lmol}^{-1} \mathrm{~s}^{-1}$ at 700K
calculate activation energy for the reaction.

- Watch Video Solution

91. The rate constants of a reaction at 300 and

320 K are $0.0231 s^{-1}$ and $0.0693 s^{-1}$
respectively. Calculate the value of activation
energy of the reaction. [$\mathrm{R}=8.314 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$,
$\log 3=0.4771]$

D Watch Video Solution

